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Spin ideals of Clifford algebras over quadratic spaces of any rank are constructed through
contractive limits of suitably deformed classical spin ideals of nondegenerate Clifford algebras.
The deformation of the algebraic structures, including the standard Witt basis for the quadratic
space, results only from a deformation of the underlying quadratic form. It is shown that a
contractive limit of deformed twistor spaces, considered as spin ideals of the Dirac—Clifford
algebra, provides a decomposable representation space for the Galilei~Clifford algebra. The limit
spin ideals of degenerate Clifford algebras are then decomposed into indecomposable Clifford

modul@s.

I. INTRODUCTION

In the theory of spin representations of Clifford algebras
generators of spin (minimal left) ideals are usually construct-
ed through a Witt decomposition of underlying quadratic
space.’™ In particular, each spin ideal is generated by a
primitive idempotent.>® The spin (left regular) representa-
tions of Clifford, Pin, and Spin groups can then be naturally
considered in such ideals viewed as Clifford modules.”®
However, the existing theory is limited to algebras over vec-
tor spaces endowed with nondegenerate quadratic forms and
cannot be directly applied to algebras (called here degener-
ate) when the quadratic form is degenerate.>'® The degener-
ate Clifford algebras studied in this paper provide yet an-
other generalization of classical Clifford algebras enjoying a
revived interest among physicists.!’ 4

It is well known that in the category of Z,-graded alge-
bras a degenerate Clifford algebra is isomorphic to a graded
tensor product of a Clifford algebra and an exterior algebra
associated with the orthogonal complement of the underly-
ing quadratic space.' Instead of adopting this point of view
we rather consider a two sided nilpotent ideal (the Jacobson
radical) contained in such algebra and generated by the
complement. We construct the spin representation and spin
ideal for the Clifford algebra of quadratic form of arbitrary
rank. This construction seems to be novel in that it utilizes
suitably defined (see Sec. 1) deformation and contraction of
a Witt basis in a nondegenerate quadratic space. In fact, we
have a continuous family of isomorphic Clifford algebras
and associated algebraic structures.

In Sec. III we study deformed classical spin ideals and
spin representations. It is shown that every generator of a
deformed spin ideal has a nonzero contractive limit and that
the set of these limits provides a basis for a limit spin ideal
(space). In an example, a spin ideal of the Galilei-Clifford
algebra is viewed as the limit of a family of deformed twistor
spaces. Using well-known structure theorems on Clifford
algebras"*!® the spin representation is then decomposed
into indecomposable components.

In Sec. IV we examine structure of the limit ideals of
degenerate Clifford algebras for arbitrary rank. It is shown
that such ideals can be decomposed into direct sums of sim-
ple Clifford modules invariant under nondegenerate Clifford
subalgebras.
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1. DEFORMED WITT BASIS AND ITS CONTRACTION

We review first several definitions and state Witt’s de-
composition theorem for an arbitrary quadratic space.'’ Let
(¥,Q) be a finite-dimensional quadratic vector space over a
field X (char K #2) and let B be the symmetric bilinear form
associated with Q. Form Q is said to be nondegenerate (or
regular) (resp. degenerate), if B(x,y) =0 for every yin V
implies x = O (resp. if there exists a nonzero vector x orthog-
onal to the entire space). We say that a nonzero vector xin ¥V
is isotropic if Q(x) = 0, and say that x is anisotropic other-
wise. The quadratic space (¥,Q) is said to be isotropic if it
contains a (nonzero) isotropic vector, and is said to be aniso-
tropic otherwise. It is totally isotropic if all vectors are iso-
tropic. A direct sum of totally isotropic spaces orthogonal to
each other is again a totally isotropic space. Thus a set of
totally isotropic subspaces of (¥,Q) ordered by inclusion
contains a maximal totally isotropic subspace. It is well
known that all maximal totally isotropic subspaces of a non-
degenerate quadratic space have the same dimension called
the Witt index of Q. Finally, a two-dimensional nondegener-
ate isotropic quadratic space is called the hyperbolic plane
and an orthogonal sum of hyperbolic planes is called a hyper-
bolic space.

Theorem 2.1 (Witt Decomposition): Any quadratic
space (¥,Q) splits into an orthogonal sum, (¥,, Q,) L (V,,
@») L (V,, Q,), where V, is totally isotropic, ¥, is hyper-
bolic (or zero), and V, is anisotropic. Furthermore, the iso-
metry types of V,, V,,, and ¥, are all uniquely determined.

Corollary 2.2: Let F be a maximal totally isotropic sub-
space of (¥,Q) of dimension 7.

(i) There exists a maximal totally isotropic subspace F’
such that FnF' = {0}, and ¥,, isisomorphic to the direct sum
FoF'.

(ii) For every basis { f;} of F there exists a basis { f}
of F' such that B( f,, %) = 8,;; (Kronecker delta), B( f,,
fj) =B(f|" f}) =0, 1,J= L,...r.

The basis elements { f;, f} of F& F' together with an
orthogonal basis of ¥, form a Witt basis of V /V* associated
with its decomposition into the hyperbolic and anisotropic
components only. [Here, ¥'* denotes the orthogonal com-
plement of (V,0) itself.]

We limit our attention to real and complex vector
spaces. Throughout this work R%** denotes a real space of
dimension n = d + p + k endowed with a quadratic form Q
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of rank p + k and signature (d,p,k) (that is, dim ker Q
= dim R #* = d, and the diagonalized form of Q contains

k plus I's and p minus 1’s), whereas the universal Clifford
algebra over R%”* is denoted by R, ,,. We call them both
degenerate when d #0. When d = 0, the Witt index of Q is
equal to min{p,k } and we write R”* and R,, instead of
R%P* and R, x, respectively. (It is also assumed that k<p.)
Let {e,,....¢, } be an orthogonal basis in ¥ = R”* and let

V, 1V, be its Witt decomposition. Then, following Refs. 1
and 2, a Witt basis for ¥ can be represented, for example, as

F=spang{x;, =A(e; +e,_, 1)}

F' =spangf{y, =A(e, —e,_,. 1)} (2.1)

V, =spang e, (s, _r}s
where i = 1,...,k and A is a normalizing factor (24 2 = 1).

Definition 2.3: A (d,,d,)-deformation of a quadratic form
Q of signature (0,p,k } is a quadratic form Q¢ such that

Q%e,) =€ i=1,..d,

Q) =1, i=d,+1,..k,
(2.2)

Qe)=—1, i=k+1,.k+p,
Q%)= —€, i=k+p +1,.n,

where € is a deformation parameter 0 < €<l andp’ + d, =p,
k' +d,=k.Wedenoteby R ; ; the (d,,d,)-deformation of
the Clifford algebra R, . associated with the quadratic space
V¢ = (RP*, Q). Obviously, since all deformations of Q are
equivalent (that is, belong to the equivalence class contain-
ing Q), the quadratic spaces ¥ ¢ are isometric and the Clif-
ford algebras R ; , are isomorphic.

Definition 2.4: A (d,, d,)-deformation of a Witt basis for
V is obtained by replacing in (2.1) every vector ¢; such that
Q° (e;) = + € withe, /€.

Lemma2.5: A (d,, d,)-deformation of a Witt basis for ¥
provides a Witt basis for the (d,, d,)-deformation V' ©.

Proof* By the remark above and Theorem 2.1 the iso-
metry types of F €, F'¢, and V' are the same as that of F, F',
and ¥,. Denoting now the basis elements of F© @ F'® by
{x¢, y¢} we can easily verify that they provide a Witt basis for
the hyperbolic component of ¥ orthogonal to V. a

Definition 2.6: A contraction of Q is the limit form Q°
obtained from a (d,,d,) deformation Q¢ of Q when €0 in
2.2).

Notice that the signature of Q °is (d,p',k '), d = d, + d,,
that is, the form Q° is degenerate. We will formally write
F—Q%V<—V°%andR;,—R,,  as€—0.InLemma2.7
we show how to contract a deformed Witt basis for V' to a
Witt basis for V°.

Lemma 2.7: Let V° be the contractive limit of a (d,, d,)
deformation V € andlet (F ¢ @ F’¢ )LV ¢ bea Witt decompo-
sition of ¥ €. Then there exists a contractive limit of a (d,,
d,) deformation of a Witt basis of ¥ ¢ that provides a Witt
basis for V°.

Proof: We consider only the case when k<d,, since other
cases may be treated similarly. Then a Witt basis of V¢ is
given by a (d,, d,) deformation of (2.1). We list the x° part
and the anisotropic part below:

424 J. Math. Phys., Vol. 27, No. 2, February 1986

{x{ =A(e, +e,)/€...x5 =Aleq, +€,, 1 41)/6
x5, 1 =Aley 1+, /6
Xy =A(e, +€,,,/6)},

{ew s 1/6neq /€, €4, 15y ).

Vectors {y¢} differ from {x{} only by the sign, that is,
v, =A(e; — e, )/€, etc. where n = p + k. Then we have the
following contractive limits:

(2.3)

ex;—x, =A&, +¢e,_,,,),

&P =A —&, ;1) i=1l,..dy

€(x; + y{)/2—Ae,,

(x5 —y5)/2—A8, 4, i=dy+ 1,k (2.4)
€le,,,/€)—8 iy i=1,..d -k,

i=d, +1,..p,

where ~ is to remind us that certain basis vectors {¢; } be-
long now to the kernel of Q °. There are then d isotropic basis
vectors spanning ker Q ®in ¥°. Also, we see that the remain-
ing vectors span a (k' + p’)-dimensional nondegenerate
subspaceof ¥ °orthogonal toker Q ®andisomorphicto R7**".
Applying now Theorem 2.1 and Egs. (2.1) we get
RF* = (Fe F')1V°, where F and F’ are maximal totally
isotropic subspaces of dimension min{p’,k '} and ¥? is aniso-

e;,—¢€;,

tropic of dimension [p'—k’[.  Finally, ¥°
=ker Q°L(Fo F')LV? and a Witt basis of ¥ is the con-
tractive limit of (2.3). O

Now we present an example of (0,1)-deformation of the
real Minkowski space-time R *! of special relativity, its Witt
decomposition, and contraction leading to the Galilei space-
time R 39 of classical mechanics. (For a comparison of the
Galileian and Lorentzian structures of space-time see Ref.
16.)

Example 2.8: Let [e,, e,, e,, e,} be an orthogonal basis in
R*'suchthatQ(e,) = landQ(e;) = — 1,i =2,3,4. ThenQ
has index 1 and R *! has a Witt decomposition (F & F').G,

F= spanR {xl =Ar(e] + 34)},
F' =spang{y, =A(e, — ey},
G = spang {e,, ;).

Then the (0,1)-deformation of (2.5) gives a Witt basis for
Ve =(R*!, Q¢)and a Witt decomposition (F ¢ & F'*)LG*,
F© =spang {x{ = A (e,/€ + e,}},

(2.5)

F'* =spang [y, =4 (e,/€ — e,)}, (2.6)
G < = spang {e,, e;},
while Q% (e,) = € and Q% (¢;) = — 1, i = 2,3,4. Then the fol-
lowing contractive limits exist as e—0:
€lx; +y1)/2—A8,, (x] —yi)/2—Ae,,
€,, e5—>€,, €,, (2.7
where Q%) =0, Q%)= — 1. Moreover,
VeV = (R 0% ase—0and a Witt decomposition of
V' is provided by the orthogonal sum ker Q°1G°,
ker Q° = span, (¢,}, and G° = spang, {e,, €,, €,}. (2.8)
Example 2.9: Consider now the complexification V¢ of
(R 3!, @) from example 2.8. Then the complexified quadratic
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form Q° is neutral (that is, of maximum index 2) and
V¢=FeoF,
F=spanc{x, = (e, + ), x, = 4 (ie; + &;)},
(2.9)
F’ =spanc{y, =4 (e, — e}, y, = A (ie; — &;)}.
Applying now a (0,1)-deformation of ¥V°
Ve =F¢eoF'c, where
Fe=spanc{x] =A(e,/€ +e,), x5 =1 (ie, + e5}},
{2.10)
Fe=spanc(y =4 (e/e — e, ¥5 = A lie, — e3)},
and Q% (e,) = €, Q% (e;) = — 1,i = 2,3,4. Then the follow-
ing contractive limits exist as é—0:

€x] + Y1)/ 248, (x] —yi)/2—2e,

we get

X5, Yi—Xy V2,

2.11)
where Q*(é,) =0 and Q*(e;) = — 1. Moreover, ¥V * con-
tracts to V%, the complexification of (R *°,0°) and a Witt
decomposition of ¥'* is provided by the orthogonal sum
ker Q%L(Fe F')1G®,

ker Q% =span.{&,}, G,=spanc{e,},

F= spanc{X2 =A(ie2 + e3)} ’
F'=spanc{y, =A(ie, —e5)}.

(2.12)

Notice that (F @ F')LG °®is a Witt decomposition of the com-
plexification of R *° spanned by {e,.e;,e,} and considered as
a nondegenerate part of V%,

lil. CONTRACTION OF SPIN REPRESENTATIONS

In this section we discuss spin representations of a fam-
ily of deformed complex Clifford algebras {C(Q ) } parame-
terized by the deformation parameter €, 0 < €<1. It is useful
to continue the coordinate dependent approach developed in
Sec. I1 to study the contractions of spin bases induced by the
contractions of the associated Witt bases. We do not consid-
er here any global properties of such contractive limits in the
way it is presented in Ref. 17 for space-times depending on a
free parameter.

The theory of spin representations of nondegenerate
Clifford algebras can be found in Refs. 1, 2, 4, and 7. Recall
that a spin representation p is defined as the regular represen-
tation in a minimal left (or right) ideal S called spin ideal (or
spin space). The latter can then be considered as a Clifford
module and, in the following, this approach will be extended
to degenerate Clifford algebras. Since R, is a finite-dimen-
sional semisimple algebra, there exists a primitive idempo-
tent e so that § = R, , e (see Refs. 5, 6, and 18). The con-
struction of e in terms of an orthogonal basis of R #*
possessing an isotropic subspace of maximal index is due to
Cartan and Chevalley and its generalizations can be found in
Refs. 7 and 8. However, we utilize the Witt basis for the
complexification of R “»* to construct a nilpotent generator

Sfeof S$€in C(Q°) (see Refs. 2 and 4 when € = 1).

It is well known that Pauli and Dirac spinors can be

considered abstractly as elements of the spin ideals of R §4
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and R §,, respectively. In particular, the spin ideal of the
latter provides also a representation space for the covering
group of the 15-parameter group of conformal transforma-
tions in the Minkowski space-time (see Ref. 19 for the rela-
tion between the conformal Lie algebra and the Clifford al-
gebra), in which case it is then called fwistor space.>**' The
relation between the regular action of the covering group on
twistors and induced projected conformal action on the
Minkowski space-time can be found in Ref. 22.

In the following, we write V¢ [resp. C(Q€)] for the
complexification of R * (resp. R &, ). First, let the dimen-
sionnof Vbeeven,n=p + k=2r.Then S = C(Q°) f°¢
is a family of deformed spin ideals, where f€ = y5..-y¢ is the
volume element in the exterior algebra over F '€ in the Witt
decomposition of V' (see example 2.9 whenn = 4). Each S ©
provides a representation space for the spin representation p*
of C(Q €) defined as the left regular action.

When n is odd, the spin space is defined as a left
C * (@¢) module of the even subalgebra of C(Q ) with the
generator f factored as above. It is shown in Ref. 2 that
there are only two inequivalent ways to extend the spin rep-
resentation of the even subalgebra to irreducible representa-
tions of the entire algebra.

Let {x{, y{},i = 1,...,r be the deformed Witt basis in V<.
Then C(Q€) is spanned by the monomials {x5y%}, 0<|J|,
|K |<r, where J and K are multi-indices, xj = xj -x;,
|J| =5, vk =i, Vi, |[K| =1t x5 =yp = 1. Since f€ is a
multivector of length 7 and all its factors are isotropic, the
spin space S € is spanned by 2" linearly independent elements
{x5 f€}. It can also be shown that when » is odd the spin
space C *(Q¢) £ again has dimension 2" (see Ref. 2).

Lemma 3.1: The dimension of 5S¢ is 2" and the set
{x5 €}, 0<|J | <r, provides a basis for S, r = [n/2].

Using (2.4) we can find a contractive limit of every gen-
erator of the spin space €"x5f“—X,F as e—0, where z(J ) is
the smallest positive integer depending on J
such that a nonzero limit exists. For example, €’f“—F,
z=d /2(resp. [d /2] + 1) whend is even (resp. odd) for some
nilpotent element F in the radical of C(Q°) (d = dim V'%).

Definition 3.2: The ideal C (Q °)F is called the limit spin
ideal and the limit regular representation p° of C(Q°) in
C (Q°)F is called the limit spin representation.

It should be noted, however, that the limit spin ideals
defined above cease to be minimal and are, in general, de-
composable.

In the following example it is demonstrated that the spin
ideal of the Galilei—Clifford algebra can be viewed as the
limit of twistor spaces.

Example 3.3: Let V'be the quadratic space from example
2.9. Then the Witt basis of the (0,1)-deformation V< was
givenin (2.10). Thus /= yiy5 and T = R 57, f“canbecon-
sidered as a left Clifford module.?-?? The standard basis in
T< is given by [f¢, x$f°, x5 f¢, x{x5 f] and we have the
following limits as e—0:

ef —F =A%, lie, — e;), exife—2le,F,
€x; f<ox,F, ex$x5f—2ex,F, (3.1

where {€,,¢,,e5,¢,} is an orthogonal basis in the complexified
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Galilei space-time ¥V, endowed with the degenerate quadrat-
ic form Q% Q%,) =0, Q%)= — 1,i=2, 3, 4. We then
have R$5—R S5, as €—0. Let
T° = spanc [ F, e,F, x,F,e,x,F }, and we may write formally
T“~T?°. Since every element of the radical of R § ; , (of the
form mé, with m in R$,) annihilates F,
T° =R, F= R5,F, whereR § isthe Clifford subalgebra
generated by e,, ¢;, and e,. If p* denotes the spin representa-
tion of R §, in T'¢, then p*—p°, where p° is the spin represen-
tation of the Galilei—Clifford algebra.

Before we summarize this section let C (Q €)[resp. C (Q9),
C(Q')]denote R 57, (resp. R § 34, R 5,). Also, letf;,i = 1,2,3,
4, be mutually annihilating primitive idempotents in C (@)
[hence in C(Q °) by the Lifting Idempotents Theorem of Ref.
18]. For example,

Si=1 +ien)l +ieq), fo =31+ iey)(1 — iey),

fi=131 —ley)1 +ies), fo=1Y1— iey)(1 —iey),
wheree,, = e,¢; (see Ref. 23). Then C(Q ') has a direct sum
decomposition, which can be lifted to C(Q°), into minimal
(hence indecomposable) left ideals C(Q')f,. Thus
T°= C(Q°F = C(Q’)F can be written as a direct sum of
C(Q°)-modules C(Q°) £, F. In fact, we can show that two of
these modules are indecomposable, whereas the remaining
two are trivial.

Proposition 3.4: Let T* = C(Q ©) f be the twistor space
and let p* be the irreducible spin representation of C(Q €) in
T 0<e<1.

(i) There exist limits T°—T° p°—p° where
T° = C(Q°)Fisaleftregularrepresentationspace of C(Q°),
€f “—F. The representation p° is unfaithful.

(ii) p° is decomposable into a direct sum of two inde-
composable subrepresentations.

(iii) 7° is a complex four-dimensional vector space
spanned by the contractive limits {F, e,F, x,F, e,x,F} of the
canonical basis in 7°.

IV. SPIN SPACE AS A CLIFFORD MODULE

In this section we examine the module structure of the
spin ideal of a degenerate Clifford algebra. Let ¥ € denote the
complexification of a deformed real quadratic space R »* of
even dimension n = p + k = 2r (the case when dimension is
odd will be considered later) and let {x{,y¢}, i =1,...,rbea
deformed Witt basis in V' “. If, for example, we want to con-
sider a contraction of the Clifford algebra C(Q €) over ¥ “to
the Clifford algebra C(Q°) over V°, dim V' =d = 2q, we
may modify (2.3) as follows

{x{ =Ale, + e,) /e, =Ale, + €, g1 ) /e,

x5, =Ale,r ten_g)Xi=Ale, +e,.,)}, (41)
and similarly for the y* part. Then the contractive limits can
be found as in (24). In particular, € —F
= J1Py¥q + 1+, is the limit of the generator f of the spin
ideal S of C(Q ©), where J, are isotropic vectors in the radi-
calof C(Q?). Sincea typical generator of C(Q ©) has the form
X Ya¥r,0<M |, |L |<g,0<|M |<r — g,thelimitspinspace
§° = C(QP°)Fis spanned by 2’ linearly independent mono-
mials {x%,F}.
When the dimension of ¥ is odd, d = 2¢ + 1, vector
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Xg41 in (4.1) is replaced with x5, , =A(e, /€ + €_g)
(and similarly for y . , ), while the other basis vectors re-
main unchanged. Then,

e {fe_’F=}~’1"'j}qél]+ lyq+2"'yry

and a basis for S is again formed by 2" elements {x, %,F}
and {xze, _ qi,F}, 0<|K [<r — g — 1. Notice that the mon-
omials {xxyy}, OK|K |, [M|<r—gq (resp. {xgy,} and
{xxe, _ ya}, OKIK |, IM |<r — g — 1) provide a canonical
basis for a maximal nondegenerate Clifford subalgebra
C(Q') of C(Q°) when d is even (resp. odd).

Proposition 4.1: Let S ° = C(Q °) F be the spin space of a
complex degenerate Clifford algebra C(Q°) over V°,
dim ¥° = 2r considered as the contractive limit of spin
spaces §€=C(Q°) f*and letdim V* =d, ¢ = [d /2].

(i) The dimension of §°is 2"

(ii) A basis in S° is provided by the monomials
{x¢%,;F} (resp. {xg%,F} and {x.e, _ .%;F}) when d is
even (resp. odd), 0< [/ [<q, OK|K |<r —q.

(iii) § °is a direct sum of 27 left simple C(Q’)-modules
M, =C(Q")x,F, 0|/ |<q.

(iv) The decomposition in (iii) is not C(Q°) invariant.

Proof: (iii) We only need to prove that the direct sum-
mands M, are simple C(Q')-modules. It is enough
to notice that the generator F of S° contains a factor f,

=Yg41--¥, (re8p. fi =y, ,..y,) when d is even (resp.
odd). In any case, f) is an ( — ¢) vector generating a spin
ideal C(Q") f,inC(Q"). Following the arguments contained
in Ref. 2 and concerning the irreducibility of spin representa-
tionsof C(Q ') in even and odd dimensions, we conclude that
M; are simple C(Q')-modules. (iv) Notice that M e =4
is the only C(Q °)-invariant summand in the decomposition
of §°. O

Corollary 4.2:

(i) The dimension of M, is 2" 4.

(ii) The spin representation p° of C(Q°) in S°, when
restricted to the nondegenerate Clifford subalgebra C(Q’),
is decomposable into 27 irreducible 2’ ~ ?-dimensional subre-
presentations.

(iii) The further restriction p° of p° from part (ii) to
theeven subalgebra C * (Q') isdecomposable into 29 * ! irre-
ducible 2"~ 7~ '-dimensional subrepresentations when d is
even. When d is odd, part (ii) applies also to p° .

Proof: See Refs. 1, 2, and 4 for the structure theorems on
Clifford algebras. a

Finally, we briefly consider the case when the dimension
nof Veisodd, n=2r+ 1. Let {x{y5e,}, i=1,.,rbea
deformed Witt basis in V%, It is assumed first that the vector
¢, spanning one-dimensional anisotropic component of ¥ ¢
(see Theorem 2.1) is not deformed. We can make use of
(4.1) to represent the isotropic vectors in the Witt basis.

Proposition4.3:LetS® = C * (Q°) Fbethespinspaceofa
complex degenerate Clifford algebra C(Q°) over V°,
dim ¥° = 2r + 1, considered as the contractive limit of spin
spaces $€=C *(Q°) feand letdim V' =d, ¢ = [d /2].

(i) The dimension of $°is 2".

(ii) A basis in S° is provided by the monomials
{xxzy%,F}, |7| + |K | + |N| even, when d is even, and by
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{eyxxzy%,F},|L | + |J| + |K | + |N | even, wheredisodd,
KI|N|, ILIK], 0KV |<q, OK|K |<r —¢q (zy =e,, when
|IN|=1ande, =e, _,, when|L|=1).

(iii) S °is a direct sum of 27left simple C * (Q’) modules
M; =C*(Q")%,F,|J|even,andM ;7 =C —(Q")%,F,|J|
0dd,0<|J |<g[hereC ~(Q ') denotestheoddpartof C(Q ') ].

Proof: Follow the arguments presented above and in
Ref. 2. O

Notice that in the case of maximum degeneracy the con-
tractive limit of C(Q°) is the exterior algebra A over
Vo= V%, dim V° = n. The ideal AF is then spanned by 2"
linearly independent elements {%,F}, 0<|J |<r, r = [n/2].
However, AF is not minimal since it contains a one-dimen-
sional space of n-vectors.

V. SUMMARY

The method of deformation and contraction in Clifford
algebras developed in this paper was primarily applied to
construct spin ideals in degenerate Clifford algebras of any
rank. Through the classical approach of the Witt decomposi-
tion to irreducible spin spaces, the spin bases were deformed
and contracted to obtain a spin basis for the limit spin space.
Considering the latter as a left Clifford module over a degen-
erate Clifford algebra, it was later decomposed into inde-
composable components. The limit spin ideals, which pro-
vide natural representation spaces for Clifford, Pin, and Spin
groups associated with degenerate Clifford algebras, are
further studied in Ref. 24.
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Coherent states of the real symplectic group in a complex analytic
parametrization. I. Unitary-operator coherent states
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In the present series of papers, the coherent states of Sp(2d,R), corresponding to the positive
discrete series irreducible representations (1, + n/2,...,A, + n/2) encountered in physical
applications, are analyzed in detail with special emphasis on those of Sp(4,R) and Sp(6,R ). The
present paper discusses the unitary-operator coherent states, as defined by Klauder, Perelomov,
and Gilmore. These states are parametrized by the points of the coset space Sp(2d,R)/H, where
H is the stability group of the Sp(2d,R) irreducible representation lowest weight state, chosen as
the reference state, and depends upon the relative values of 4,,...,4,, subject to the conditions
A3A,» - - - »>A4,>0. A parametrization of Sp(2d,R)/H corresponding to a factorization of the
latter into a product of coset spaces Sp(2d,R)/U(d) and U(d)/H is chosen. The overlap of two
coherent states is calculated, the action of the Sp(2d,R) generators on the coherent states is
determined, and the explicit form of the unity resolution relation satisfied by the coherent states in
the representation space of the irreducible representation is obtained. The Hilbert space of
analytic functions arising from the coherent state representation is studied in detail. Finally, some

applications of the formalism developed in the present paper are outlined. In particular, its
relevance to the study of boson realizations of the Sp(2d,R) algebra is stressed.

I. INTRODUCTION

The harmonic oscillator coherent states (CS), also re-
ferred to in the literature as Glauber’s standard CS, or the CS
associated with the Heisenberg-Weyl group N (1),"? are
known to be endowed with a host of properties making the
CS suitable to various interesting applications (for a recent
review on the standard CS and their extensions see Ref. 3).
They may be defined in many different, but essentially equi-
valent ways. We shall mention herein only three of them: (i)
as unitary-operator CS, they are obtained by applying a uni-
tary transformation to the oscillator ground state; (ii) as
annihilation-operator CS, they are the eigenstates of the os-
cillator annihilation operator, corresponding to complex
eigenvalues; and (iii) as minimum-uncertainty CS, they form
the set of states minimizing the position-momentum uncer-
tainty relation subject to the restriction that the oscillator
ground state be in the set.

In recent years, many works have been devoted to the
generalization of the standard CS (see Ref. 3). In extending
the notion of CS from the harmonic oscillator to other phys-
ical systems, the various CS definitions, which were equiva-
lent for the former system, lose their equivalency for the
latter. Consequently there are many different generalized CS
for a given system.

In the present series of papers, we shall be concerned
with the group theoretical generalizations of both the uni-
tary-operator and the annihilation-operator CS, respectively
proposed by Klauder,* Perelomov,” and Gilmore® and by
Barut and Girardello.” In both extensions, the CS are asso-
ciated with a given Lie group, assumed to be a dynamical
group of the considered physical system. There exists, how-

#Maitre de recherches F.N.R.S.
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ever, an essential distinction between them as regards the Lie
groups which may be treated: if the Klauder-Perelomov-
Gilmore generalization of CS is valid for any Lie group, ei-
ther compact or noncompact, that of Barut and Girardello
can only be applied to noncompact Lie groups, and was actu-
ally developed by these authors only for SO(2,1), and its lo-
cally isomorphic groups SU(1,1), SI(2,R ), and Sp(2,R ).

Up to now, most efforts have concentrated on the CS
associated with compact Lie groups, for which all unitary
irreducible representations (irreps) are finite dimensional.®
Little work has been devoted to the CS associated with non-
compact Lie groups, whose unitary irreps are all infinite di-
mensional, except for the trivial identity representation.
Among noncompact groups, however, the real symplectic
group in 2d dimensions, Sp(2d,R ), plays an outstanding role
in many physical problems. Let us mention, for instance, the
relevance of Sp(4,R ) to a class of generalized helium Hamil-
tonians, as shown by Mlodinow and Papanicolaou,’ and the
importance of Sp{6,R ) in the microscopic nuclear collective
model, as pointed out by Rosensteel and Rowe,'® and stud-
ied by various authors from different viewpoints.!?® The
Sp(2d,R )irreps encountered in all such physical applications
are positive discrete series,>>>? characterized by their lowest
weight (1, + n/2,...,4, + n/2), where [4,---4,] is some
partition, and # is an integer greater than or equal to 2d.

The Sp{2,R ) CS were derived by Perelomov® and Gil-
more® on one hand, and by Barut and Girardello’ on the
other hand. For higher-dimensional symplectic groups, a
full analysis of the CS was only carried out for the irreps
{{A + n/2)*), which in the nuclear collective model (where-
in d = 3) are relevant to closed-shell nuclei. For such irreps,
the unitary-operator CS were studied by Kramer,?' while
the annihilation-operator CS were determined by Deenen
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and Quesne.? The Sp(24,R ) irreps (A, + n/2,...A, +n/2),
for which the A4,’s are not all equal, play, however, an impor-
tant part in the description of open-shell nuclei in the nuclear
collective model. For such irreps, some partial resulits for the
unitary-operator CS were recently obtained by Rowe,'* who
also studied their relation with boson realizations of
Sp(24,R ). By the same time, Deenen and Quesne had given a
full analysis of partially coherent states (PCS) for the same
irreps.?” Contrary to the CS, which are specified by some
continuous parameters, the PCS are characterized by a set of
continuous labels as well as by some discrete indices. Both
PCS generalizing either the unitary-operator or the annihila-
tion-operator CS were studied, and then used to analyze the
properties of the Sp(2d,R ) boson realizations.?”*

Since the CS corresponding to the Sp(2d,R) irreps
Ay +n/2,..,A, +n/2), for which 4,,.,4, are not all
equal, are of considerable interest for physical applica-
tions,'*!4?2 it is the purpose of the present series of two pa-
pers (henceforth referred to as I and II) to analyze them in
full detail with special emphasis on those of Sp(4,R) and
Sp(6,R ). Paper I deals with the unitary-operator CS, while
paper I will be devoted to the annihilation-operator CS. Ifa
complex parametrization necessarily arises for the latter, for
the former we may choose between a real or complex one,
both of them having some respective advantages. Real pa-
rameters can be more easily given a physical meaning,
whereas complex parameters are useful to connect CS repre-
sentations to boson realizations. A complex parametrization
has been chosen in the present paper because it is easier to
deal with than a real one.

In Sec. II of this paper, the positive discrete series irreps
of Sp(2d,R ) are briefly reviewed. The corresponding CS are
defined in Sec. II1, and their overlap is calculated in Sec. IV.
The action of the Sp(2d,R ) generators on the CS is deter-
mined in Sec. V, and used in Sec. VI to find the explicit form
of the unity resolution satisfied by the set of CS in the repre-
sentation space of the irrep (1, + n/2,...,A, + n/2). Final-
ly, in Sec. VIII, some applications of the formalism devel-
oped in the previous sections are discussed.

After completion of the present work, it came to the
knowledge of the author that some results similar to those
contained in this paper were independently obtained by
Kramer.*!

Il. THE Sp(2d,A) POSITIVE DISCRETE SERIES IRREPS

Asusual, let us realize the Sp(2d,R ) generators in terms
of dn boson creation operators 7, i = 1,...,d, s = 1,...,n, and
their corresponding annihilation operators £, = (7)1, as
follows**:

Di=D}=73 num 1<i<j<4,
s=1

D, =D, = Z’l &k 1<IKJ <4,

(2.1)
E.

y

Nl'—-

(ﬂué}s + gjsnis)

1M1=

s

= z 77u§1s yy i,j= 1,...,d.
s=1
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They satisfy the Hermiticity properties

E;=(E;)', D;=(D}), (2.2)
and the commutation relations

[E Ekl] = 6jkEiI _6ilEkj’

u’
[E »DL] = 5jkD;rl +6,D hes
[Ey:Di] = — 6uDy — 64Dy, (2.3

ij*
[D}.Dli] = [Dy.Du] =0,
[D;,D L 1 =64E; +8,Ey; + S, E; + 6,E,,;,

i »
from which we note that the operators E; generate the maxi-
mal compact subgroup U(d ) of Sp(2d,R ). The set of genera-
tors (2.1) can be divided into three subsets of raising, weight,
and lowering type, as follows:

DI, E; (i<j); Ey Dy E; (i>)), (2.4)

where the subsets are separated by semicolons.

In the above equations, » is an arbitrary positive integer.
If we now restrict ourselves to n values greater than or equal
to 2d, we can realize all the Sp(2d,R ) positive discrete series
irreps (A ) = (1, + n/2,...,A, + n/2) in the space of boson
states built from the dn boson creation operators 7,,. The
lowest weight state |(4 )., of such an irrep satisfies the
following equations®*:

DA )in) =0, i<}, (2.5a)

Ejld)min) =0, i> ], (2.5b)

Eyl A )min) =WRayr—i +0/2/A )in ), i=1,...d.
(2.5¢)

From Egs. (2.5b) and (2.5c), we note that it is the lowest
weight state of an irrep [A] = [4, + n/2,...,4; + n/2] of
U(d), so it can be characterized by the corresponding
Gel’fand pattern (1), (see Ref. 34).

The whole representation space . ;, of the irrep (4 )
can be generated from its lowest weight state |(1),,) by
applying polynomials in the D}, E;, and D, generators,
written in normal form as P(D})P'(E;)P"(D;). From
Eq. (2.52), P" (D) applied to |(/1) ) gives rise to the
same state multiphed by an irrelevant constant. The action
of all the polynomials P’(E;) upon |(4),,, ) generates the
representation space of the irrep [A], whose basis states
|(4)) can be characterized by the Gel'fand patterns (1). A
discrete nonorthonormal basis of # ;, is therefore given
by27

INs(4 )} = Fn(D)(A)), (2-6)

where D denotes the d X d matrix | D |||, F(D") is defined
by

Fu(DY) =] V)~2[(1 +8,)" 2D} 1™, (2.7)
i<y
the quantum numbers N;, 1<i< j <d, run over all non-nega-

tive integers, and (4 ) over all Gel’fand patterns of [4 ].

In physical applications, it is convenient to use bases
classified according to the chain of groups

Sp(2d,R) DO Ud) DO SO(d).
“) [h1] (k)

Underneath each one of them, we have indicated the label

(2.8)
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characterizing its irrep. Such bases can be obtained by cou-
pling the polynomials in the D}, generators specified by a
definite U(d ) irrep [/ ] to the basis states of the U(d ) irrep [4 ],
both classified according to the chain (2.8),

(L7114 Nalh 18(k)g) = [Py (D)X ) ]5t- (2.9)
Here a distinguishes between repeated irreps [#] in the re-
duction of the product representation [/]X[A], B does the
same for the repeated irreps (k ) in the reduction of [# ], and ¢
characterizes the row of the SO(d } irrep (k ). If the states (2.9)
are orthogonal with respect to [k ],(k ),q, they are not with
respect to [/ ],a, B.

Having reviewed the Sp(2d,R ) positive discrete series ir-
reps and some discrete basis of their representation space
F 1y, we shall proceed in the next section to define the cor-
responding unitary-operator CS, which in the subsequent
sections will be shown to form a continuous basis of & ;.

. PARAMETRIZATION OF THE Sp(2d,R) COHERENT
STATES

Following Klauder,* Perelomov,” and Gilmore,® the
system of unitary-operator CS corresponding to a unitary
irrepp of a given Lie group G in a Hilbert space # ,, and toa
fixed vector |¢,) of this space, is the set of states g|#,), where
g runs over all the group G. If H denotes the stability sub-
group of |1,), 1.e., the set of all group elements 4 leaving |¢,)
unchanged up to a phase factor, then every group element
g€ G has a unique decomposition into a product of two
group elements, one of which is in H and the other in the
coset space G /H,

g=kh, heH, keG/H. (3.1)

Since phase factors are irrelevant, the CS can be parame-
trized by the points & of the coset space G /H,

k) =k |¢o)- (3.2)
In practice, the decomposition (3.1) is carried out by going to
the complex extension of the real Lie group G (see Refs. 35
and 36).

In the present case, the Lie group G is the real symplec-
tic group Sp(2d,R), its unitary irrep is specified by p = (1 ),
and the corresponding representation space is the space
& (1 spanned by the states (2.6) or (2.9). For the refer-
ence state |¢f,), we choose the irrep lowest weight state
| (A) min }» characterized by Eq. (2.5). The stability subgroup
H of this state depends upon the respective values of
A1 A4, satisfying the conditions 4,34, - - - >4,30.

The case where A, =A,=...=A4, =A has been ex-
tensively studied in the literature.?>>*” The irrep [A ] is then
one dimensional, and its single base |(4 ), ). The stability
group H is the maximal compact subgroup U(d ) of Sp(2d,R ),
hence the corresponding CS exist in one-to-one correspon-
dence with the points of the coset space Sp(24,R )/U(d ). From
the extremal property (2.5a) of |{4 ),.ia ) it follows that the
CS can be written as

|u) = exp(jtr u*DY)|(4 )ynin )

— exp [zu +6.-,)"u.-71>:5-]u/1 o)

i<J

(3.3)
where exp(itr u*D") is an element of the complex extension
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Sp(2d,C) of Sp(2d,R ), and u = ||u;|| a complex symmetric
d X d matrix, subject to the condition that I — u*u be a posi-
tive-definite (Hermitian) matrix. Here * denotes complex
conjugation.

It remains to consider those cases where A,,...,4,; are not
all equal. The stability group H of |(4 ), ) is then a proper
subgroup of U(d ). For such cases, in Ref. 27 Deenen and
Quesne introduced the so-called Perelomov PCS, defined by

lu;(4)) = exp(itr u*DY)|(4)), (3.4)

where u= [lu;|| again parametrizes the coset space
Sp(2d,R )/U(d ), and |(A )} are the discrete basis states of the
Ul(d ) irrep [A ], introduced in Eq. (2.6). The success encoun-
tered in determining the reproducing kernel and the measure
for such states suggests a parametrization of the coset space
Sp(2d,R )/H, based upon the factorization

Sp(2d,R )/H = [Sp(2d,R )/U(d |][U(d }/H ]. (3-5)

The corresponding CS, which are similar to those considered
by Rowe, !’ can be written as

|u,z) = exp(itr u*D")|z), (3.6)

where u is the same matrix as above, and z denotes a set of
parameters specifying the points of the coset space U(d )/H.
The states |z) are U(d) [or equivalently SU(d)] CS corre-
sponding to the unitary irrep [1] and the reference state
|(A )min - In the remainder of this section, we shall review
such states for the cases of U(2) and U(3), and outline their
generalization to U(d ) for d > 3.

The U(2) [or SU(2)] CS, entering the definition of Sp(4,R )
CS in the case where 4, > 4,, have been known for a long
time, and are referred to in the literature as either spin®® or
atomic®® CS. The stability group H of |(A)yn) is the
U(1) X U(1) subgroup of U(2), where the two U(1) groups are
generated by E,, and E,,, respectively. The U(2) CS are para-
metrized by a single complex variable z,, = z varying in the
whole complex plane, as follows:

|2) = exp(z*E 12)|(A )auin ) - (3.7)

In terms of the U(2) generators, those of SU(2) can be written
as

Jy=Ey J_=E,, J= i(Eu —Ep) (3.8)

Thestate |(4 ),.;, ) is characterized by an angular momentum
J=1{A; — 4,)/2, and a projection m = — j. Hence Eq. (3.7)
reduces to the usual definition of SU(2) CS,

|2) = explz*J ., )| j —j ). (3.9)

For the U(3) [or SU(3)] CS, entering the definition of
Sp(6,R ) CS when 4,,4,,4; are not all equal, we have to distin-
guish between three cases [henceforth referred to as (a), (b),
and (c)] according as A, >A,>4; A,>A,=A4; or
Ay =2, > A5 (see Ref. 36). From the known action of the U(3)
generators on a basis state of a U(3) irrep,* it is easy to see
that the corresponding stability group H is, respectively, (a)
U(1) X U(1) X U(1), where the three U(1) groups are generat-
ed by E,;, i = 1,2,3; (b) U(2) X U(1), where U(2) is generated
by E;;, i,j = 1,2, and U(1) by E,;; and (c) U{1) X U(2), where
U(1) is generated by E,,, and U(2) by E;, i,j = 2,3.

For case (a), it is advantageous to use the canonical coset
decomposition of the unitary group,*' to factorize the coset
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space U(3)/U(1) X U(1) X U(1) (see Ref. 36) into either of the
two following products of coset spaces:

UE3)/0(1)x U(1)x u(1)
= [UBYUR)X U] [UR) X U1)/U1) X U1 xu(1)],

(3.10)
U3)/u(1)yxU(1)xu(1)
= [UE3)/U(1) X U(2)1[U(1)x U2)/0(1)x U(1)xu(1)],
(3.11)
where U(2) X U(1) and U(1) X U(2) are generated, respective-
ly, by Ey;, i,j = 1,2, Es;, and E,},E;;, i, j = 2,3. The corre-
sponding parametrizations of the U(3) CS will be denoted by
x and y, the symbol z being used whenever a specific choice is
not demanded.
In the x parametrization, the U(3) CS are defined as
follows:

|x) = exp(xEy3 + XTEy)exp3E)|(A Join ), (3.12)

in terms of three complex variables x,, = x;, x5, = x,, and
X, = X,, varying in the whole complex plane, the first two
parametrizing the coset space U(3)/U(2) XU(1), and the
last one U(2) X U(1)/U(1) XU(1) XU(1). In the y para-
metrization, they are written as

|y) =exp(y3E,; + Y2E 5)exp( YTE)|(A Jmin)»  (3.13)

where the complex parameters y;, =y,and y;; =y,
Y21 = s, again varying in the whole complex plane, parame-
trize the coset spaces U(1)xU(2)/U(1)xU(1)xU(1) and
U(3)/U(1) X U(2), respectively.

The relation between the x and y parametrizations can
be obtained easily by making use of Baker—-Campbell-Haus-
dorff (BCH) formulas in matrix form.*?** By realizing the
Gl(3,C) generators E,, i,j = 1,2,3, by 3X3 matrices with

+ 1 at the intersection of row i and column j and 0 else-
where, the Gl(3,C) group element on the right-hand side of
J

Eq. (3.12) is converted into the 3 X 3 matrix

1 0 x\/1 x¥ O 1 x¥ x¥
01 xtllo 1 o]=[o 1 ¢ (3.14)
0 0 1/\0 0 1 0 0 1

In the same way, the GI(3,C) group element on the right-
hand side of Eq. (3.13) becomes the following matrix:

1 y+ yf\/1 0 O Ly M +yhy
0 1 OoJj0o 1 ytj=0 1 yt
0 0 1/\0 0 1 0 0 1

15)

Identifying the CS |x) and |y) now amounts to equating the
right-hand sides of Egs. (3.14) and (3.15). The sought-for re-
lations therefore read

Xy =Y Xa=Y+ 01 )3 (3.16a)

X3=)3
or
Y1=Xy Y3 =X3. (316b)

Cases (b) and (c) can be treated by specializing either the
X or y parametrization of case (a). For case (b), by setting
x; = 0in Eq. (3.12), we obtain the following CS:

|x) = exp(x3E 13 + XPE2)[A Janin )5 (3.17)
while for case (c), by setting y, = 0 in Eq. (3.13), we get

|¥) = exp(V3E 1 + Y2E3)| (A )min)- (3.18)

The discussion of the U{(d ) [or SU(d )] CS becomes quite
tedious when d > 3 because there are many possibilities for
some of the A,’s being equal. We shall therefore restrict our-
selves here to the generic case for which4,>4,> - >4,.
The generalizations of the x and y parametrizations, intro-
duced above for U(3), are connected, respectively, with the
factorizations

Y2 =Xy — Xy X3,

Uld)/0(1)xU(1)X- - -xXU(1) = [U(d )/Ud — 1) X U(1)][U(d — 1) X U(1)/U{d — 2) X U(1) X U(1)]

X - X[UR)XU1)X---XxU(1)/0(1)xU(1) X - - X U(1)], (3.19)
and
Uld }/U(1)xU(1)X- - - X U(1) = [U({d )/U(1) X Uld — 1)[U(1)x U(d — 1)/U(1) xU(1) X U({d — 2)]
X o XU X- - -XU(1)XU2)/0(1) X% - - - X U(1) X U(1)]. (3.20)
{
The corresponding CS can be written as and both parametrizations are related by
= [V @11 Join ) 3.21
[2) = V@A Juin) ( ) X; =Y + Yix Vi + z Vit Vi Vi
where i<k<j ick<l<j
d 2
V (x) = exp(x;,E,)- - -exp ( z Xy 1.Eq_ l,i) LR o /BN D /RS NPLEY) /P TH (3.23a)
i=1 or
d— 1
X exp (2 x,,,-Ed,-) , (3.22a) Vi =X, — ; XpXig + Y XpXpeXy
=1 a i<k<j ick<l<j
V13) = xblpaa—1Eaa—) -+ (o303, yaEn) e = T e e
. =3 (3.23b)
X exp ( Z Y En) , (3.22b) Note th'at in the U(2) case both parametrizations coincide.
= As is well known,* the CS do not form an orthonormal
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set, and their overlap acts as a reproducing kernel in a Hil-
bert space of analytic functions. In the next section, we shall
proceed to calculate the overlap of two Sp(2d,R ) CS, post-
poning the statement of the reproducing kernel property un-
til Sec. VIL

IV. OVERLAP OF TWO Sp(2d,A) COHERENT STATES
Let
K (w',z";u*,z*) = (u',z'|u,z) (4.1)
denote the overlap of two Sp(2d,R ) CS corresponding to the
generic case. By introducing Eq. (3.6) into Eq. (4.1), the over-

lap can be expressed as the matrix element of some operator
between two U(d ) CS, as follows:

)4 (u',z’;u*,z*) = (z'|exp(tr u'D)exp(jtr u*D")|z). (4.2)
In Appendix A of Ref. 27, it has been proved that the opera-

tor appearing on the right-hand side of Eq. (4.2) can be re-
written in normally ordered form,

exp(itr u'Djexp(itr u*D')
= exp(itr aD¥)exp(tr bE)exp(itr cD), (4.3)

where the matrices a,b,c are given in terms of u’ and u* by the
following relations:

a=U""u*, expb=U"",

c=uU"!, U=I—u* (4.4)
Here U stands for the transpose of U. From the Sp(2d,R )
commutation relations and from the definitions of the U(d )

CS and of the lowest weight state |(4 )., ) given, respective-
ly,in Egs. (2.3), (3.21), and (2.5), it is obvious that the U(d ) CS

are annihilated by the generators D, i.e.,
D;|z) =0. (4.5)
Hence, by taking Eq. (4.3) into account, Eq. (4.2) reduces to
I?(u',z’;u*,z*) = (z'|exp(tr bE)|z). (4.6)

By introducing Eq. (3.21) into Eq. (4.6), the latter be-
comes

I? (u',z';u*,z*)
= ((A) in | V(Z)exp(r BE) [M(2) IT| (D) i), (4.7)

where F(z) is the G1(d,C) group element defined in Eq.
(3.22). Equation (4.7) expresses the Sp(2d,R) CS overlap
as the diagonal matrix element of the G1(d,C) group ele-
ment V(z')exp(tr bE) [F(z)]T with respect to the lowest
weight state | (1), ) of the U(d) [or G1(d,C)] irrep [A].
In the realization of the G1(d,C) generators E; in terms of
d X d matrices with + 1 at the intersection of row 7 and col-
umnj and 0 elsewhere, the G1(d,C) group element exp(bE)
corresponds to the matrix U™}, while ¥(z) is realized by
some d X d matrix Z with entries 0 and 1 above and on the
diagonal, respectively. Hence, to the product of Gl(d,C)
group elements V(z')exp(tr bE)[¥(z)]*, corresponds the
matrix product

W=ZU" IZT’ (4.8)

where Z' is obtained from Z by replacing z;; by z;;. The CS
overlap is therefore nothing else but the element of the
Gl(d,C) representation matrix D'* (W), whose row and col-
umn indices are both equal to (4 ).,
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Rw,zuxz =D} , (W) (4.9)

A theorem first stated by Louck** for U(d), then ex-
tended by Brunet and Seligman*’ to Gl(d,C ), assures that the
elements of the representation matrix D [}, ,(W), specified
by two Gel'fand patterns (4 ) and (4 '), coincide with the (ap-
propriately normalized) double Gel’fand states P (i), (W),
characterized by the same Gel’fand patterns and depending
upon the d? complex variables W , i,j=1,...,d. Conse-
quently, Eq. (4.9) leads to the following result:

I? (u',z';u*,z*)
= (Wy )Al_,{z(Wd—ld,d—ld Y=t
Xeo o X(Wa.gp.a )Ad' ' _Ad( Wi.di.a )Ad+"/2.

(4.10)
Here W;_, ... .44_:i+1..a» 1<i<d,istheminor of order i of
det W defined by

Wd—i+1~~-d,d—i+1--~d = z ( - l)de—i+ Lpd—i+1)
P

XWa_iiapa—iva Wapa)
(4.11)
where the summation is carried out over the i permutations
of the indices d — i + 1,...,d. From Eq. (4.8} and the defini-
tions of Z and Z, it follows that

W...41.qa =det W= (detU)~" (4.12)
Hence, by setting
Ti(w'zu*z*) = (det U)W, _ ;1 a—ivi.as
i=l,..,d—1, (4.13)

Eq. (4.10) can be put into the following equivalent form:

R,z u%z%) = (det U)~ 4~ 2

d—1
X I [Tuw'zsutz)])

i=1
(4.14)
To obtain a detailed expression for the CS overlap, it
remains to calculate explicitly the 7;’s. Since the transition
from the x to the y parametrization can be easily performed
by applying Eq. (3.23a), we need to consider only the former,

wherein the matrix Z takes the following form:

(4.15)

For Sp(4,R }, Eq. (4.14) only involves asingle T, given by

T (w',z'ju*,z*) = U, — U,z — Uyz* + Uyz'z*.  (4.16)
For Sp(6,R), there appear two T,’s, respectively equal to

T, (w'x'su*x*) = U,y — Upaxi + Uposxs — Ups o x?
+ Upy 12XF + Uz 13 X1 XT — Uy 3 X1 x3

— Uy s x5 xF + Uy 3 x5 X%, (4.17a)

or
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T,(w",y';u*,y*)
=Upz — U3 Y1 + Uigs(y3 + 1 ¥5)
~ U2 V¥ + Upsa (02 +3¥ 08 + Ui i 9t
— Uy i3 i (V5 + 0193 — Uisaa( v + 1 »3)0F
+ Upsaa( ¥ + 31 93)( 02 + 31 32, (4.17b)

and

T,(u',x';u*x*)

= Uy, — Upslx; — x1x3) — Uppx — Usy(xF — xPx3)
— Uyx¥ + Usslx; — x(x3)(xF — x¥x3)
+ Unslx; — x{ x5 x¥
+ Usoxi (xF — x¥x3) + Upxix3, (4.18a)
or
T,(u',y';u*,y*)
=Up—Uny; —Upy; —Us y2 — Uy 4%

+ U 2+ Uy y3 + U y3 93 + Un2 y3 0%,

(4.18b)
where U, denotes the minor of order 2 of det U corre-
sponding to rows /, j, and columns k,/. Since Eq. (4.14) is
valid for the generic case, corresponding to case (a) for
Sp(6,R), it follows from the discussion carried out in the
previous section that the counterpart of Eq. (4.14) for cases
(b) and (c) irreps of Sp(6,R) reads, respectively,

k(u’,x';u*,x‘) = (det U) ~* ~"2[ T, (u',x";u*,x*) ]~ %,

(4.19)
and
Ryt y®) = (det U~ 4~ 2 T,y e y*)] - .

(4.20)
Here T,(uv’,x";u*x*} and T,(u',y’;u*y*) are deduced from
Egs. (4.17a) and (4.18b) by setting there x; and x¥, or y; and
¥, equal to zero. This completes the derivation of the CS
overlap for Sp(4,R ) and Sp(6,R ).

As a final point, let us note that if we set either
z=2'=0and A,=..--=4,=4 or u=u"=0 in Eq.
(4.14), we obtain, respectively, the Sp(2d,R ) CS overlap for
the case where all the A,’s are equal to 4,

K (w';u*) = K (u',0;u*,0) = (det U)—*~ "2, 4.21)
or the U(d ) CS overlap for the irrep [1 ],
~ ~ d—1
K(@zz%)=K0z:02% = [[ [T.(@z9]" ", @422

i=1

where the functions

T,(z';z*) = T,(0,z";0,z*) (4.23)
are given by

T(Zz*)=1+22* (4.24)
for Sp(4,R ), and by

T,(x';x*) = 1 + x{x¥ + x;x8, (4.250)

or
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T\(y5¥y*) =14y yF + (3 + 2 ¥ 0% +y2 08,

(4.25b)
and
T(x;x*) =1 + (x; —x{x3)(x3 — xTx}) + x3x¥,  (4.26a)
or
Ty;y*) = 14 y; y2 +y3 %, (4.26b)

for Sp(6,R ).

If we now go back to the Sp(2d,R ) CS (3.6) for the case
where the A,’s are not all equal, we note that although they
are defined in terms of an operator product whose factors
only depend upon either u* or z*, their overlap (3.14) is not
the product of a function of u’ and u* by a function of z’ and
z*, since the T;’s depend on both the v’,u* and z',z* param-
eters. However, provided we replace z by some new param-
eters z, functions of both u and z, the CS overlap

KW, z;u*,z%) = L (w,7;u*z*) (4.27)
can be factorized as follows:
Lwzwz) = [D}] 4. U] K@z, (4.28)

whereD ] ., (U)and K (z;7*) are obtained, respectively,
by replacing W by U, and z',z* by Z',z* in Egs. (4.10) and
(4.22). The new parameters Z are defined by

z = (det U)~ YUz — Uy, (4.29)
for Sp(4,R ), and by
X, = (U23,23)_”2(U33.x1 — Us,),
X, = (Uss)l/z( Uss,p; det U)~ 12
X(Uss 3%z — Ups 13X + Ups 1o )s (4.30a)

X3 = (Us; det U)_I/Z(Uza,zsxa — Uss13)
or
nh= (U23,23)‘”2(U33y1 — Us,),
Vo= (Uzs,zs)”z(Uas det U)_l/z(UnJ’z + U, p3 — Us,y),
(4.30b)
V3= (Us; det U)™ 1/2( Usss b3 — Uy i3)s

for Sp(6,R ). In terms of them, the functions T;(n’,z";u*,z*)
can be rewritten as

T,(u';z';u*z*) = (det U/U,,) T, (Z'2*),
and
Tl(ll',z’;ll‘,zt) = (det U/U33)Tl (i,;i*),

(4.31)

(4.32)
Tz(“’,z’;u.,z‘) = (det U/U23,23 )Tz(i';i*),

respectively.

V. ACTION OF THE Sp(2d,A) GENERATORS UPON THE
COHERENT STATES

When they act upon the CS, the Sp(2d,R ) generators are
equivalent to some first-order partial differential operators,
whose explicit form will be found in the present section. For
such purpose, we shall first deal with the generic case in
detail, then consider the transition to the remaining ones.

Let X denote any operator acting in & ;,. When it is
applied to the bra (u,z|, it is equivalent to some partial differ-
ential operator & with respect to u and z,

C. Quesne 433



(u,z|X = ?(u,z]. (5.1)
The Hermitian conjugate of Eq. (5.1) can be written as
Xtuz) = ?*Iu,z}, (5.2)

where Z’*isa partial differential operator with respect to u*
and z*. In the next section, we shall prove that the CS satisfy
a unity resolution relation, and therefore form a continuous
basis of # ;. Hence, in the corresponding representation,
2 will be the representation of X.

In particular, for the Sp(2d,R ) generators, it directly re-
sults from the CS definition (3.6) that

P =A,, (5.3)
where A, isad X dmatrix whose elements A, are defined by

A, =(1+6) (5.4)
i

The explicit forms of # and 9" can also be easily found by

writing

(u,z|X =

(z|exp(3tr uD)X exp( — itr uD)exp(itr ubD),

(5.5)
and using the BCH formula

exp(¥ ) Xexp( — Y)

= 1
=X+ z _’n—'[Y![Y’-"s[Y)X]"']]m: (56)
m=1 .
for Y =} tr uD. In matrix notation, the result reads
#—uA, + %, (5.7a)
P*=u& + &u+ [uA, — (d + 1]y, (5.7b)

where & ; denotes the partial differential operator with re-
spect to z, representing E; in the U(d) CS representation
corresponding to the irrep [4 ], i.e.,

(Z|E; = & ,(zl, (5.8)

and %” is the transpose of &, i.e., ff =& i~ Note that Eqs.
(5.3) and (5.7) have the same structure as the corresponding
equations in the PCS representation, Eqgs. (6.11) of Ref. 27.

The explicit form of & ; can be found in the same way.
By writing the left-hand side of Eq. (5.8) as

<z‘Eij = (A )uin | V (2)E; [V (2)] ~V(z),

where V' (z) is defined in Eq. (3.22), and by repeatedly using
the BCH formula (5.6), we get

(5.9)

&L=20+A+n72, &= —20+21,+n/2,
(5.10)

glz =z{A, — 4, —2d),
for the U(2) generators, and

g21=a,

aep11 = X30; + X305 + A3 + 1/2 = y,8, + y38; + A5 + n/2,
30’22 =x,0, — X305+ A, + n/2 =y,8, —y;8; + A, + n/2,
Frn= — %0, — X0, + Ay +n/2

= =30, = 1,0, + 4, +n/2,
?12 = x3(/12 —A«:; —xsa3) + XZal
=y3(A; — A3 + 318, — 120, — ¥38;) + y,06,, (5.11)
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& =x(4, — A3 —x,0, — X380, — X305)
—x%3(A; — A5 — x30,)

=y2(A, — 43 = 18, — 1,8,

+ 11 ¥3(Ay — A, — 1)),

5?23 =x,(1, — A, — x,0, — x,0, + x,3;)

=y — 4, = 3,8,) — 85,
En=x0,+0,=08;, €3,=0,=8,
Ep=0,= —y30,+ 38,
for the U(3) ones. In Egs. (5.10) and (5.11), 8, d;, and 3,
are abbreviated forms of the differentiation symbols d/dz,
d/dx;, and J/dy,, respectively. The explicit form of the
U(3) generators in the y parametrization can be easily ob-
tained from that in the x parametrization through the
change of variables (3.16). Finally, the expressions of the
U(3) generators valid for nongeneric irreps are inferred
from Eq. (5.11) by deleting all the terms containing x; or d,
for case (b) irreps, and y, or &, for case (c) irreps.

It can be easily checked that & ;,& ,1,@ §» as given by
Egs. (5.3) and (5.7), satisfy the Sp(2d,R) commutation re-
lations (2.3) as it should be. It will be shown in Sec. VII that
they also fulfill the required Hermiticity conditions of the
Sp(2d,R) generators, given in Eq, (2.2), with respect to the
measure to be determined in the next section.

To conclude the present section, let us point out that the
differential equations satisfied by the overlap K (u',z';u*,z*)
can be deduced straightforwardly from the Hermiticity
properties (2.2). By taking Egs. (5.1) and (5.2) into account,
Eq. (2.2) indeed leads to the following equations:

[?; — E?J",' ]2'(u’,z’;u*,z*) =0,

—»303)

— X205

. A {5.12)
[Z)— 2K,z
where & ; and 2 ;1 depend upon w’,z’, and the correspond-
ing differentiation operators. When combined with Egs.
(5.3) and (5.7), Eq. (5.12) becomes

[(u'Au' Yy — (u*A,. )i + g; g;]

xK (u',z5u*,z*) =0,

', u¥,z% =0,

- (5.13)
W + &w + [wA, — @+ DIw — AL},
xl?(u’,z';u‘,z*) =0,
where it only remains to introduce the explicit expressions
(5.10)or (5.11) of & .
VI. UNITY RESOLUTION RELATION

From the general theory of unitary-operator CS (see
Ref. 5) it follows that the Sp(24,R ) CS, defined in Eq. (3.6),
must satisfy a unity resolution relation

Jdc'i(n,zH“,Z) (wz| =1I;,,

for some appropriately chosen measure dd{u,z). In Eq. (6.1),
I,;, is the unit operator in ¥ ; , , and the parameters u vary
in the domain determined by the condition I — u*u>0,
while each of the parameters z varies over the whole complex
plane. The measure

(6.1)
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do(u,z) = f(u,u*z,2*)du du* dz dz* (6.2)

is expressed in terms of a weight function }(u,u*,z,z*),
which is a real-valued, positive function of the indicated var-
iables, vanishing on the boundary of the integration domain.
This weight function could be derived from the invariant
measure on the coset space Sp(2d,R )/H (seeRef. 5). The pres-
ent section purpose is to propose an alternative method for
its determination, and to apply it in full details to the Sp(4,R )
and Sp(6,R ) cases.

Let us dengte by O the operator on the left-hand side of
Eq. (6.1). For O to be the unit operator in ¥ ;,, it is suffi-
cient that it commutes with all the Sp(2d,R ) generators,

[E;0]=[D}.0]=[D;,0] =0, (6.3)
and that the measure satisfies the normalization condition

f dofu,z) = 1.

From Egq. (6.3) and Schur’s lemma within the representation
space ¥ ;) of the irrep (4 ), we indeed infer that O is a
multiple of the unit operator in ¥ ,,, while from Eq. (6.4)
and the relation

(W,2|(4 )in ) = (I Jogin [ Jenin? = 1, (6.5)
we conclude that the multiplicative constant is equal to 1. It
is an easy matter to satisfy Eq. (6.4) since it merely fixes the
normalization coefficient of the weight function. In contrast,
Eq. (6.3) determines the dependence of the weight function
upon the variables u,u*,z, and z*, and is more difficult to
solve. .

From the fact that O is a Hermitian operator, and from
the symmetry and Hermiticity properties of the Sp(2d,R )
generators, given, respectively, in Egs. (2.1) and (2.2), it fol-
lows that only part of the conditions expressed in Eq. (6.3)
are independent, namely

[E;0]=[DP},0] =0, i<ij. (6.6)

By taking Eqgs. (5.1), (5.2), (5.3), and (5.7) into account,
Eq. (6.6) can be rewritten as

[ aowa®r - 8,112 cuzl

(6.4)

= [ dotualuea, ), + §1 - a,), - £,

X |lwz) (u,z| =0, iKj, (6.7a)
and
f dou[ D% — D3] luz) (uzl
=fd6(u,z)[Au. — (u§+ &u) — [uA,
— (d + 1)I]u},|uz) (uz| =0, i<j, (6.7b)

where we used the fact that |u,z) and (u,z| only depend upon
u*,z* or u,z, respectively, and the latter are independent var-
iables. .

In Eq. (6.7), the first-order partial differential operators
actingupon |u,z) (u,z|can be transferred to the weight func-
tion by integrating by parts and noting that the weight func-
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tion vanishing on the domain boundary ensures that of the
limit terms. Hence Egs. (6.7a) and (6.7b) become

fdu du* dzdz*{[(uA,); — (u*A..);

+4, +a;] Fuu*,z,z%) uz) (uz| =0, i<j,

(6.8a)
and

f du du* dz dz* ”Z Uy (uad, )y — Au.}'

+B; + b,-j]_?(u,u‘,z,z*)]|u,z) (n,z| =0, i<j,
(6.8b)
where 4;,,B;; and g, ,b; denote, respectively, the first-order

partial differential c;pgrator§ and the functions coming from
the terms containing & or &*. In Appendix A, their explicit
expressions are given for the cases of Sp(4,R ) and Sp(6,R ).
Equations (6.8a) and (6.8b) will be satisfied provided the
weight function is a solution of the following system of first-

order partial differential equations:
[(uA,); — (u*A.); +4; +ay)

X }(u:u‘9z9z‘) = 0’ l<.], (6.93)
[Z Uy (A, )y — A“; + B, + b,,]
X flu,u*zz*) =0, i<j. (6.9b)

We have therefore reduced the determination of the weight
function to that of a particular solution of Egs. (6.9a) and
(6.9b).

In Appendix B, it is proved that in the cases of Sp(4,R )
and Sp(6,R ), such a solution can be obtained in the following
form:

N A d—1

fluu*z,z%) =4 (det U [ [T:(0,zu*2%)]" (6.10)
i=1

Here 4 is the normalization coefficient determined by Eq.

(6.4), U and T; are defined, respectively, by Eqs. (4.4) and

(4.16){4.18), where we set u' = u and z' = z, and the expo-

nents @ and B8,, i = 1,...,d — 1, are given by

a=A,+n/2-2, Bi=—A —4,+2), (6.11)
in the Sp(4,R ) case, and by

a=A,+n/2-2, Bi=—A,—A,+2),

B,= —(A; —A;+2), for case (a)irreps,

a=A,+n/2-2, Bi=—A—4,+3)

B, =0, for case (b)irreps, (6.12)

a=A,+n/2-3, B,=0,
Bo=—A—A45+13),

in the Sp(6,R ) one. Note that for cases (a), (b), and (c) irreps,
the variables z are, respectively, x,,x,,x; (Or ¥,, V2, ¥3), X15X3,
and y,, y,. For those Sp(2d,R ) irreps for which all the 4,’s are
equal to A, the weight function is also given by Eq. (6.10)
with21,25.37

a=A+n/2—-d—1,

for case (c} irreps,

B,=0, i=1,..,d—1. (613
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In this case, no variables z,z* are present in Eqgs. (6.1) and
(6.2). .

To calculate the normalization coefficient 4 of the
weight function, it is convenient to replace z by the variables
Z, defined in Eqs. (4.29) and (4.30). The transformed weight
function £ (u,u*,Z,z*) can be written in terms of the old one f,
and the Jacobian J of the transformation, depending only on
u and u¥, as follows:

8lu,u*z,z*%) = }"(u,u*,z(u,u*,i),z*(u,u*,'z'*))IJ (w,u*)].
(6.14)
In all the cases listed in Egs. (6.11)—(6.13), g is found to fac-
torize into two functions ¢’ and £”, only depending upon
u,u* or Z,z*,

B(u,n*Z,z*) = 2'(u,u*)g"(z,z*). (6.15)
The functions g'(u,u*} and g"(Z,Z*) are given by the following
expressions:

Zuu%)=4'det U~ ¢~ DI, (U)
and

a” d—1 8,
gzt =4" [] [T.Ez")]"
i=1
respectively. HereA ' and 4 " are two constants satisfying the
condition

A=44", (6.18)
DY) ;..(U)is given by the right-hand side of Eq. (4.10)
with U substituted for W, the functions T;(Z,Z*) are obtained
from Eqs. (4.24)—(4.26) by replacing z and z* by Zand z*, and
the exponents /3, are the same as in Eq. (6.10).

A straightforward analysis, similar to that carried out in

Appendix B, shows that provided the constant A" is chosen
in such a way that

(6.16)

(6.17)

J.dz dz* 8" (z,z*) = 1, {6.19)

the function g"(z,z*) is the weight function of U(d } CS, writ-
ten in terms of Z,Z* instead of z,z*. This means that §"(z,z*)
satisfies the unity resolution relation

fdz dz* §"(z,2%)|2z) (z| =1, ,
intherepresentationspaceof the U(d )irrep[4 ]. The constant
A " satisfying Eq. (6.19) is easily found to be given by

A" =7 YA, =, 4+ 1) ifAd; >4,
and

A7 =77 = Ay + D — Ay + Dy — A+ 1)

ifA;>4,>4,,
= 77'_2(/{1 — A+ YA —4,+2)
=7 — A3+ A, — 45+ 2)

(6.20)

(6.21)

ifll > /12 = /13,
if&l = Az >A3,
(6.22)
for U(2) and U(3) irreps, respectively.
It now remains to determine the normalization coeffi-
cient 4’ of &'(u,u*). From Egs. (6.4), (6.14), (6.15), (6.18), and
{6.19), it has to satisfy the following condition:

f dudu* g'(n,u*) = 1. (6.23)
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For d<3, a straightforward calculation, using the methods
of Ref. 46 leads to the following result:

~ d
A'=2"dg=d€ V2 I (4, + A4, +n—i— j).
ij=1
(6.24)
This completes the determination of the Sp(2d,R ) CS mea-
sure for d<3.

VII. HILBERT SPACE OF ANALYTIC FUNCTIONS

The purpose of the present section is both to summarize
the results achieved in the previous sections, and to reformu-
late them in the language of Hilbert spaces of analytic func-
tions.

The Sp(2d,R) CS |u,z), labeled by a complex symmet-
ric matrix u fulfilling the condition I — u*u > 0, and by a set
of complex parameters z, chosen as explained in Sec. III and
varying in the whole complex plane, do form a nonortho-
gonal family of states, satisfying a unity resolution relation in
the representation space ¥ ;, of the irrep (1 ). Hence this
set is complete (as a matter of fact, it is overcomplete as
proved hereafter), and can be used as a continuous basis in
F 1, Anystate |¢) of F ;, canbe expanded in terms of CS
as follows:

¥ = [dotuaifuzu, 1)
where
Ju,z) = (u,z|y) (7.2)

is an analytic function in the variables u, and a polynomial in
the variables z.
In particular, the functional images

) (w2) = (uz|N2)) (7.3)
of the discrete basis states (N;(4 )), defined in Eq. (2.6), are
polynomials in u and z, whose explicit form can be found as

follows. We first note that from Eq. (6.5), the functional im-
age of the irrep lowest weight state is

boa), (0Z)= 1. (7.4)
Wenext observe that any basisstate |(4 )) of the U(d }irrep[A ]
can be built from its lowest weight state by applying an ap-
propriate polynomial in the U(d ) generators,

[(4)) = P (E)|(A )asin - (7.5)
Hence, its functional image can be obtained by acting with
the differential operator P;,(¥) on the function
¢o(,1)min (u,2),

Poa) (,2) = Py (8). (7.6)
The result is a polynomial in z,
Poa) (0,2) = s (2) = (2](A)), (7.7)

that is nothing else than the U(d) CS representation of
|(4)). Explicit expressions of ¢ ;, (z) will be given in paper
II of the present series. Finally, the functional image of an
arbitrary state |[N;(4)) can be obtained by acting with the
differential operator Fy (Z'7) on the polynomial ¢, (z),

s (w2) = F (DN, (2). (7.8
From Eq. (5.7b), it is obvious that the resulting function is a
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polynomial in u and z, of degree 2, ;N,; in u. Its explicit
form is however, quite complicated, hence of no practical
use. This will contrast with the corresponding result for the
annihilation-operator CS to be derived in paper II.

The space 7, spanned by the analytic functions
#(u,z) corresponding to the states |¢) of F (1)» can be en-
dowed with the scalar product

(,?!!Z) = f d&(urz) [,i\’(“sz)] *iZ'(ll,Z),

making it into a Hilbert space of analytic functions. From
Eqs. (7.1) and (7.2), it is obvious that the scalar product is
preserved in the mapping |¢)—¥(n,z), i..,

1) = (), (7.10)
and that the CS overlap K (w',z";u*,z*%), defined in Eq. (4.1),
acts as a reproducing kernel in #;,, i.e.,

(7.9)

;}(u,z) = fd&(u,z)[?(u,z;u'*,z’*)121(u',z’). (7.11)

Moreover, any CS can be expanded into CS as follows:

juz) = [ dotu' 2R (w.2u% 2% w'2); (7.12)
therefore the CS are not independent and form an overcom-
plete set. R

Let X be any operator actingin & ,,, and £ the corre-
sponding partial differential operator in #; , . Then X maps
any state |¢) in ¥ ;, onto a state |y) in the same space,

) =X1|¥), (7.13)
and the corresponding functions in ¥ (1) satisfy the follow-
ing relation:

P(u,2) = Zh(u,2). (7.14)
The function ¥(u,z) can also be obtained from 17:(u,z) by the
integral transform

Yuz)= fd&(u’,z')i’ (u,z;u’*,z’*)t}(u’,z'), (7.15)
with the integral kernel
X (w,z;u'*,z'*) = (wz|X |u',z'). (7.16)

Equation (7.15) directly results from Eq. (7.13) when use is
made of the unity resolution relation (6.1). The relation
between the ix}\tegral kernel X (u,z;u'*,z'*) and the differen-
tial operator #° reads

i’(u,z;u’*,z"‘) = é\’l?(u,z;u’*,z'*). (7.17)

Since the mapping from ¥ ;, into ¥ 1) Preserves the
scalar product, the Hermiticity properties of the operators X
in # ;, are transferred to theirimages #” in /. In parti-
cular, for the Sp(2d,R) generators the following relations
are satisfied:

(08,0 = (&) (1.18a)
BDL) = (D, i) (7.18b)

It can indeed be checked that Eqgs. (7.18a) and (7.18b) are,
respectively, equivalent to Eqgs. (6.7a) and (6.7b), which were
used to determine the measure do{u,z).

From Eqgs. (4.14), (5.3), (5.7), and (7.17), the integral
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kernels corresponding to the Sp(2d,R) generators can be
easily calculated by noting that

A :I? (v',z';u*z*) = K (uw',z";u*,z*)A : InK (u',z';u*z*),
u j u;

and (7.19)
IndetU=trinU= — i m~! tr{u*u’)™ (7.20)
m=1
The results read
) (u',z';u*,z*)
—= ﬁfj (u*,z*%u',2)
= I?(u’,z';u‘,z‘) {(2/11 +n) (U u*),;
d—1
+ ¥ (A —Ae ) [T (0',z5u%,z%) ]~
k=1
XA, Ti (u’,Z’;“*,Z‘)} » (7.21a)

and
E;;(u',z";u*z*)

=I?(ll',z';u*’z*) [(ul + n)(UJ_,l —_ 56‘1) +f”]
d—1

+ kzl (Ae = Ak [T (v',z;u*,z*)] !

X[WA)y +Fi )T, mean)], (210)

where F; and f;  are, respectively, the operational and func-
tional terms of & ,;, and the primed symbols denote opera-
tors or functions depending upon u’ and z’ instead of u and z.
In Eq. (7.21), the first term between braces coincides with
the result obtained by Kramer?' in the case where all the 4,’s
are equal, while the summation over k can be easily evaluat-
ed by introducing the explicit expressions of the T ’s, and by
taking into account that

Au;, Uy = —6,ul — 6,ul. (7.22)

VHI. SOME APPLICATIONS

In this concluding section, we shall outline two possible
applications of the formalism developed in the present pa-
per. The first one is concerned with classical approximations
to quantum dynamics, the second one with boson realiza-
tions of the symplectic algebra.

The path-integral formulation of Klauder**’*® and the
related method based upon the time-dependent variational
principle*® make use of continuous and overcomplete sets of
Hilbert space vectors. Among those, the families of general-
ized CS play an important role. The complex parameters v, ,
characterizing such overcomplete sets of quantum states,
serve as classical coordinates in a generalized phase space,
where the motion is described classically by Hamilton-like
equations. The latter are written in terms of a generalized
Poisson bracket

(Fvv*)gvv*) =Zﬁ<§"’aﬂ(:v{ aig -
£ a B

af g )

Qg wr/)
) _(8.1)

In Eq. (8.1), 7! is the inverse of the matrix y = [|¥, ||,

whose elements
2

~

Vap = In I?' (v,v*)

. (8.2)
a YYB
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are defined in terms of the norm X (v,v*) of the quantum
states.

If we choose the Sp(2d,R) CS|u,z) for the continuous
and overcomplete set of states, then the classical coordinates
v, are the variables ,;, i<j, and z. It is straightforward to
determine the matrix ¥ from the known expression of the
overlap, Eq. (4.14), then to invert it to get an explicit expres-
sion for the generalized Poisson bracket. In the case where
Ay = +++=A4, = A, the result reads®’

{f(wu*), gluu*)} = [424 +n)] ™' ;’ (U Uy + Uy Uy)

X [(Byy N, 8) — (B, )A8)]

(8.3)
while in the remaining cases, it assumes much more compli-
cated forms, whose discussion we leave to a forthcoming
publication. The functions

@,Tj(u,z;u‘,z*), @ij(u,z;u*,z"),
and

@,- ;(u,z;u%,2%),
defined by
Bjwzut ) = [Rwzutz)] - Dfjwzusz)  (84)
and similar relations for the remaining ones, yield a realiza-
tion of the Sp(2d,R ) Lie algebra in terms of the generalized
Poisson bracket. Their detailed expressions can be deduced
from Eq. (7.21). The application of this formalism to the
Sp(6,R ) nuclear collective model provides a classical approx-
imation of the theory. Numerical applications along these
lines are in progress.?

Knowing the classical solution, one then has to quantize
periodic motions.'5“® In the calculation of the quantum cor-
rections, boson degrees of freedom appear naturally since
the bosons are just the quantum version of the classical pa-
rameters labeling the quantum states of the overcomplete
set.*® Because of this, and because they are quite useful for
studying the relations between microscopic and phenomen-
ological models, the boson realizations of the Sp(24,R) alge-
bra have been the object of many studies in the last few
years,>15:18:20.21,23,24.2628 By hogon realizations we mean
both non-Hermitian Dyson*® and Hermitian Holstein—Pri-
makoff®® realizations.

In Refs. 27 and 28, the relations between various PCS
representations and boson realizations, as well as those
between the latter have been extensively studied for generic
irreps (A ) of Sp(2d,R ). They are directly relevant to estab-
lishing relations between boson realizations and (fully) CS
representations, such as that derived in the present paper.
From Egs. (3.4) and (3.6), it is indeed obvious that the uni-
tary-operator CS, introduced in the present paper, can be
expanded in terms of the so-called Perelomov PCS of Refs.
27 and 28, as follows:

[v2) = 3 [Bs) (@] *1w2 ),
N
the coefficients of the expansion being well-known functions

of z*, defined in Eq. (7.7).
According to Refs. 27 and 28, boson realizations of the

(8.5)
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Sp(2d,R ) algebra can be obtained by mapping the Sp(2d,R )
representation space ¥ (;, onto the direct product space
# ® S, , where # is the infinite-dimensional space
spanned by all the boson states

IN] =[] W,)7"2[(1 +8,)" %, ]™0),  (8.6)
i<
built from d(d + 1)/2 independent boson creation opera-
torsa!; = aj, i, j = 1,...,d, acting upon the vacuum state |0],
and |, ; is the representation space of a U(d) irrep [4],
whose bases are denoted by |(4)]. If we choose to map the
discrete basis states [N;(1)) or |([/1[A])alk] B(k)q), de-
fined in Egs. (2.6) or (2.9), onto the extended boson states

IN;(4)] = IN] @ |(4)] = Fy(@")|0;(4 )], (8.7)
or
I([111A Dalh 1 Bk)g] = [Py, @)X (0;( )15k, 83
where

[0;(4)] = [0] ® |{(A)], (8.9)
and Fy(3') and P, (") are the same polynomials as
Fy(D') and P, ,(D") but with D], replaced by aj;, then

the PCS |u;(4)) and the CS |u,z) are mapped, respectively,
onto the extended Glauber CS

lw(d)] = |u]®|(A)], (8.10)
and the CS of the direct product group N(d)e U(d),
luz] = [u]®|z] = ; (b (2)]*|u;(A)]. (8.11)
(1)
Here
lu] = exp(jtr u*a')|0] (8.12)

is a standard Glauber CS (see Ref. 2), |z] is a U{d ) CS belong-
ing to the space |, ;, and we have used the fact that

[214)] = (2|4)) = b (). (8.13)
In this mapping, both the PCS and the CS representations of
the Sp(2d,R ) algebra are converted into a Dyson realization
of the latter by the replacement of u;; and A,,U bya], and g, ,,
respectively.

In Ref. 28, it was also shown that the transition from the
Dyson realization X3 of any Sp(2d,R ) generator X to its HP
realization X;;, can be performed through a similarity trans-
formation as follows:

Xyp =T '2X5T'2, (8.14)
where T'!/2is the square root of the positive definite, Hermi-
tian operator 7, defined by either relation

[NGA)TIN;A)] = (N2 ) Ns(4 ), (8.15)
or

H[MA D[R] B (kg T ([ 114 Decl4 ] Bk )q]

={(([I'NA Na'[7 ] B'(k)g|(lI 1A Dalh ] B(Kk)g).
(8.16)
The operator T is therefore an essential ingredient of boson
realizations, whose determination is of considerable interest.
For such purpose, one can start from the equations satis-
ﬁed by 7', 28,51

[T+ E] =0,

and

(8.17)
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Ta'T-!'=3a'E + Ea' + [a'a — (¢ + 1)I]a",  (8.18)
where E denotes the matrix of U(d) generators acting in
# 2 ;- By multiplying Eq. (8.18) from the right by T, and by
taking matrix elements of the resulting equation between
two coupled states (8.8), one gets recursion relations for the
matrix elements of T between coupled states.'>?° In Ref. 20,
an explicit algorithm was devised to solve them in the case of
Sp(4,R ).

In a recent work, Castafios, Kramer, and Moshinsky>>
did propose an alternative to this cumbersome recursive
method. For simplicity’s sake, their discussion was restrict-
ed to Sp{4,R ), but it is equally valid for higher-dimensional
symplectic groups, as we shall now proceed to show.

We first note that by expanding into powers the expon-
entials in Eqgs. (3.4) and (8.12), we obtain a development of
the PCS and of the extended Glauber CS, respectively, on
the discrete basis |N;(4 }) and |N;(4 )],

wid)) = g, Fy(w¥)|N;(A ), (8.19)

lwid)] =3 Fx*)|N;A)]. (8.20)
N

The expansion coeflicient Fyy (u*) is the same in both cases,

and it is obtained from Eq. (2.7) by replacing D |, by u¥,.

The definition of the operator 7, given in Eq. (8.15), then

implies that

[W;(4 )T ()] = (054 ) |w;(4)). (8.21)

Finally, by using Eqgs. (8.5) and (8.11), Eq. (8.21) can be
transformed into the following relation:

[v,Z'|T |uz] = (v',z'|u,z). (8.22)

Note that for the right-hand side of Egs. (8.21) and (8.22) to
be meaningful, one has to restrict oneself to matricesu and v’
satisfying the conditions I — u*u>0, and I — u™*u’ >0, al-
though the boson CS appearing on the left-hand side of these
equations could of course be defined for any symmetric ma-
tricesuand v’

Equation (8.22) was obtained for the first time by
Castafios, Kramer, and Moshinsky in the Sp(4,R) case.>?
To prove it, they used the property that Glauber CS lead to
the Bargmann representation,>® wherein @' and a are repre-
sented by u and A, respectively. They then derived the par-
tial differential equations satisfied by the kernel
[w',2'| T |u,z] as a consequence of Eq. (8.18). By comparing
these equations with those satisfied by the Sp(2d,R) CS
overlap, given in Eq. (5.13), they finally concluded that Eq.
(8.22) is fulfilled. We would like to emphasize that such a
complicated demonstration is unnecessary and would be-
come, moreover, quite cumbersome for higher-dimensional
symplectic groups. As proved above, Eq. (8.22) indeed di-
rectly follows from the definition of the operator 7, as given
in Ref. 28.

Equation (8.22) expresses the operator T as a kernel
with respect to the CS of the direct product group
N(d) ® U(d), and shows that this kernel coincides with the
overlap of the corresponding Sp(24,R) CS. Since a closed,
analytic expression of the latter has been given in Eq. (4.14),
a significant advance has been made in the determination of
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T. It now only remains to expand the kernel in terms of
discrete basis states to obtain the matrix representation of T
without going through the solution of recursion relations.
Such a procedure has been applied to Sp(4,R) (see Ref. 54)
and hopefully will be extended to Sp(6,R ) in the near future.

APPENDIX A: EXPLICIT FORM OF EQ. (6.9)

In this Appendix, we list the explicit expressions of the
partial differential operators 4, ;, B;;, and of the functions
a;;, b;;, appearing in Eq. (6.9), satisfied by the weight func-
tion }'(u,u‘, z,z%).

In the Sp(4,R ) case, they are given by

All= —A22=Za—z*a‘, A12= _228_3"

B,y =2uy, —u,2)29, By =2uy, — uy, 2)0, (Al)
By = (uy; — up 29,
and
a,=0,=0, a,=—A;—4,+2),
by=— (24, +n—8uy —2A, — A+ 2uy, 2,
A2)

bp= —(24;+n—4uy,
b= —A1+A2+n—06up— (A — A, +2uy 2
Inthe Sp(6,R ) case, we have to distinguish between cases

(a), (b), and (c) irreps. As an example, we list below the results
obtained in the x parametrization for case (a) irreps:

Ay =%,0, + x30; —x3 9% —x3 9%,
Ay =30, — %30, —xt It +x3 3%,
Ay = —x0, —x,0, +xF0F +x3 1%,
Ap=x0,—x; 0, —xt 33 —3d%,
Ay = —X3x,0; + %,0,) + (x1%3 — X]x305 — 3%,
Ay = —xy(%,01 + X,0,) + (x1x3 — x,)0; — 9T,
By, = 2uy,(x,0; + X393) + 2u15(x,0; — X3 33)
+ 2uy5[ — x,(x,8) + Xx,0,) + (x1X3 — X2)x305],
By, = 2uy5(%,9; + 33) + 2u(x 10y — x375)
+ 2uy[ — xy(x,91 + x20,) + (x1x3 — X2)05],
Byy = 2u,30, + 21330, — 2us;(x,0, + X,0,), (A3)
By, = uyy(x10; + 95) + uya(x, 3, + x,0,)
+ upsl — x,(x,9, + x,95) + (x1%3 — x,)05]
+ (%50, — X3 33) + trs — X5(x,9; + x,9,)
+ (x5 — X,)x305],
B3 = uy,0; + u120; + uy3( — x40, + x395)
+ Up(x,0) — X3 03) + uz3[ — x,(x,9, + x,95)
+ (x1x3 — X2)x305],
B3 = 130, + uy3(x,0, + 93) + 5,0,
— Up3(X20; + X303) + uzs[ — x,(x13) + x,3,)
+ (x1%3 — X2)5],
and
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ap= —{A, — A3+ 2)xs,
ai3= — (A — A3 + 4P, + (A — A3 + 2xyx,,
A= — (A — A+ 2)x,,
by= — A +n—120uy, — 24, — A5 + 2u,x,
+2upl -4, -4+ 4,
+ (A — A5 + 2xyx,],
by = — (24, +n—8juy — 24, — Ay + 2uyx,,
byz = —(24; + n — Yu,;,
b= —(Ay+4;+n— 10, — (A, — 4, + 2uysx,
— Ay — A3 + 2uyx,
oyl — Ay — A+ 4 + (A, — A3 + 2)xx,],
b= —A,+A;5+n—8uy;s — (A, — A5 + 2Juysx,
sl — (A — A5+ 4, + (A, — 4 + 2xyx3],
byy= —(A,+A,+n—6Juy — (A — A, + 2usax,.

ayy =ay =a3;=0,

(Ad)

For cases (b) and (c) irreps, the explicit expressions of
A;; and B;; can be obtained from Eq. (A3), or its counter-
part in the y parametrization, by deleting all the terms con-
taining either x,, x¥, d;,d ¥ or y,, y¥, 8,, 8F. As aresult of the
integration by parts carried out in Eq. (6.7), such a simple
trick cannot be used for a,; and b, ;, which therefore have to
be recalculated in each case.

APPENDIX B: SOLUTION OF EQ. (6.9)

The purpose of this appendix is to prove that the func-
tion }”(u,u‘, z,2*) defined in Eq. (6.10) is a solution of Eqgs.
(6.9a) and (6.9b), provided the exponents @ and B,,i = 1,...,
d — 1, take the values given in Egs. (6.11) and (6.12).

By introducing Eq. (6.10) into Egs. (6.9a) and (6.9b), we
obtain the two following equations:

d—1
I=1

d—1 d—1
=1 m=1
#1

X [(uAu)ij — (I.I‘Auo )ji +Aij] TI

d—1

+a,(detU) [[ T, =0, i<, (Bla)
I=1

and

d—1
a (1I=11 T,) [2‘ Uy (uA, )y — Au,', detU
S (17

oy
X[ S untodu e = 8+ B, | T

d—1

+b,detU) [[ T, =0, ij. (BIb)
I=1

In these relations, the action of the differential operators on
det U can be easily evaluated as follows. We note that in the
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case where A, = . = A4, = 0, from Eq. (4.21) the CS overlap
(where we set u’ = u) reduces to
K (wu*) = (det U)— "2, (B2)

On the other hand, it fulfills the differential equations (5.12),
where & = (n/2) L. The function det U therefore satisfies the
equations

[(uA,);; — (u*A,.); ]det U =0, (B3a)

and
[; uik(uAu)jk - A“?J - Zuij]det U=0.

By taking Eqgs. (B3a) and (B3b) into account, Egs. (Bla) and
(B1b) become

d—1 d—1
12 By ( 1;[, T’") [(uA,);; — (u*A,); +4,] T

(B3b)

=1
oy

d—1
+a, [ =0 i<} (B4a)
I=1
and
d—1 d—1
P (ml;ll Tm) [2 i (WA )y = By + By | Ti
#1
d—1
=1

To evaluate the action on T; of the differential operators
appearing in Eqgs. (B4a} and (B4b), we could again use some
information coming from the differential equations satisfied
by the overlap. In this case, it is easier, however, to directly
apply the differential operators on 7. For such a purpose,
the following properties are worth noting:

[(uAu )ij - (“‘Au‘ )jl] Ulm = - 51’1 (jjm + 6jm UIi’
[(UAu )ij - (“*Au‘ )jl] Ulm,pq
= =68 Uppnpg = Oim Us, pg + 8jp Uppig + 833 Upp i

[; Uy (ua, )y — A"?; Um =t Uy; + 1, Uy,

[ T uilubl — B,y ] Uimpe

=iy Uppjg + ttig Uty + ttp Ui + g Ui

B5

whose demonstration is straightforward. (53)

In the Sp(4,R ) case, taking Eqgs. (A1) and (A2) into ac-
count, we obtain the following results:

0, ifi =j=1.2,
A, ), —(u*A.), +4,,]1 T, =
[0a)y =W 8w + A ) o= _p i1 =,
(B6)
and
[2’ un(ud, ) — A, +B,,] T,
2uyy —up 2)T,, ifi=j=1,
=10, ifi=j=2, (B7)
(U —up2)Ty, ifi=1,j=2.

The left-hand side of Eq. (B4a) therefore vanishes for
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i =j=1,2. Hence, we are left with a single equation corre-
sponding to i = 1, j = 2, which reads
—(Bi+A =4, +2)T =0, (B8)
It imposes that 8, = — (4, — 4, + 2}, in accordance with
Eq. (6.11). On the other hand, Eq. (B4b) leads to the follow-
ing equations:
[28\(u; — u22) + (22 — 24, — n + 8Juy,
=24, — A+ 2upz] T =0,
Qe —21, —n+4u,, T, =0,
(Biluy, —uz2) + 2a — Ay — A, —n + 6uy,
— A=A+ 2Juynz) Ty =0,
correspondingtoi=j=1,i=j=2andi=1,j = 2, respec-
tively. With the above value of 3,, all three equations are
satisfied if @ = A + n/2 — 2, again in accordance with Eq.
(6.11).
For Sp(6,R ), the demonstration proceeds along the same
lines and will not be detailed here.
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An explicit basis is constructed for the symmetric irreducible representation (irrep) of
SU(9) D SO(9) D SO(5) X SU,(2) X SU,(2). It is also indicated how good angular momentum states
can be constructed. The techniques used are based on the well-known tensor algebra for the

infinitesimal generators of simple Lie groups.

I. INTRODUCTION

In nuclear physics, the interacting boson model (IBM)
gives a unified description of collective states in medium and
heavy nuclei. The original version of the IBM is limited to
the consideration of s- and d-bosons.! However, for nuclei
with large deformation the s—d model is insufficient and we
have to introduce a g-boson degree of freedom to be able to
account for the experimentally observed results.

Many authors have already identified the limiting sym-
metries of the interacting s—d-g boson system and obtain the
typical spectra for the various limiting symmetries.” How-
ever, the explicit wave functions for the s—d—g system have
not been given. In this paper, we discuss this problem. For
the sake of simplicity, as a first step we will focus our atten-
tion on the construction of the basis vectors for the g-boson’s
system.

For the n g-bosons system, the symmetry groupis U(9).
It is thus necessary to have nine quantum numbers for label-
ing the states uniquely. However, the physical subgroup
chain U(9)DS0(9)DS0(3), SO(3) being the rotation
group associated with angular momentum, only gives four
quantum numbers. In this reduction there are several miss-
ing labels, for which it is extremely difficult (impossible) to
find a simple physical interpretation. For this reason, we
adopt the “natural” labeling in which an irrep of SO(9) is
considered to be fully reduced with respect to its subgroup
SO(5) XSU,(2) XSU,(2), and a state is labeled by the
weight of the irrep of SO(5) XSU,(2) XSU,(2) to which it
belongs. This basis is called the mathematical basis. If the
number of g-bosons are small, we can easily express the
physical basis in terms of our mathematical basis.

In Sec. 11, we will give a reduction formula for the irreps
of SO(5) X SU,(2) X SU,(2), which occur in a given symmetric
irrep of SO(9). In addition, we will also give an expression for
the generators and Casimir operators of SO(9). In Secs. II1
and IV, we will explicitly determine the basis states and give
some examples.

Il. GENERATORS

The branching rule of SO(9)DSO(5) X SU,(2) X SU,(2)
can be derived by means of the Schur function method.>*

* On leave from Nanjing University of China, Nanjing, China.
* On leave from Beijing University of China, Beijing, China.
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The result can be written as follows:

SO(9)D SO(5) X SU(2) X SU,{2),

(v0000) (,0),2,2),
where v is the seniority quantum number, 22 =v — p — 2w,
and

p=0,12,.., (1a)

o =0,1,2,..[(v — p)/2]. (1b)
The symbol [(v — p)/2] stands for the maximum integral of
(v—p)/2.

In IBM, the groups SU(9), SO(9), and SO(3) are generat-
ed by the following set of operators:

o k=128,

Tg=0,1 1.tk
o k=1357,

SU(9): (g'2)

9 . 1g ’
SO(9): (g'8), g=0,+1,.,+k; ?
k=1
3): 1g (k'y ’
SO3) (gg)q g=0,+1,

where g*#( g,.)hu=0,+ 1,., +4,is the creation (annihila-
tion) operator of the g-boson, and g , =(—f'g _, isaten-
sor operator. A general state vector can be written as
|¢> = | >, where Q is the totality of the quantum
numbers needed for full classification besides n and v. In the
following we will determine €} by means of the group chain

SO(9) DSO(5) X SU,(2) X SU,(2), (3a)
with

SO(5)DSU, (2)XSU,(2). (3b)
For convenience of construction of the state vector |nv€2 >,
we introduce a set of uncoupling generators for the group
chain (3}, as follows:

Xuw =88 —8L 8. pv=0+1..,+4 (4)
Obviously,
X’“‘ = O’va = — Xvur (X;tv)T —_ ( — )I‘+VX_V_.#;
and in addition they satisfy the following commutation rela-
tion:

[va’,l/pa] = ( - )V(Sp—vx;ta + ( - )U‘Sy—ol/vp

+(_)V50—vXpu +(—y’5u—p/¥¢w' (5)
The relation between y ,, and the generators in Eq. (2) is
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. 1
(g*g)k = 7 z qu;uv X uvs
uv
k=1357 ¢=0,41,.,+k

Using y ,., We can construct the generators of the subgroups
as follows:

SO(5):
SUa (2)./10 = 5( _Xl——l +X2_2);

Ay =+ QANDx1142 (6a)
SU,(2):vo=13(X1-1 + X2-2)»

vy = FUADX 5142 (6b)

a\ B } —4
Uapan T (I (AR, (60)
-4 (/A\2)xo-1  (1/A2)x0-2

SU(2): 0o=3(—X3_3+ Xa—4)s

0, =+ (IADY 3550 (6d)

SUL2): To=4X3-3+ Xa—sh

Ty = :F(l/\ﬁ)Xq:stv (6e)
The remaining generators of SO(9) can be put in the form of a
tensor operator, as given in Table I.
Using Eq. (5), we can construct the commutation rela-
tions for these operators. For example,

[ode]= 4y, Aol )= —4iy
MO’U‘%z)(l/z)] =aU P,

4. U] = THGF)G ta+ ) UMW,
[U (il/(zl)/(zl)/(z V2 ’U(;é/(z i an ] =Ky,

(172)(1/2) 77 (1/2)(1/2) —
[Uaam . UYih2am ]l =Wws,

[ v (il/(zl)/(zl)/(zl)m ’U(:;l:/(zl)/(zl)n—) (172) ] = 5('10 + v), etc. )]
The angular momentum operator now can be written as
Lo =608 = vo + 340 + 70 + T,

L, =60(g"3)",
=V203v, +27,)—20U 3%
—VIAT N 2+ 0 T 002+ (8)

TABLE L. Tensor operator T v 5052

yé
a B\H -4 -4

43
1 1 - (l/ﬁ)Xn - (l/\/i),l'sz (1/\/5)12—3 — (Vw/i)l’z—4
i-4 - (1/\/5)141 - (WD — U — Uy s
=3 Uy, ARDys,  (AR2)x- s (WAR)Y_i_s

(l/‘ﬁ)Xs—z
(1/\/5)1'30

—3—1 (/A 2)y._s
0 0 (1/2)e

(AAN)y_zs (IN)x_,—,4
UADXe—s (I xe—a
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Similarly the Casimir operator of SO(9), as appears in the
usual® IBM reduction scheme, can be written as

Co= (- M2 62,

— ’(}5 + 02 + 17 4 25(T 10N/ D Tu0N/2)O) 9)

where
es = A2 42 4 Uy /201120 (10)

If we define the operators 3‘+ and §_ as

S, =3(—1rgrst,,
2 (11)
S_=3(—1rs_.s.

M

we can rewrite Eq. (9) as
C=3NW+7-5.5_}.

Obviously, the eigenvalue of 69 is (v/2){v + 7) when acting
on the state |nv2). Furthermore, we can prove that 4 2 = +2,
and o = 7. Our group reduction scheme is now completely
defined and we can proceed with the explicit construction of
the basis vectors.

ill. BASIS VECTORS

In correspondence with the group chain (3), the quan-
tum number £} may be taken as the eigenvalues of the opera-
tors Cs, A 2, A, v, 0%, 0, and 7. Hence, a general state vector
|[nvQ) can be rewritten more explicitly as
|nvQ) = |nv; p,Aa B; Zy8), and the eigenvalues for above-
stated operators are as follows:

operators C, A2 Agvy 07 0y T
eigenvalues (p/2)(p+3) AA+1) a BEE+1) y &
(12)

In order to give the concrete structure of
|nv; p,Aa B;Zy5), we first observe that the state
|nvp,Aa B;Zy8) may be written as

|nv; p,Ac BZy8) = NS, F|w; p,Aa B3y8),  (13a)
where
n
- (20 + 7)1  pmln—u2,
20 2p+ 20+ 7
v=nn—2n—4,.,1 or O, (13b)

and the operator S, is defined in Eq. (11). Hence, the prob-
lem is reduced to the construction of the state
|vvip,Ac B;Zye). This can be achieved by the following pro-
cedure.
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First, we can start with an unique maximum weight state

1
;0,000-1—”-1> = _ [—gl)0).
T2 A E10 .
For the state |®, ), the eigenvalues of the operators Cs, 4 >4, v,. 0 %, 0y, and 7, are 0,0,0,0,(v/2)(v/2 + 1), (v/2), and v/2,
respectively.
It can easily be seen that an eigenstate of the operators C, and o 2 with an eigenvalue ( p/2)(p + 3) and 2(2 + 1), can be
written as

|<I)1) =

02 = |wip L £ 2,533} — gl P2 igt IO, (158)

with
& 0'w!2% 3522 — 2x + 2p + I 23 N -
N2={Eww ( +2p + Mix + +l)] ’ (15b)
x=0 (@ — x)bx!(2p + 322 4 1)

and where p and o should satisfy Eqgs. [1(a) and 1(b)], and the operator Z is defined as

Z = [${28" 8" —2B0)+5(g" gF; +8 g4}, (16a)

B()g=(g’1rg‘r—1_g;rgt—z)- (16b)

It can be proven that both of the operators g;t g;- — 25, and (g;" g*; —gs" g7 ,) are invariants of both SO(5) and
SU,(2) XSU,(2). Hence the state |®,) is a simultaneous eigenstate of operators Cs, 4 2, Ao, v, 0 %, 0o, and 7, with eigenvalues
(p/2)(p+3),(p/2)(p/2+ 1), p/2,p/2,3(2 + 1),3, and 3, respectively.

Third, we need a state that is an eigenstate of the operator A ? (and +*) with the eigenvalue A(A + 1). The procedure
followed is described in Refs. 6 and 7, with the result

|®3) = N; = (g]P3(Z)°F ( p,A)(g}*/0), .
with

Ny = { DD (N,a2° " *50l)x + 3 + 1) —*
o4&z RA+1+2(p—2A —22)2A + 1+ 2)2)(p — 2A — 22)!

pP+z=y+7)

_ _ Y 1 1] — 12
AP =2A—22+20 —2x 2y)-(y+2)-(y+2+A+1)-] , (17b)

Mo —x — o —x -y WA + 1)E+1)

where

A=p/2{p—1)/2,..,0,

1 R
F(p,A)=N, @ y-22- By,
(PA=Nor 2, 2=(2A+1+z)|z!(p—2A—2z)!‘g°)p (P
[ 3 [ 1 2 z+1) ]1/2_
Lol 2ea + 1421 (p—24)—22)

Finally, by acting with 4 ~®4/4~8) 52 -7 and 7* -9 on the state |$,), we can obtain a general state vector, which can

be written as

NPA =

lvv; p, Aa B,Zy8) = Ny(— )+ 211/ 2pr+22-a-B-r= %2 \°F (p,AJG (A B;Zye)|0), (18a)
where
_ (A —a)A —BNZ — Y= -6} -2
Ne= (2A)!(22)!{22A +B—a—B-7-§A L alA +BNE + ME + 5)!] Ns (180)

and

GAaBIyd)= ¥ Y O(AaBx;Zydy)X UAa fx;Zydy),

Xx=0y=0
2AMNA — a — 1A —B)!
x—14+8MA —a—x =8 0MA+ B —x)la—LB+x)
v 2N —y — YZ — &) ,
(P=14+8M2—ry—y =82+ —ply —5+y)
Q(Aa Bx;Zydy) = (@) P gt )N ~ o gl T Mg gl T e T e o e, )

We have now obtained a closed, analytic expression for a general basis state, labeled according to (3), in terms of the g-boson
operators. In Table II the relation between the basis (13a) and the natural basis is given explicitly for a configuration with n<2.

O(Aa Bx;Zydy) =
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TABLE II. The natural basis of the g-boson system.

n v ? A z Natural basis L
1 1 1 ) 0  g}0).g]|0).g",[0).8",[0) 4
1 1 0 g0)
1 1 0 ) £110).8110).8}10).8" .10
2 2 2 1 0 (1/42)g}}10).8181 10),(1/V2)g! g} |0).glg" 1 |0),(1V2) (glg" | +lg" 2)(0) 8,6,4,2,0
g .81 10),(1/\2)8% 18" 1 [0).8% 18" ,10),(1/42)8" ,8" ,10)
2 2 i 0 glg}i0).g]2010).25g" 110).2lg" ,(0)
2 2 0 0 (14/10)(2g38} +glg" . —glg".)|0)
2 1 } y  &18}l0).8}g110) 818" 410).818" 4 0).818110).8]8}(0),

813'—3 |0>,8¥8'-4 |0>’8t 185 |0),gf_ 18§ |o)»8'. 187_3 |0)»8?- lgt-l |0)
8" ,8" .10),8" ,8110).8" 28" ;10).87 28" 4]0}

2 1 0 1 838110818} 10).888" 4 |0).808" . 10)

2 0 0 1 (142)g}g}10).8} 8} [0),(1/V2)¢1 8} 0).818" 50}, (1/42) (glg" . + glg" 5]0),
g8t 4100, (1/V2)8t 18t 4 10).8% 181 410),(1/42)g" 48 (10}

2 0 0 0 [h(2slgl —4glg", +4glg", + Sgle", — Sglgts)

0 0 0 ¢ Jhlel —2elg", +2ele", —28leh . + 2t D)

IV. ANGULAR MOMENTUM PROJECTION

The states constructed using the reduction scheme proposed in the present paper do not have good angular momentum,
and as such are not physical states. In practical calculations this problem can be solved by requiring the states to be eigenstates
of the angular momentum L 2, and the states can be constructed using numerical methods. We will outline here an alternative
analytic procedure that can be followed. As an example we discuss only the case n = 2. The formulas for general # will be the
subject of a subsequent paper.

In order to form states with good angular momentum we will follow the well-known procedure of taking a maximum
weight state (14), which has a maximum value of M = 4v and thus a unique value of L, and operating on it with the L _
operator given in Eq. (8). It should be noted that the states (18) are eigenstates of L, with eigenvalue M = 8 + 3a 4+ 8 + 7y.
The physical states thus have to be a linear combination of states with the same value of M, n, and v.

For the case n = 2 the action of the operators entering in L _ can be given as follows:

v_ |nyv) p;A’aa ﬂ;z9}”6> = (1/\/5) ‘/(A +B )(A - B + l)lnyv’ P9A’a) B ko 112)7’)6)9

7_|np, pAe, BEY8) = (I/\2NE + 8= — 6 + 1) [nv, p;Aa, BZ,1,6 — 1),

: . 1 [(p=2A)p+2A+3)A—a+1jA+B+]) : _ .
U—+ |n,U’P,A,a’ B’2!796> - 2 J (2A + 1)(2A + 2) ]n’v’p:A + %’a %aﬂ + %,2!}/’6)

A —La—1, B+ 129,6),

_ 1 [(p—2A+1)(p+2A+2)A+a)A—B) Inp
2 2AA + 1) 7

p.p+1

T (f }(ll//zz))+ (1/2), — (172) + (172) I” =2, p,A, 332,7’,5) =(—-1/ ‘/i)au'u {52',z —-172 5A'.A +120

+YE=6A+a+1)A+B+1
X\/( 2 2)(2(21\ +1) . Z ) +0z3 1120844 1/251”»1’—1

% [E=7+1E+5+ 1A —alA—B)
(22 + 12A

+ (1/\/—1_6) [6/\,052.0511’,1 5A’,1/2 62',1/2

X(8p2 = 36,0) + BuaBro8160125.126,2 — By0)] )
Xn=2v,pNa+} B+43y—16+1).
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With the use of these formulas the action of L _ on the high-
est weight state, given by Eq. (14), can be calculated:

L_|g2) =L_|2,2,0,0,0,0;1,1,1) = 242|2,2,0;0,0,0;1,1,0),
where only the 7_ operator gives a nonzero contribution.
Since the state on the left-hand side (lhs) corresponds to the
state |L =8, M = 8), the state on the rhs necessarily cor-
respondsto [L =8, M = 7). By acting once again with the
L _ operator, we obtain

L_{2,2,0;0,0,0;1,1,0) = 2y2|2,2,0,0,0,0;1,1, — 1)
+4712,2,L5544.4),

where now both the 7_ and the T2, ) _ (12 + 1,2 OP-
erators contribute. The state on the rhs thus correspondstoa
state with |L =8, M =6). The state [L=6, M =6)
can be obtained by taking the orthogonal linear combina-
tion. This procedure can be used to construct all states with
good angular momentum.

V. SUMMARY

In this paper we have given a method for constructing
the basis states of a system of g-bosons. The advantage
of the present reduction scheme over the conventional

446 J. Math. Phys., Vol. 27, No. 2, February 1986

U(9)280(9)DS0(3) 2S0(2) is that there are no missing la-
bels, the states can be uniquely labeled by the values of the
Casimir operators. The only disadvantage of the present re-
duction scheme is that angular momentum is not a good
quantum number. In the last section we have given an exam-
ple of an angular momentum projection procedure that can
be followed. The procedure outlined in this paper can, of
course, be extended without problems to a system of s-, d-,
and g-bosons.
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The gradient property for bifurcation equations covariant with respect to a group representation
that is reducible, but irreducible as a real representation, is examined. In this case, the Schur
lemma does not hold in the usual form, and one is faced with problems not present in the
irreducible case. It is shown how to handle these problems, and applications to the fundamental
real representations of SO{2) and SU(2) are presented that, due to general group theoretical results,

represent in a sense the more general situation.

I. INTRODUCTION

In this paper we want to present some remarks about the
gradient property of bifurcation equations in the presence of
a symmetry' when the symmetry is described by a real re-
ducible representation. Precisely, we are interested in the
case, important in the physical applications, in which this
representation T is reducible, but is irreducible on real
numbers, i.e., it is physically irreducible.

The main difference between this case and the irreduci-
ble one is that for reducible representations the Schur lemma
does not forbid the existence of nontrivial operators com-
muting with the whole representation; that is, now we can
have

T,K =KT,, VgeG, (1)

for operators K #al.

If wedenote by C (T') the space of intertwining operators,
i.e., the set of real operators commuting with the real irredu-
cible representation 7,

C(T)=(K/KT,=T,K, Vge G}, 2)

we have a theorem (8.2.2 of Ref. 2) which ensures C(T) is
isomorphic to R, C, or H, where R is the field of real
numbers, C that of complex numbers, and H that of quater-
nions. From this it follows easily that the dimension D of the
operators in C(T') can be 1,2, or 4.

The case D = 1, C(T) =R is trivial. We will treat in the
following examples of the other two cases, SO(2) for
C(T) ~Cand SU(2) for C(T) =~H.

Both cases D = 2 and D = 4 raise problems in connec-
tion with the gradient property'” of bifurcation equations:
we will discuss these problems, and how to handle them, in
the following sections.

We stress that, because of the group theoretical results
quoted here and at the end of Sec. III, our treatment covers
cases that are generic, in the sense that the most general case
is a combination of these three basic cases, C(7T) =R, C, H.

For what concerns the gradient property, the case of
SO(2) was dealt with shortly in a previous paper by two of
the present authors,® but we present it here anew in more
detail for clarity and completeness.
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It can also be noted that the property D =2 for the
group SO(2) is closely related to the existence of nonzero
solutions of the classical Hopf bifurcation problem'* [here
SO(2) describes the covariance with respect to time transla-
tion £—¢ + 7, mod 27}, whereas the case D = 4 should cor-
respond to a more complicated and less known “quater-
nionic bifurcation.”**

il. REDUCIBLE REPRESENTATIONS

Let the basis of the representation T be {x,,..., x, } and
denote by v, the covariant of first order corresponding to this
array of basis functions, namely v, = {19, 9,...,0%} with
W =x;.

For any K in C(T),

v =Ky,

is a covariant of first order. Therefore, if C (T')# {I } (for ease
of notation, we do not distinguish between X and aKk, as well
as for v and av, where a is a real number) the covariant of first
order is not unique or, in the language of Ref. 3, there is more
than one fundamental vector of order 1. This means that one
could choose v as well as v, as a basis for this representation,
that is, substitute {x,,...,x,} with {x],..., x.], where x/

= K;x;, obtaining exactly the same representation T. Of
course, all of the ¥’s obtained in this way are independent,
and these are the only covariants of order 1, that is, any
covariant of order 1 can be written as v = q,K,v,, where
a, R, K, €C(T).

We have now to deal with gradients: since the gradient is
defined with respect to some basis and we now have more
equivalent bases, the gradient is not defined uniquely any
longer. Therefore, when we speak about a gradient, we have
to mean with respect to any one of the bases individuated by
first-order covariants. This corresponds to the following
fact: as everyone knows, if S is a scalar function, its gradient
VS is a vector (i.e., is a covariant), due to the vectorial char-
acter of the operator V. But now we can define different V,’s,
each of them being a vectorial one, and from a single func-
tion S we can obtain different vectors by computing its gradi-
ents in the different bases, V; S.
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If two different bases, x and y = RX, are given, the gra-
dientsinthe twobasesarerelatedbyd /dx;, = (dy, /x,;)(3/
dyy ), thatis,V, = RV, denoting by V, the “ordinary” gra-
dient, that is the one in the basis v,, any gradient can be
expressed in terms of V, and the operators belonging to
(D),

V=aKk.V,,
and the V; = K, V, are independent.

At this point it should be clear that the gradient proper-
ty,> namely the fact that any vector is the gradient of a scalar,
means that any covariant is obtained by applying one of the
gradient operators to a scalar. We can put this in more pre-
cise terms: A representation T, of a group G acting on the
basis v, is said to have the gradient property at order # if for
any covariant v of order n there are real numbers a; and a
scalar S of order n + 1 such that v =q, K, V,S. .

It follows from general theorems in bifurcation theory
(see Ref. 1) that if a bifurcation equation relative to a system
with G as a symmetry group is covariant with respect to the
representation T, and T, has the gradient property at order
n, the bifurcation equation has the gradient property at order
n, too, that is, its terms of order n can be written as a gradi-
ent.

The gradient property at each order of T, is, in general,
not enough to ensure that the bifurcation equation
F(A, v) = Ois itself a gradient equation. In fact, the bifurca-
tion equation is, in general, written as a sum of covariants

F(/{, V) = ZB,, (Aw V),

where each B, is n-linear in v. If T, has gradient property,
each of the covariants can be written as

B, = ShMK,V,S™,

i

and F(A, v) is given by
FA,v= Eb MK, V,S ™,

Since there is no reason for the b {™ to be independent of
n, this, in general, cannot be expressed in the form
F(A, v) =c,K,V,S, where S is some scalar function.

A special case is that of representations, like those we
consider in the following, such that all the scalars are of the
form (v, v)™. In this case, if the gradient property is satis-
fied, one has

F(A,v) = Y b (™K, Vo (v, V)" = fiK,V,S,,
with Sy = (v, v) and

fi=2m(v, V)" b (™,
so that the bifurcation equation is itself, in this generalized
sense, a gradient equation.

lIl. GRADIENT PROPERTY

After having clarified the concept of gradient property
in the case of reducible representations, we can pass to the
problem of proving it. In particular, we want to discuss the
applicability of the technique used in Ref. 3.
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That was based on the computation of the number of
independent covariant and invariant completely symmetric
tensors in the basis functions of Tat any order; this computa-
tion was performed by making use of the orthogonality rela-
tions for characters and of the Molien function,'! which to-
gether led to an integral formula for the multiplicity of
vectors (completely symmetric covariant tensors) and sca-
lars (completely symmetric invariant tensors) at any order,
which were equal to the multiplicities ¢! of 7 and ¢! of the
identity representation T in the symmetrized r-tensor pro-
duct (T ®"),.

We have to check therefore the applicability of the crite-
rion based on the multiplicities of scalars and vectors, and of
the integral formula, in the case of a reducible representation
T.

As for confronting the multiplicities, the valid criterion
is that the gradient property holds at order » if the number of
independent vectors of order n, #v(n), is equal to the num-
ber of independent vectors that can be obtained from scalars
of order n + 1 by the action of a gradient operator. Now, if D
is the number of independent operators in C(7T), from each
scalar we have a set of D independent vectors by applying
gradient operators. Therefore, if we have ¢{*) | independent
scalars at order n + 1, we can obtain D -¢{°) , vectors by
application of gradient operators. If all of these are indepen-
dent, the gradient property at order n is equivalent to

#un)=D-cY, ,.

For the representations we are going to deal with, inde-
pendence is trivially ensured, since we will have at most one
scalar at each order, so we will not be concerned about this.

To obtain the number #uv(n), one has to multiply by D
the multiplicity of T'in (T® "), , that is, we have

#uv(n) = Dc'V

(with the same remarks as for gradients about indepen-
dence). Therefore we have, as in the irreducible case, that to
ensure the gradient property at order » it is sufficient to have

) =c .

When computing ¢!, , and ¢! we are concerned with
the problem of decomposing the symmetrized n-tensor pro-
duct P, = (T°"),. If we denote its character by y,, we can
decompose it into irreducible representations by the stan-
dard formula

P" = sz"]T(a',
a

i = an (e,

where y, (g) can be obtained via a generating function '

27" (8) = det(l — zT(g)) ™"

and dj, is the Haar invariant measure, y'” (g) the character
of T¥(g).

If we want to know ¢!, that is, the multiplicity of T in
P,, we have to decompose T as

T= iAaT‘“L

a=1
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and we have

C("l) = min [mf,”’/A, ],
a€(LR)

where the square brackets mean the integer part.

We remark here that another theorem [(8.2.3) of Ref. 2]
ensures that for T irreducible on the reals, we have
T=T,0T, with T, and T, not equivalent, if D=2,
C(T)=C,andT=T,0T,ifD=4,C(T)<H.

As anticipated, we want now to give short examples of
applications of these remarks, choosing the fundamental
real representations of the groups that are the most natural
ones in view of the group theoretical theorems cited above,
that is, SO(2) for D=2, C(T)=C, and SU(2) for D=4,
C(T)=H.

IV. SO(2)
Now we examine the case G = SO(2). Its fundamental
real representation is given by

cos & sinB)
T(e)_(—sina cos@/)

which could be reduced to
6
TO)= ( —10) =T g T?,
e

The set C(T') is given by
C(T)={K},

(09 =€ 3)

to which correspond the vectors (}) and (;”).

We can now easily compute ¢y and ¢V by standard resi-
due technique. The Haar measure for SO(2) is simply 48 /2,
@ varying from 0 to 27. Therefore we have

= 1 (™ dé
9= $ o =L f .
,.Zo 2rdo (1 —ze®)1 —ze— )

_ 1 do 1 3,
_217'i4(1—z¢o)(a)—z)_l—zz ,.Z'ozz'

As for c{’, we notice that
2T

[(1 =2z (1 —ze— )]~ dO
0

29
=f [(1—2e%) (1 —ze= )] '~ do,
0

so that, with the notation used above, m{™ = m{™ and ¢’
=m{™ =1 (m{™ + m{™). Therefore,

=1 ” e’
2rJo (1 —ze®)1 —ze— %)

=—1—-§ Q do=—2_ = wzz"“.
2miJ (1 — zo)w — 2) 1-2 45

So we have that for the fundamental representation of
SO(2) the gradient property is satisfied at any order: we have
a scalar at each even order, which is, of course,
(Vo» Vo) = (Ko, K¥g)™, and two vectors at each odd order,
v, and Kv,, while there are no scalars at odd orders nor
vectors at even orders.
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This same result holds for all the representations of

SO(2), given by
cos(mf)  sin(mé ))
T 0 = ( . »
mO)=\_ sin(mé@) cos(m8)

for which the computation differs only for a trivial change in
the integration variable, 8’ = m#6.

The bifurcation equation for SO{2) is therefore of the
form, as expected from Sec. II,

F(A, v) = FyA,|v|v + F\(4, v)Kv = 0.

Each nth-order component can be written as

F,(A,v) =8,(4,|jv])u,

where

(n) (n)
a'"x, —b"x,
u=(ﬂ ’ v=(x1,x2),

(n)x2 + b (n)_xl
or, with the notation of Sec. II,

u =} (al + bK)V,(v, v).

The nth-order bifurcation equation is therefore a gradi-
ent equation in our “generalized” sense: i.e., taking the gra-
dient with respect to the basis v’ obtained from v = (x,, x,)
by applying the operator (al+bK)~!, namely
v, = ((al — bK)/(a* + b?))v, and not with respect to the
“ordinary” gradient V,.

We remind the reader that, as suggested by the notation,
a’s and b’s depend on the order n, so that also the basis v’
depends on it.

V. SU(2), OR QUATERNIONIC BIFURCATION

We come now to the case G = SU(2), representative of
““quaternionic bifurcation” (see Refs. 4 and 5). We consider
here the representation T obtained by decomplexifying the
standard (defining) representation

A B
P=(_Bt A*)’ |A|2+|B|2=l-
If we write 4 = a + i, B =B + iy, it results in
a -7 B -7
r=l 7 a r B |
-8B —-r «a Ui

Yy —B -7 a
@ +B*+7r+7' =1,
a,B,v,neR.

It is perhaps useful to stress that we are using a parame-
trization different than the one usual in quantum mechanics,
namely A4 = exp(ilp + ¢)/2)cos 6 /2; B = explilp + ¢¥)/
2)sin 6 /2. Our parametrization is the standard one in lattice
gauge theory computations, and it is easier to handle in the
present case anyway.

The decomplexified representation T can be written in
compact form, using the operator X defined in the previous
section,

(] -1)
K_(l o/
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—BI+yK . al —gK
as is obvious, since K is a representation of the imaginary
unity i over R 2.

T_(. al +0K 491.+7.K.)

Now we have D=4; C(T) is spanned by
{1,K,, K,, K,}, where
( 0 1
~1 0. 0
K1= *® & o ¢ ¢ C.I * e . & o y
© 0 1
\ O -1 o
( 0 1
K 0 .1 0
2= . . L] . . L] L] ..Q ] . . . . y
0 -1 9
\_‘1 0 .
! * 1 0
0 ’ _
K — e o e o o 2% 4 o 8 o o o
7Y -1 o
\ 0 1.
It is immediate to see K7 = — 1, K; K; =€, K, so that

effectively C(T) = H.
One has also, in accordance with the general group theo-
retical results quoted above,

T=T,eT, T,=T.

Now we can consider the gradient property. With our
parametrization, the Haar measure is given simply by

du =58(1 —a*—B*—y* —npdda dB dy dn.

Since, in the integrals we have to compute, only class func-
tions appear, it is more convenient to perform integration
over classes using the class measure.

The conjugate classes of SU(2), in the present parametri-
zation, are labeled by the value of a. The class measure dv is,
after a simple integration in 8,7, 7,

dv = (2/7)1 —a*)da, ac[-1,1].

The determinant is a class function and is given by

det(l —zT (@) = (1 + 2> — 2za)?

(we remind the reader that T=T e I, which accounts for
the square), so that we have for 7'?, through the standard
position a@ = cos 6; ¢,y = @,
I(o)=£ 1 (1_a2)1/2
7J_1(1 + 22 — 2za)?
2 (7 sin’ @
= da
wJo (1 +2*—2zcosa)?

lJ’z” sin? @ d
= a
7l (1 +22—2zcosa)?
_ ——1§ (0~ 1) dw
(1—-
1

47ri z0)*(1 —zo~ ') o
2 2
__ 1 (0*—1) do,

4mi) (1 — z0)¥(w — 2)%w
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and now, evaluating residues, one obtains

[1\1 (142 1
N /z 21—l 17-2

= 3 2= T,
n=0 n

so that now we have one scalar at each even order, and no
scalars at odd orders.

As for I'Y, and therefore cly), recalling T= T, ® T, we
have to compute the multiplicity of T, in P, = (T®"), and
divide it by 2, as seen in the preceding discussion:

T = ZC“)Z” — i Fl’(a)
" 2 Jedet(l —zT ()
Using the same positions as before, one obtains
qo_ 12 2
2 7l (1 + 22— 2za)?
2 (7 cosasin’a
— da
mJo (1 +22—2zcosa)2

du,,.

(1 —a®)'? da

cos a sin’ @

l 27
== d
1TJ:) (1+2*—2zcos a)? @
-1 (m+w‘1)(w—w“‘)2d_w

8miJ (1 —z0)%(l —200~1H? o

—1{ (@* = D2+ 1)
87i J (1 —z0) (@ — 2)%w?

Evaluation of this with the residue formula gives, with a
short computation,

o —1\[201+2)  201+2Y
I‘"‘z”’(sm-)[ < 1—27

zZ __ mzzn+1

- 1—‘22 n=0

Therefore we have, recalling now D = 4, four indepen-
dent vectors at each odd order, and no vectors at even orders.
That is, even in this case, the gradient property is satisfied at
any order.

As for the possibility of writing the bifurcation equation
in gradient form, the same remarks as in the SO(2) case ap-
ply, with the role of the operator K played by the three opera-
tors K, K,, K.
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A combinatorial approach is developed for calculation of weight multiplicities at or near the
center of a weight diagram. The result may be used to determine the inner multiplicity of such a
weight, or to decompose the product of several representations into irreducible summands.

I. INTRODUCTION

Inner and outer multiplicities of weights in the groups
SU(N ) may be calculated by a variety of methods. For direct
product decompositions in SU(¥ ), physicists usually exploit
the similarity of the symmetric group representation theory
to that of SU(¥ ), and use direct multiplication of the Young
tableaux.! However, this rapidly becomes tedious if we wish
to reduce the product of several representations to a sum of
irreducibles. The more Lie-theoretic methods involve a dou-
ble sum over the Weyl group, or else complete knowledge of
all weights and multiplicities of the factor representations.
Even then, products of three or more representations must
be reduced pairwise.

In this paper we shall develop a method of extracting
multiplicities, both inner and outer, by combinatorial
means. We do not distinguish the product of two representa-
tions from the product of an arbitrary number. The basis of
our algorithm is the character theory of SU(XN). We make
use of the operator techniques from the theory of distribu-
tions.

Il. DEFINITIONS

We have the following expressions for inner and outer
multiplicities, respectively,>?

n—1 27
Ya (.u') = (L) o X (¢l""’¢n -1 e~ et d¢l'"d¢n —1»

27
(2.1)
Tronld ")=ﬂf"ﬂxmh- db-db,_,,  (22)
A=Tlle—¢) €= e, (2.3)
X G ) =X (€ 24)

The parameters €,,6,,...,€, are the eigenvalues of UsSU(N).
Since U is unimodular we have

n

[[e:=1 (2.5)
i=1
Therefore we choose the first n — 1 eigenvalues to be inde-
pendent and
n—1 n—1

&.=[le'=[]&: (2.6)

i=1 i=1
Since y,; and AA can be written in terms of polynomials in
quantities that are complex exponentials, it is clear that the
integrands in (2.1) and (2.2) will be a sum of complex expon-
entials. Integration will give delta functions. The only non-
zero contributions will then come from the constant term in
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the integrands. In general the characters are complicated
functions and integration difficult. Instead of integrating,
any operator, which when applied to the integrand extracts
the constant part, may be used as a substitute.

Let U = diag(€,,€5,...,€,) € SU(n) and consider a repre-
sentation with Young frame

D boxes.

(2.7)

Let X;, i = 1,2,...,n be the basis in which U has the diagonal
form above. Then a basis of U in the representation with the
mentioned Young frame is

(X, X, X, Jiy <y <o <y ). (2.8)

Then, since U: X;—€,; X, (no sum) the character is

Tr(U) = €€, €,
h<h<<ip
=a,(€€,) = X11....10...00 (U). (2.9)

The representation of U with Young frame

[T

2.10
p boxes (2.10)

has character
X(p,O,,,,,O) (U) = Tr( U) = 6,-‘ "'6,—p = hp (61,...,6,, )-

i, <H< <
(2.11)
The functions a, and 4, are symmetric functions* with the
following generators:

n 1 00 &
—_— =Y XA, (€10€p ),
il;Ix(l—ﬂX) kzo (e )

(2.12)

[[O-eX)=3 (- 1)*X *a, (€,....€, ).
i=1 k=0

The characters of arbitrary representations may be found in
terms of the @ and 4 functions by Weyls’ second formula®®

boxes

re ry o ry or, r

Jf1 boxes

£
£ (2.13)

f:l,
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X (Srrr ) =detChy _;, 1), (2.14)
X (Pt ) =det(a, _ ;).
Example:
32 21
4
3
L 1,
h h, 0O a a 0 0
v=|hs hy B =|% T N % (2.15)
h h, h a, a; a a

ag as a, a,
Define the following operators with respect to the symmetric
functions:

d d d

d=2 4142 140, % 1.,

' da, + alda2 + azdas +
(2.16)

d d d

d, =— -,
da, Y tm T

p,=Le). (2.17)
s!

The operator D, is called the Hammond operator,*® which
has the following actions on a symmetric function
D(X1 X500 X, )2 (1) transform &(x,,...,x, )
—@ (X, X, X, 1 )» (2) differentiate s times with respect
to x, . ,,and (3) divide by s! and set x,, , ; = 0. The func-
tions a,, a,,... are independent, so that by the fundamental
theorem on symmetric functions, there is a unique function
¢, s0

(X y5eX,) =& (ay5..5a,, ), G, =@, (X45005%, ). (2.18)

For certain special choices of ¢, one may deduce the follow-
ing actions:

Dshp =hp_s: D.h kb, = zhp—ihq—s+i’
i=0

spTTe

Da,=a, , Da,=0, fors>1, 2.19)

Da;-a;, =0, s>m, D.a;-~a, =a;,_,-a _,.
Furthermore by symmetry
D,.ID‘.2 wD.a. a = DjI ...D-’.ma'.l a;.

L i ) Ji

(2.20)

The Hammond operator D,,, D, --D,, will give the num-

ber of times that the monomial x7"'x7..- x," occurs in the
function ¢ when applied to ¢. Hence we replace the integrals
in (2.1) and (2.3) by Hammond operators acting on the
integrals expressed as symmetric functions®

(2.21)

where M has form (2.14) or (2.15). We now specialize to
the inner and outer multiplicities of central weights, either
the zero weight or the fundamental weights. Here SU (n) has
(n — 1) fundamental weights of the form

,,,,,

(1,1,...,1,0,...,0) with frame

P p boxes
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and character a, (€,,...,€, ). The number of occurrences of
this representation as an irreducible summand in the tensor
product A ® A 'is

D ((AA/myx4-8,), (2.22)

where x is chosen to exhaust the expression in parentheses.
Note that from (2.16) it follows that

Gy (€1y0€r) = By (Eryesn) = Ay _ (€1 (2.23)

The Weyl measure AA can also be written as a polyno-
mial in symmetric functions by recognizing its occurrence in
the theory of equations.’ First, since

A= H.(ei - €j)!

i<j
A= ﬁ(nfk - H ek,)
P<jNEED KTE)
=a" " (€€, ) (— 1M T D2A
A (2.24)
Hence the measure becomes
AR = (— 1yrin=1/2p2, 29

Since A is an alternating homogeneous function, its square is
symmetric and homogeneous. The Weyl measure is in fact,
up to a sign, the discriminant of the polynomial whose roots
are €,€,,...,€, . Let

flx)= I_Il"‘ —€), (2.26)
S(€) = (6, —&)(€,—¢€,),
(&) = (6 —¢€)(e;,—€,),
: (2.27)

f,(en) = (€n _61)"'(671 _En—l) H

[1 /(€)= (= D= 172(e, — &)%me, _, —€,)

i=1
=AA=R(f.f), (2.28)
where R (f, f')is Sylvesters’ form of the discriminant’ of f (x).
Examples:
fx)=x—€)x —€)=ax*+ax+ as
&% a4 a
R(fSf)=|28, a, O
0 2a, a,
fE)=x—€)ix — &)x —€)

=4a,— a*, (2.29)

=ap’ +ax* +ax +a,,
R(£S)
aQ 4, a a O
0 ag a, a, a;
=13a, 2a, ao 0 O
0 3a, 2a, a, O
0 0 3a, 2a, a,
=274% + 403 — dld} + 4aja, — 18a,a,a;.
(2.30)

To summarize
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AA=R(£ 1),
for SU(n) with
FO=[X-e)=Tax
i=1 i=0

An application is now in order. We solve the following prob-
lem: How many spin-0 representations occur as irreducible
summands in the tensor product of N spin-i particle repre-
sentations? For SU(2) the previous analysis shows

AA/2! = 2a, — }a?. (2.31)
Hence the number in question is
D3} )2 41(28, — at)at, (2.32)

which is clearly zero if N'is odd. Explicit evaluation using the
facts that ¢, = €, + €,, a, = €€, shows
D% /2 41(28,8) — 4oy *?)
{0, N odd,

202 —ERE D,
A trivial case that does not require the operator approach is
the direct sum decomposition of the tensor product of m
defining fundamental representations of SU (7). The coeffi-
cient of each irreducible summand is clearly just the number

of standard tableaux associated with the Young frame that
labels the representation’

(e D)™
Sit ot fp=m

= DI O STy ){

Si3 223 fa

N even. (2.33)

m!n;l<j(fl _fj +j_i)]
m_,(fi+n—-i
(2.34)
I'he number of trivial representations contained in the direct
sum decomposition of (® [} in SU(N) is
Nm)ITI7Zd(k )
(VP 239
M7 (N + k)

Iil. ITERATIVE SOLUTIONS AND MULTIPLICITY
FORMULAS

Decompose a2, into monomial symmetric functions of
the form

P19= 2 X2X, X
= ¥  xexX X, .

(3.1)
htiyh b, |

We note first of all that the only monomial symmetric func-
tions that occur in the decomposition of a2, are those of the
form

1]12]2...Pjp, (32)

with j, + 2j, + -+ + p- j, = mp by (2.19) and (2.20). Then in
(3.1) we must have 2m = 2p + ¢. Starting with m = 1 and
building up the series using

D%a5al = D% _,af (3.3)
together with the multinomial theorem, the result is
D2 a5al = q'/(q/2)g/2). (3.4)

From this it is deduced that coefficients of the form

D ahas:

are sufficient to generate the entire monomial decomposition
of a’,. This is due to the fact that

3
D},avay = DYDYa), = DYDEDLG,

=D}, A, 3.5
D3abap = D?, (P )(22 Jo e mage =
m+m=m ml m;

=D2 < (pl)( 2 )ap,+m—2m,ap,—m+m,
m 2 m/\m —m, 1 2

m, =0

_ m ('l:’l)( P2 \ (p, +m—2m,)! !
mZo\mJ\m —m\) {(p, + m)/2 — m)IP
(3.6)
Introduce the notation
2y (l)q] (1)"]
2 q= —
PrAA=1 e 1 Lom)
2 (1)
Diagar =27 (), 37
3 r 2 P q
it =[O @ )
and one obtains the recursion formula
(1)”' (2)P2]= z(pl)( D2 )[(1)p,+m—2m.}
(m)? my =0\ /\m —m, (m)? '
(3.8)

Consider now D} a5'a%:a%, a term that occurs in the
problem for SU(4):

D:"all’lagzagz = D::n 2 (,’;'l )(pz )(p3 )aql —m +"‘zag1—mz+ maaga —my
m+m+my=m 1

My/ \M;,

S 0 S
my/\my/ \m;

i

Special cases occur when a p; is zero, an example being

R el R
(3.10)

It should be noted that in (3.9) only a few terms in general
will contribute, since for x > y the binomial coefficient (%) is
zero. It is also clear that the last three formulas in the appen-
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3.9

I o
dix are easy consequences of (3.9). The process of (3.9) can be
iterated to obtain the monomial decomposition coefficients
for a symmetric function a,, raised to any power p in terms
of the coefficients for p — 1, p — 2,...,2,1. It is worth noting
that for SU(3), the decomposition of the product of p quark
and p antiquark representations to singlets involves the coef-
ficient
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TABLE I. Values of functions 7, S, I.

P T(p) S T, ©)
0 1 6 1
1 3 36 1
2 15 240 2
3 93 1710 6
4 639 12726 23
5 4 653 97 608 103
6 35169 765 288 513
7 272 835 . .

8 2157 759

S -z3006 0 )
%% kgt - kp'f'q)!(p “k—q)

which is the sum of the squares of the trinomial coefficients.
Also in SU(2), we note that

5-0)- 20

Using (2.30), (3.6), and (3.11), the number of irreducible sing-
lets contained as summands in the tensor product of p quark
and p antiquark representations of SU(3) is

Liooge(0=3T0)—{Tl +2) = 3T +1)+5p)

(3.11)

(3.12)

=T, (0), (3.13)
where
-5 (-7
and (3.14)
so= 506G )
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A few of these numbers are tabulated in Table I.

Arbitrary tensor products may be decomposed into irre-
ducible summands by substituting their character determi-
nants (2.14) or (2.15) in terms of symmetric functions to-
gether with the symmetric form of AA into (2.22). This
method has the advantage over Klimyk’s and Steinberg’s
formulas’ in that products of two or more representations
may be reduced without having to reduce the factors pair-
wise. The Weyl group of SU(n) is of order n! so that Stein-
berg’s formula involves a sum over (a!)? terms, each of
which involves evaluation of a partition function. Klimyk’s
formula requires complete knowledge of all weights, multi-
plicities and their stabilizers in the Weyl group. Our present
method requires much less information and calculation.

APPENDIX: COMBINATORIAL FORMULAS IN TERMS
OF HAMMOND OPERATORS

Multinomial theorem
i i, =m m!
Z (F M)t (0 !
in symmetric function notation
m_ m!
i
D,, Dm2 mDm"a;"

=ml/m,!mylem,),

ST
115"22...6’:'

(61 + -+ en)m =

(A Yrefd ) eee

my+--+m, =m,
Diay =m\/plY, pg=m,
D,,"'aqa‘l’ = (T)(P!)/{(n — 1)!}q(n!)'"_q, nm=gq +p.
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A simple construction of twist-eating solutions

Pierre van Baal
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A simple general construction of all solutions to the set of equations [(),,, , ] = exp (2min,,,/
N)I, where ,eSU(N) or U(N) and u, v =1, 2, ..., 2g, is given.

I. REDUCTION TO A CANONICAL FORM

Twisted guage fields on the hypertorus, both in the con-
tinuum' and on the lattice,? posed the interesting mathemat-
ical problem of finding matrices 2, in SU(¥N) or U(N)
(called twist-eating solutions), such that

[2.0,]1=0,00;'0"

= exp (2min,,/N)I. (D)
Here 7 is called the twist tensor; it is skew symmetric with
integer entries mod N. The index & runs from 1 up to 2g (the
dimension of space-time; odd dimensions need not be con-
sidered separately). For details see Refs. 3 and 4, where the
full solution of this problem for g<2 was found (see also Ref.
5).

By means of a Sl (2g, Z) transformation X, we can al-
ways transform 7 to its standard® form n°:

)] e

where e, |e,|- - |e, and n = ‘Xn* X. (For integer p and g the
symbol plg means that p divides ¢.) If [Q,,
Q, ] = exp (2min,,/N)1, then Eq. (1) is solved by

Q, = [ 3)

The standard form »° is not unique since we can add a multi-
pleof N toeach n,,. However, transformation (3) is inverti-
ble*; the specific choice of n* is therefore irrelevant. To be
precise,

8, =z,J[0 7,

with Z,, an element of the center of SU(XN), depending only
on n and X.

Define
fi=ged(e;,N), N,=N,,;=N/f, j=12,.8.

(4)

(Greek indices will always run from 1 up to 2g and Latin
indices from 1 up to g; gcd = greatest common divisor.)
From the commutation relations it follows that

[ﬁf",ﬁg”] = [ﬁj’ﬂ:ifl =1
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Hence, the ﬁf"eSU(N ) or U(N) commute, so they can be
simultaneously diagonalized. Let AcSU(N) be such that the

AN 4 —
W, = AQ4 ©)

arediagonal matrices. As [ W, ,Aﬂ“A —11 =TI forally, vwe
can choose diagonal matrices A,, such that

AM =W, and [A,, 42,4 7). (6)
If we define
0, =A'A0,47, )

then the Q0;, satisfy
[, Q] =exp @minl,/N)I, (Q)™=1  (8)

Next we will further simplify these commutation relations.
Recall that ged (e;/ f;, N;) = 1; hence there exist inte-
gers M ; such that

M,(e,/f)=1 (mod N,). (9)
Define
Uu=@™, U, ,=9,.,, (10)

This transformation can also be inverted: @, = U777,
where we used that (Q’,)N’=I. As [U;, U, ;]
= [(@)™, Q.. ;] =exp(2mie,M;/N)I and e;M,/
N=M;(e;/f;)/N; =N ;' (modZ), we see that the U,
satisfy the commutation relations (1) with a twist tensor m
in standard form;

h
(11)

~fe
(Note that f,|f,| - | f, and moreover each f; divides
N.) In particular,
[(UpUg, ;]=exp2miN Y, (U)™=1  (12)
Hence to find all solutions to Eq. (1) it suffices to determine
all solutions to Eq. (12).

Il. THE GENERAL SOLUTION FOR THE CANONICAL
FORM

Theorem: There exist matrices U, eGl(N) satisfying
Eq. (12) if and only if N\ N, - -N, divides N, where N, = N /

fi
Proof: Note that the subgroup X of G1(V) generated by
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U, is finite. Moreover the U (1 < j < g) generate an Abelian
subgroup, in particular there is a basis of CV consisting of
simultaneous eigenvectors for all U; (1< j < g). Let v be such
a basis vector and assume U,v = exp (2mia /N ;Jv. Then
U; (U, jv)=exp (2mila; + 1)/N;)U, , ;v, hence the vec-
tors Kv span a subspace ¥ of dimension N, N, - -N, . Itis easy
to see that K acts irreducibly on V. Proceeding with this
method in the K-invariant complementary subspace of V' we
see that CV is a direct sum of k K-invariant subspaces, each
of dimension N\N,: - -N,.So N = kN,N,- - -N,.

To prove the converse, let ¥ be a vector space of dimen-
sion N\N,. - -N, withabasise(b,, b,,... , b, ), withb ;,€Z/N ;Z.
Define linear maps U ,: V—V by

U'e(byby, ... ,b,) = exp (2mib,/N Je(by,by, ... ,b,),
UL, jelby b s oo sby) = elbyy b, + 1, b, ).

J

(13)

It is easy to check that the U, satisfy Eq. (12). Now assume
N =kNN, - -N,, then C¥ =V* and define U,eGI(N) by
the block diagonal sum of & copies of U,. Then obviously
the U, also satisfy Eq. (12).

We point out that the finite group K generated by the U,
is a Heisenberg group. All irreducible representations were
constructed in Ref. 6. Solutions of Eq. (12) form representa-
tions p of K, which, when restricted to the center
C(K) (={AI|A™ =1}~Z, ) of K, is given by p(c) =,
VceC(K). This implies that each irreducible component of p
has to be the unique so-called Schrodinger representation®
[Eq. (13)1. Hence, p is unique up to a similarity transforma-
tion.

More directly, following closely the above proof of the
theorem, it is easily seen that for k = 1, e(b,, b,, ..., b, ) and
U ;ﬁ;al)v are to be identified. Similar statements for k> 1
reproduce the block diagonal form, and two solutions to Eq.
(12) have to be equivalent, ie., 34eSU(N), U

=AU P4 ™", Yu. We will conclude this note with a few
remarks.

The U, are unitary matrices. The explicit matrices for
Eq. (13) are given by

Ui=1y 8 -0Qy 8- 81y,

Ugrj=1y8---8Py 8- 0ly, (14a)
with
Qn — diag(1,€2ﬂi/", ™. ,eZﬂi(nv 1)/n),
0 1
P, = 0 N (14b)
1 V)

This establishes the relation with the previous construc-
tions.?>-

A solution ,, to the original Eq. (1) is clearly specified
by AeSU(N) and A,,, a diagonal unitary matrix [see Egs.
(5) and (6) ], together with U, [see Eqs. (13) and (14)].
Equation (6) implies that A, is a multiple of the identity in
each block of U,: A, = diag (4 "L, ... A PI), with I the
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N,N,. - -N,-dimensional identity matrix. Hence, the pair (4,
A,,) forms the group G = SU(N) XU(1)*. On the other
hand, the uniqueness of solutions to Eq. (12) guarantees
that for each {A, } satisfying Al for all y, there exists an (in
general not unique) AeSU(X) such that for all y,

AU, =A4U,A7", Aj=1 (15)
[This can be explicitly verified for> Eq. (14).] Equation
(15) specifies a subgroup H of G. The solutions to Eq. (1)
are [for (), €U(N)] in 1-1 corresponding with G /H. These
solutions are described by 2gk inequivalent continuous pa-
rameters [2g(k — 1) for (1, eSU(N)]. A case of special in-
terest is k = 1 for 2, eSU(XN), where the solution space for
Eq. (1) modulo equivalence is discrete and isomorphic to
[5_,(Zy/Zy )? with N>€~ D elements.

Suppose N = k I1¢_ | N, define

m; = —e;/gcd(e;,N) = — (e, f;). (16)

Obviously both n,, and N-Pf(n/N) are multiples of k,
sincee, = —m,k Il;,,N; and N-Pf (n/N) = —k II,m,.
Consequently N-Pf (n/N)€Z is a necessary condition for
existence of a solution to Eq. (1). Next observe that gcd (m;,
N)=1and N,|N,_,|---|N,. Hence ged(m;, N;) =1,
for all j>i, so
£
ged(n,, ,N-Pf(n/N),N)=k gcd(HN,., ﬁm,-). (17)
=2 i=2

Given a solution, it is clearly unique up to a similarity trans-
formation and Z, factors if and only if k= 1. Hence
ged (n,,, N-Pf(n/N), N)=1is a sufficient condition for
uniqueness. For g = 2 it is also necessary, as can be seen from
Eq. (17) and ged(m,, N,) = 1. Furthermore, in the case
g=2,NPf(n/N)= —ee,/N. Wecan write e, =m, [,
and N= f,c with ged(m,,c) =1. Hence N-Pf(n/N)
= —mm,f,/ceZ implies that f, is a multiple of c¢. So
N/N\N,= f,f./N = f,/ceZ. Consequently for g =2,
N-Pf (n/N)€LZ is also sufficient for existence of solutions to
Eq. (1).

That the above criteria [i.e., N-Pf (n/N) is sufficient
for existence and ged(n,,, , N-Pf (n/N), N) = 1 is necessary
for uniqueness] cannot be extended beyond g =2 can be
seen from the following two examples constructed by Coste:
(i) g=3, N=2235 e, =¢,=3% and e, =2*3* (hence
N,=N,=2%3%and N, = 3?),so N-Pf (n/N) = e e,e;/N?
= 1 but N;N,N; = 4N does not divide N, and no solution
exists; and (ii) g=3, N=2?7%, ¢,=e,=2-3.7% and
e;=2%.3.7* (hence N,=N,=2-7 and N; =T7), so ged
(n,.,, NPf(n/N), N)=2, but N\N,N; = N and the solu-
tion is unique.

Note added in proof: After completion of this work, we
received a preprint by Lebedev and Polikarpov.® Their re-
sults coincide with those of Ref. 6 and this paper.
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Differentiation of retarded integrals and the divergence theorem for retarded

functions with discontinuities
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Theorems expressing the time derivatives of retarded volume and surface integrals are presented
as well as the Gauss divergence theorem for retarded functions with discontinuities. These
theorems greatly facilitate the analysis of gravitational radiation from the motion of disjoint
matter distributions in general relativity and could find useful application in other branches of

physics.

I. INTRODUCTION

In the course of our research on the two-body problem
in general relativity,'~> which is concerned with the calcula-
tion of gravitational radiation emitted when two disjoint
gravitationally interacting bodies accelerate in free-fall, cer-
tain interesting mathematical problems arose. In order to
deduce the field and hence the radiation, it was necessary to
consider time derivatives of the retarded volume integrals of
functions with discontinuities as well as to employ the Gauss
divergence theorem with such retarded functions. We are
using the word “retarded” in the usual sense that at the field-
pointr at time 7, contributions from source-points 1’ are to be
evaluated at time ¢ — |r — r'|/c to allow for the propagation
of signals with the speed of light.*

After developing methods to handle such integrals, we
realized that the mathematical problems are of more general
interest in that the wave equation and its causal retarded
solutions, as well as the application to disjoint sources with
discontinuities, are common to a variety of areas in physics.
Accordingly, it was deemed desirable to present the follow-
ing results, which we have found invaluable in our treatment
and understanding of the two-body problem, as a separate
study accessible to researchers in all areas of mathematical
and theoretical physics. For completeness, we also include a
treatment of time derivatives of surface integrals.

Consider a time-independent volume ¥, bounded by a
surface S, in which scalar and vector functions f (r,t) and
F(r,t) are defined. Both f and F are continuous everywhere
except on a closed time-dependent surface D(¢) within V.
The (time-dependent) volume contained in the interior/ex-
terior of D is denoted ¥V, (¢)/V,, (¢); in these regions, f is
denoted £,/ f... The velocity of an element of Disu(z). The
theorems considered below divide into two classes: (A)
theorems for volume integrals defined on a time slice
t = const, and (B) theorems for retarded integrals, which
we develop in turn.

Ii. TIME DERIVATIVES OF VOLUME INTEGRALS

(A) We now demonstrate the following:

d 51?..) f{;
L foav=| (== uf, (1
dt J;inf‘“ J;( ot v+ Dds o (D)

d r?fu) fﬁ
£ = hi 3 /] g ‘uf,.
af pear=] )= fasun @
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Equation (1) follows from the assertion that V,, is ¢ depen-
dent. Suppressing spatial coordinates in the integrands, we
have

d

2 faav

dt fVi,,f
= i {fVin(H-&t) fin(t+8t)dV_-rVin(t) fin (t)dV}
= a0 5t '

(3)

Clearly, the right side of (3) has contributions from the fol-
lowing two spatial regions: (i) the region V., cOompris-
ing the intersection ¥, (¢ + 8t) n V,, (¢) [the contribution
to (3) from this region in the limit is §,_,, (3 f,/d1)dV ],
and (ii) the region V'* comprising points lying inside
Vi (t + 6t) and ¥, (¢) but outside V,e04p, i€,

V‘E(Vin (t) v Vvin (t + 5t)) - Voverlup' (4)

In the limit as §¢—0, the contribution to (3) from this region
takes the form

ids-ufi,,.

Addition of these contributions to (3) yields Eq. (1).
Equation (2) may be proved in a similar manner; the
minus sign on the right side of (2) arising because ds points
from ¥V to V,.
Finally, addition of (1) and (2) yields the useful rela-
tion

s [(Porforen
where
fI=fo— fa (6)

on D. Note thatin (5), (df /d¢) isdefined in ¥ * but not on D
(see Ref. 5).

(B) We now discuss theorems corresponding to (1),
(2), and (5) for retarded integrals.

First, it is important to develop a consistent notation for
retarded integrals. The archetypical retarded integral corre-
sponding to the integral on the left side of (1) is of the form

av'fi. (r', t—R), (7N

[Vin]

¢ ( r,t ) =
where
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R=r-r. (8)

In (7), the region [ ¥}, ] of integration is the intersection of
the interior world tube INT, which at the time ¢ defines
V.. (2), with the past light cone LC(#) from the field point r
at time ¢. More precisely, [ V;, ] is designated [V, Jrc(y:

[¥ia Jrcwy = INTNLC(@). (9
In the following calculations, the prime is henceforth
dropped from d¥V’ in the integrand of (7) and the retarded
integrand is denoted with square brackets [ f, ].

We now show that the retarded analogs of (1), (2), and
(5) are, respectively,

lg =[G g, e 5]

(10)

al = G- g, e %]

(11)
& [ [ [ 2o oo 3]

where square brackets in the integrands indicate retardation
to times 7 — R as in (7); square brackets on ¥V, and D indi-
cate intersection with LC(#) as defined in (9);

W=1—u-R, R=R/R; (13)

and f| in (12) is defined in (6). Note that partial-t deriva-
tives appear in (10)-(12) because retarded integrals are
functions of the field-point coordinates r.

To prove (10), we again start from first principles. The
left side of (10) is, from (7),

@_ = lim [ ¢(rat + 5‘) —_ ¢(r’t) ] .
at 510 ot

As with (3), the right side of (14) [with (7)] has contribu-

tions from two spatial regions. In this case, the regions, illus-

trated in Fig. 1, are® the following. (i) The region [ ¥,yenap ]
is defined by

(12)

(14)

CLOSED SURFACE
O] et

CLOSED SURFACE
(o) cen

FIG. 1. Region of integration for the retarded integrals.
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[ Vovertap 1=[Vin Jrctr 480 N [Vin Jrcw -
The contribution to (14) from this region in the limit is
clearly

af;
o, v
[Via)Lco ot

which is the first integral on the right side of (10).

(ii) The region { ¥ *] is comprised of points lying inside
[¥inlicie+sn and [Vin]ic but outside [Voensp]. The
contribution to (14) from [ ¥ *] in the limit as t—0 is

g%

where W, defined in (13), arises because the integral is eval-
uated on the past light cone from the field point at r.
Addition of the contributions from (i) and (ii) reduces
(14) with (7) to the form of (10).
Equation (11) is proven in a similar manner, and addi-
tion of (10) and (11) yields (12).

lll. GAUSS’S THEOREM

(A) Gauss’s theorem for the volume integral
Sv (V < F)dV, defined on the slice # = const, is clearly

f (V-F)dV= ﬁds-F+ fds-F|,
| 4 S D

where F| is the vector discontinuity corresponding to (6):
F|=F, —F,, (16)
on D(?).

(B) A simple calculation yields Gauss’s theorem for the
retarded integral §, [V - F]dV:
J [V-FldV = §ds' [F] + § ds- [F|]
V S D
_ f [i (?z-F)] av,
viot

where the vertical slash indicates discontinuities as in (16).

(15)

(17

IV. TIME DERIVATIVES OF SURFACE INTEGRALS

This section considers time derivaties of D-surface inte-
grals of vector discontinuities of F, defined in (16).

(A) A straightforward series of calculations using (15)
and (5) yields

i§ds-p|= ffi as-9F| | fﬁds-u{(v-F)l}, (18)
dt Jp D at D

where the vertical slash again defines discontinuities as in
(16) and (6).

(B) The retarded analog of (18) is found from (17)
with (12):

59 0= 00 (5]

ds- u(V~F)|]
+ ] [——-W

(D]

w(3/3t) (R - F)| ]

+ ds~[
(D) W

(19)
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A smooth one-dimensional system of N potential barriers of arbitrary shapes (unequal or equal)
is considered. A general necessary condition for complete transparency is obtained that can be
understood as a constraint on the reflection coefficients pertaining to the single barriers of the
system. A maximum transmission problem of a general kind is solved and the solution is used to
give a physical interpretation of the necessary condition. The sub- and superbarrier cases are
treated in a unified way. The exact final formulas can readily be converted into accurate
approximate ones by insertion of available phase-integral expressions (of an arbitrary order) for
certain characteristic quantities appearing in the formulas.

I. INTRODUCTION
We study the one-dimensional Schrédinger equation
% 2
il 4 =0, i
s Q% (1)
where
Q%(z) = 2m/#)E ~ V(2)], (2)

z being a complex variable (the real values of which will be
denoted by x) and E being the energy of a particle with mass
m moving in the potential field ¥ (x) that, having N humps of
various shapes, forms a general system of N potential bar-
riers. We assume that Q %(z) is an analytical function of z in
the complex plane.

In a previous paper’ (to be referred to as I), the transmis-
sion coefficient pertaining to the above-mentioned system of
N (> 1) potential barriers of general shapes (unequal or equal)
is expressed exactly, by means of the phase-integral method
of N. Froman and P. O. Froman, in terms of quantities char-
acterizing the separate barriers and wells of the system. The
present article is based on the results in I, and the reader is
referred to that paper for the notation and general back-
ground and also for illustrative figures and for further refer-
ences to relevant papers. Some key facts about the phase-
integral method are given in Appendix A of 1.

In two forthcoming papers,”* also based on the results
in I, we shall treat in the first one transmission through a
system of % identical potential barriers of a general shape

and, in the second paper, bound states of a general potential
well containing N humps of arbitrary shapes.

The problem to be treated in the present paper can be
regarded as a generalization of a corresponding problem for
a system of rectangular barriers. The latter problem, being
easier to formulate and visualize, is therefore well suited as
an introduction to our real work. So let us start by consider-
ing the rectangular system of N barriers shown in Fig. 1,

which is defined by
V., for xq+s5,<x<xq+s; +a,,
0, elsewhere on the x axis,

Vix)= [

where

(3)

i—1

5; = 2 (@, +b), 5,=0 1i=12,..,N.
k=1

Let the energy E of the incident particle take some fixed
value in the discussion below. The reflection coefficients
R,(E) for the separate barriers (i = 1,2,...,N) as well as the
transmission coefficient T'(E ) for the whole barrier system
then naturally become fixed. We ask the following question.
How can we alter the form of the barrier system without
changing the reflection coefficients R,(E) of the separate
barriers? As we realize, this can be done by altering, quite
arbitrarily and independently, the distances b, (i = 1,2,...,N)
between the separate barriers. In addition, we can continu-
ously change the form of each separate barrier B (i), within
certain limits, by letting a change of the height ¥, be accom-

B(1) B(2) B(N-1) B(N)
Vix)
—— Q4 —>
— Ay FIG. 1. A system of N rectangular barriers. The
width of the barrier B (i)is a,, its height is ¥, and
o Q> the distance to the next barrier to the right is b,;
e L E is the energy of the incident particle; and the
— quantity s, is defined by 5, = 247} (a. + b,)
< Ay ands, = 0.
f— bl —] r— bN-I_’
— ¥ = X

Xo X0y X3Sy X3Sy X3Syt 0y
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panied by the proper change of the width a, so as to keep
R,(E) constant during the modification. We may regard all
the different barrier systems, which can be obtained by alter-
ing the parameters b,, a;, and V; (i = 1,2,...) in the way de-
scribed above, as members of a family of barrier systems. The
transmission coefficient 7'(E) is certainly not the same for
every member of this family, however, but depends strongly
on the parameters b,, a;, and V,. We now ask two questions.
What is the maximum value of T'(E) that can be attained
through alterations in all possible ways of the form of the
given rectangular barrier system, limited only by the restric-
tion that the reflection coeflicients R;(E ) of the separate bar-
riers shall be unchanged by the modifications and that the
rectangular property shall be preserved. The reader is re-
minded that £ is held fixed. What condition must be fulfilled
by the original rectangular barrier system [fulfilled by the
reflection coefficients R, (E ) of the separate barriers] in order
that the maximum value of 7 (E ) shall be equal to unity? An
answer to the latter question would give a necessary condi-
tion for complete transparency.

We may pose similar questions with respect to a smooth
barrier system. The following extreme case will serve as an
introductory example. We consider the potential

N —(x —a)f
Y= 3 Cemp| E “
where a;, b;, and C; are real constants. The distances
la; — a;|, i# j, are assumed to be very large. The curve of
V(x) then shows N barrier humps at very large distances
from each other. We realize that by changing moderately the
distances |a;, — a, |, i j, and thereby altering the form of the
barrier system, we can make the transmission coefficient
T (E )for the barrier system change considerably, while at the
same time the reflection coefficients pertaining to the com-
ponent barriers remain essentially constant. With regard to
these barrier systems, obtained by varying the parameters g,
({=1,...N), we could ask the above-mentioned questions
about maximum transmission and possible transparency.

However, our aim is to consider general smooth barrier
systems containing barrier humps at arbitrary (not necessar-
ily large) distances from each other. For systems of that kind
we want to formulate a natural generalization of the earlier
presented problem for rectangular barrier systems.

For this purpose we shall first consider a potential ¥ (x)
having just one single hump. Let us take

V(x;C,a) = C exp[ — x*/a?], (5)

where C and q are real constants. The potential curve is pic-
tured in Fig. 2. Again we let the energy E of the incident
particle be fixed in the discussion below. The points ¢, and ¢,
are the classical turning points where ¥ (x) = E, and x, and
X, are points to the left and to the right, respectively, of the
turning points. Let us apply the results in I to the potential
(5), making some comments without going into detail.
From (44a) and (28) in I, putting N = 1, we find for the
reflection coefficient R (E ) the following exact expression:

R(E)=(B/A,). (6)

In (6), 4, and B, stand for the limiting values, as x;, - — «
and x, — + o, of the quantities A, and B, which are gener-
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\(x;C,a)

FIG. 2. Subbarrier transmission through the potential barrier V(x;C,a)
= C exp[ — x*/a®]. Here E is the energy of the incident particle. The points
t, and ¢, are the classical turning points where ¥ (x} = E, and x, and x, are
points to the left and to the right, respectively, of the turning points. For
further details about the phase-integral method the reader is referred to
Figs. 1(a), 1{b), 2(a)}-2(d), and 3 in Ref. 1.

ally defined by (14a) and (14b) in I as follows:
Ay = [Fplx,%3)], (7a)
B, = |Fy(x1,%,) . (7b)

The elements of the matrix F(x,,x,) are given by the conver-
gent series (3.22a)—(3.22d) in Ref. 4. Formulas (B1) and (B2)
in I give useful phase-integral expressions for 4, and B,,
consisting of an approximate plus a correction part. We ob-
tain from (6) above and (BS) in I the exact formula

o ﬁ); 1 2K
T (B. [+ exp( — 2K,)]

X(1 + exp[ — Ky — §(|K,| + K,)10( u,)).
(8)

The quantities 4, and i, exp[}(|K,| — K,) ] are assumed to
be small compared to unity. The symbol O( ¢,) denotes a
quantity at most of the order of magnitude x,. From (8) we
conclude that (B,/A4,)? is practically insensitive to changes
in the positions of x, and x,, if these points are situated far
enough from the turning points ¢, and ¢,. In fact, formula (8)
with neglect of the correction term gives the same approxi-
mate value of R (£) in the case when x, and x, are situated at
finite distances from the barrier top as in the limiting case
when x;, - — « and x, —» + «. The difference between
the two cases is only seen in the different values of the per-
taining correction terms.

In the subbarrier case illustrated in Fig. 2, the first-order
phase-integral expression for K is given by

(2 m ) 1/2
#
From (8) and (9) we clearly see how R (E) is affected by a
variation of the form of ¥ (x). If the value of C in {5) is in-
creased, the potential curve in Fig. 2 is raised, which means
that K ,(E ) in (9) increases. But by decreasing appropriately
the parameter a in (5) at the same time, we can arrange that
K (E ) becomes unaltered by the variation of V' {x). However,
the changes of C and a also affect the correction term in the
exact expression (8) for the reflection coefficient R (£'). This
correction term is much smaller than the term

K, = f (V(x) — E)'' dx. (9)
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B(1) B(2)

Vo-E

B(N)

FIG. 3. A general smooth system

of N potential barriers. For

further details concerning the

phase-integral method the reader

« is referred to the figures in Ref. 1.
N+

./‘

[1 4+ exp( —2K,)]. One realizes that it is possible, by
means of a final small adjustment of the parameter a, to
change the value of the dominant term [1 + exp( — 2K)]
precisely enough to compensate for the variation of the cor-
rection term, thus keeping R(E) unaltered. Making these
connected changes of C and g in the potential (5), we obtain

a potential V(x;C,a) that has the same reflection coefficient
R(E) as the original potential (5), for the fixed value E of
the energy of the incident particle. The considerations above
show the possibility of changing the form of the given poten-
tial ¥(x) in (5) in such a way that the value of R (E), for the
fixed E, is preserved during the alteration. Also, in the case
when x, and x, take finite values, similar arguments can be
used to show the possibility of altering the form of the poten-
tial ¥(x) in such a way that the quantity (B,/4,)?, where x,
and x, take finite values, is conserved during the alterations.
The use of higher-order phase-integral expressions, instead
of the first-order ones, introduces certain modifications of
- the quantities K, and g, in (8), but the general reasoning
above remains valid.

The reflection coefficient R (E ) [see (6)] is a measure of
that obstacle to an incident particle of energy E that is repre-
sented by the barrier. In this sense R (E ) is a measure of the
size of the barrier relative to an incident particle of energy E.
Bearing this in mind, we shall call the quantity

(B,/4,) (10)

the size of the barrier B (n), relative to an incident particle of
energy E, also when the barrier B (n) is part of a multibarrier
system and its end points x,, and x,, _ , assume finite values
(cf. Fig. 3).

We now proceed to consider arbitrary smooth systems
of N potential barriers of the kind shown in Fig. 3. The bar-
rier B (n) is by definition that part of the potential ¥ (x) that is
situated between x,, and x,, , , . Previous considerations indi-
cate that the sizes of the separate barriers, i.e., (B, /4, ) for
n=1,2,..,N, are those quantities pertaining to a smooth
barrier system that naturally correspond to the reflectivities
of the separate barriers belonging to a rectangular barrier
system.

Here we are interested in altering the form of the poten-
tial ¥(x), i.e., altering the “distances” between the single
barrier humps and at the same time varying the “heights”
and the “widths” of the humps, in all possible ways limited
only by the restriction that the sizes (B, /A4, ) of the sepa-
rate barriers, relative to some fixed energy E of the incident
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Xy, /\ Xn
3 t\/ts /\/tm_, A

.;x
—

particle, shall be unchanged by the variations. We shall re-
frain from trying to give a formal mathematical proof of the
existence of such variations of the potential ¥(x), but shall
simply assume the existence and refer to the previous discus-
sion in support of the plausibility of this assumption.

Exploiting the final formulas (43a) and (43b) in I for the
transmission coefficient, we shall in the present paper derive
an exact expression for that maximum value of the transmis-
sion coefficient T'(E ), pertaining to a given system of N poten-
tial barriers of arbitrary shapes (unequal or equal), that can
be obtained by varying, at some fixed energy E of the inci-
dent particle, the shape of the potential ¥ (x) in all possible
ways consistent with the requirement that the sizes of the
separate barriers (relative to that particular E) remain un-
changed. The multibarrier potential ¥ (x) involved in this
maximum problem is thus specified only to the extent that
the sizes of the NV single barriers (relative to the particular E)
have given constant values, but is otherwise freely deforma-
ble.

In the treatment we shall repeatedly use the inequality
{B7) in Appendix B of 1, i.e.,

A,>B,>0, n=12,..N, (11)
which follows from the assumption that the absolute value of
the error term in (B2) of I is less than unity. This is an as-
sumption concerning the smallness of the quantity u,,, de-
fined by (B6) in 1.

From the formula for maximum transmission, we shall
then immediately obtain a necessary condition for total
transmission through a general system of N potential bar-
riers, Gy(E )<0, which is a constraint on the sizes of the
single barriers. As further explained in Appendix A, this
condition can be understood as requiring the reflection coef-
ficient for the biggest barrier in the system to be smaller than
or equal to a certain maximum reflection coefficient pertain-
ing to the rest of the barriers in the system.

In Appendix B we shall give relations between charac-
teristic quantities associated with two single barriers that are
mirror images of each other.

The final exact formulas can be converted readily into
accurate approximate ones, suitable for evaluation, by inser-
tion of available phase-integral expressions (of an arbitrary
order) for certain characteristic quantities appearing in the
formulas. These phase-integral expressions together with
rigorous error estimates are listed in Appendix B of 1.
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We shall proceed as follows. We consider all those N
barrier systems that, for a particular energy E of the incident
particle, are characterized by the same given set of values of
(B, (E)/A, (E)) for n = 1,2,...,N, but that differ from each
other as regards the values of S8, (E) forn =1,2,...,.N — 1.
The quantities 4, B,, and 3, are defined by Eqs. (18a),
(18b), (29a), and (29b) in I. For those systems and this
energy E, we shall determine the maximum possible value of
the transmission coefficient. This will be achieved technical-
ly by calculating the minima of the quantities
[Py (xy,x, )| and |Py,(x,x, , )|, which appear in formu-
las (43a) and (43b) in I for the transmission coefficient,
considering A4, and B, (n = 1,2,...,N) tobe constants and 3,
(n=1,2,..,N — 1) to be independent variables. As a pre-
liminary, we shall in Sec. II introduce some useful quantities
and in Sec. III prove a few assertions.

Ii. DEFINITIONS

For a general system of N (3>1) potential barriers, we
shall below define certain quantities, which will enter into
the final formulas (57)-(60) for extreme transmission or re-
flection, and which will also be used in Secs. IIl and IV in the
derivation of these formulas. Although seemingly uncalled
for at the moment, these quantities can hardly be avoided.

We define, for i = 1,2,...,n and n<N,

1 (A4, +B;, >
C.()=— A, — B
n (i) 2 (Ai_Bi kI=Il( k )
A —B =
—— - A, + B ) 12
4 7B, k];[l( x + By) (12)

where 4, and B, are defined by (18a) and (18b)in I.
Letting B,,/A,, be a quantity in the sequence B,/4,,
B,,/A,,..., B, /A, satisfying the conditions

B, /A, >B,/A,, fork=12,.,n, (13)
we further define
1 (4, +B, p
G,=T,m=—"2"2T1] 4, —B
=L = 5 (525 1T -0
A, —B n
_Om T Pm 4, + B ) 14
4 1B, k];[l( k %) (14)
1({4,+8B, &
S =—|——m— (4, — B
n 2(Am_Bm kl;Il(k k)
A_—B n
m m A +B )' 15
+—Am+Bm kl;[}( k %) (15)
We also define
P2 =(P,)*=|[ (42 —B2). (16)
k=1

From (16) above and (20} in I, it follows that

P2 =exp(— 221() (17)

v=1
From (14)—16) it is easily seen that
S?x _Gi =(Sn +Gn)(Sn —Gn)=Pi’

ie.,
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S, =yG. +Pi. (18)
Defining furthermore

1 n n
H, =—2—(n s +Bo) — ] s —Bk)), (19)

k=1 k=1

M, =5 (I e +B0+ [T - B), 0

we obtain

M, —-H,=M,+H,)M,—H,)=P2. (21)
Hence,
M, =\/H? + P2, (22)

It should here be remarked, since it is not evident from
the expressions above, that all the quantities 4, , B,,and X,
and consequently also I',()), G,, S,, P,, H,, and M,, are
functions of the energy E of the incident particle.

lil. THEOREMS

We shall now prove a few assertions, some of which will
be used in the demonstration of the statements (33a)~(33d) in
Sec. 1V, and some in a forthcoming paper.®> The principal
results in the present section are derived for the case n>3.
The special case n = 2 is treated separately while the case
n = 1 is omitted. For the physical meaning of the quantities
(B;/A;)* we refer to the Introduction.

For n>3 we assert that
[ 1502 B B
({)>0= YRR

i k

for k=12,.,n but k #i

(23)
Proof: Assuming I, () >0, we obtain from (12)

A,—B, = A,—B,

< .
A;+ B, =1 A4+ By
k i

Using (11), recalling that n>3, we get from (24)

4, -8B, A4,—B, .
< , forany £k #i.

Ai + Bi Ak + Bk

Hence,
B, B,
—_>—
A, A,

which concludes the proof.
For n = 2 we have instead

(24)

k i,

. B, B, :
Li)>0=>—>—, k=12 but k#i (25a)
A, A,
and
B B
[Lij=0=>"L =22,
) =0= 2L = 22

From the theorems (23) and (25a) and the definition of
G, in (13) and (14), one immediately obtains the following
corollaries.

For n3>3, it is true that
r, ()= G,,

L,(k)#G,,

(25b)

L,()>0 :>[ (26a)

if k#i
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and, forn =2,

. rz(ﬂ = GZ’
. 26b
F2(l)>0:>[[‘2(k)#G2, if ki (260)
We shall also prove the following assertions.
For n33, it is true that
G,<0=>T,(k)<0, for k=12,.,n, (27)
and
G, =T, (m)>0, where m satisfies the
G,>0=> relations (13); (28)

I, (k) <0, fork=12,.,nbutk #m.

Proof: Negating the right-hand member of (27), we ob-
tain by using (26a) the relation G, >0, which is the very nega-
tion of the left-hand member of (27). Assertion (27) is thus
proved by contradiction.

Turning to the assertion (28), we realize from (13) and
(14) that G, is identical with at least one of the quantities
T, (k), k= 1,.2,..,n. It is therefore true that G, =T, (m),
where m is a particular one of the integers 1,2,...,n. As a
consequence, [, (k), where k £m, must be <O, since the
contrary assumption, i.e., I', (k)>0, according to (26a)
would imply that ', (k) =G, and T, (m) #G,,, which con-
tradicts the statement G, = I', (m) above. Assertion (28) is
thereby proved.

If the potential ¥ (x) of a barrier system satisfies the
equation

Vix)=V(—x) (29)

for all real values of x, we shall say that the barrier system is
symmetrical. Let us consider a symmetrical system of N bar-
riers. We conveniently choose the points x,,x,,....x5,  (se-
parating the single barriers) on the real axis such that they, in
pairs, become symmetrically situated with respect to the
origin, i.e., such that X, = — Xy,
X3 = — Xy_,, etc. The relations (B10a) and (B10b) in Ap-
pendix Barethen valid for each pair of barriers, B (j)and B (k ),
that are symmetrically situated with respect to the origin.

For a symmetrical system of N barriers, where the
points x,,x,,....Xx ., are chosen as described above, the fol-
lowing assertions are true.

(i) If N is even >4, then

x1= —xN+1,

Gy <O0. (30)
(ii) If N is odd >3, then (putting N = 2r + 1) we have

Gy>0& Ty (r+ 1)30, (31a)
Gy30=Gy =Ty (r+ 1) (31b)

Proof:(i) We assume that N = 2r>4. Since Nis even, the
system consists of pairs of barriers, each pair being symme-
trically situated with respect to the origin. To each pair the
relations (B10a) and (B10b) apply, from which we realize
that the values 4, and B, characterize both barriers of that
pair, to which the barrier B(k) belongs. This is true also of
the values 4,, and B,, that appear in (14). Hence, from (14)
together with (B10a), (B10b), and (11), it follows that
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k=1
ks#m

N
G~=%((Am +B,) [ (e - Bo)

k=1
k#£m

N
— 4n =B ]I (Ak+Bk))

r

=L —Bi,)<H (4, ~ B,)?
2 K=1
k#m

I A +Bk)2)<o.
k=1
k#m

(ii) We assume that N = 2r + 1>3. The barrier system
then contains a central barrier, B(# + 1), around which the
rest of the barriers, in pairs, are symmetrically located.
Equations (B10a) and (B10b) apply to each such pair. We
shall first prove that T, (i) <O, if i # r+ 1. From (12),
using (B10a), (B10b), and (11), we obtain in this case

Ll = ((A,- +8) ] U - B,

ki

N
~ W4, B) ]] ty +Bk>>
=1
k#i
_Br+l) H (Ak _Bk)z
P

Nla—-

(A%—B?)((A,H

— Ui +B, ) f[(Ak+Bk>2)<0.
o
Thus, if N = 2r 4+ 1>3, we have
y() <0, fori=12,.,N but
From (28) and (32) we conclude that
Gy >0=Gy =T (r+1)>0,

which proves assertion (31b) and half of assertion (31a).
From (26a) we see that

Iy(r+ 1)3>0= G, >0,

which completes the proof of assertion (31a).

Summing up the content of (30), (31a), and (31b) con-
cerning a symmetrical system of N (>3 ) barriers, we see that
Gy <0 in all cases except the particular one when N is odd
and 'y (r+ 1) > 0, in which case G, >0.

i#r+1. (32)

IV. MAXIMA AND MINIMA OF |P,4(x4,x,,, ,)| AND
|P12(X3,X,, . 1)

In this section we shall prove the following assertion. On
the assumption that 4, and B, have given constant values
while the quantities 8, may vary independently of each oth-
er (k=12,.,n), the maxima and minima of
[Py (x,x, , )| and [P, (x,,x, )| are given by the follow-
ing scheme, valid for n>1:

,PIZ(xl’xn-f-l”max,

for n odd}
=M, 33a
IPll(xl’xn+l)|maxy (33a)

for n even
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[Py (%1% 4 1) |maxs

for n odd}
lPIZ(xl’xn +1 )lmax?

=H,, (33p)
for n even

|P2(X1%y 4 1) |min»  for n odd P,, if G,<0,
|Py1(X15%0 4+ 1 ) |mins fOr 7 even] - [S,,, if G, >0,
(33¢)
[Py (XiXn 4 1) lmins for n odd 0 if G, <0,
[P (X1Xn 4 1) lmins  fOr 7 even} - [G,l, if G, >0.
(33d)
Proof: The proof of (33a)-(33d) will be carried out by

complete induction.

Part 1: Recalling the definitions (14), (15), {19), and (20)
and using that G, = B, and that B, > 0, according to (11), we
find that Egs. (33a)—(33d) assert, for n = 1,

[P12fx %) |l max = M1 =4,

|P11(%1,%5) | mex = Hy = By,

|P12(%15%3) | min = 1 = 41,

[Py1(%1%2) min = Gy = B,

According to Egs. (28) and (29a) in I, the matrix P(x,,x,)
is given by

B, A
P(x"x2)=(,4i ).
1

Assertions (33a)—-(33d) are thus seen to be true for n = 1.
Part 2: Let us next show that the assertions (33a)-
(33d) must be true for n, if they are true for n — 1. We shall
first consider the case when # is odd. Thus, we assume that
(33a)—(33d) are true for n — 1, where n (»3)is an odd integer.
From (36) in I, and (17) in the present paper, we then obtain

|Pll(xl’xn”2 - |P12(x1»xn)|2 =P;_,. (34)
Hence,
Pl x,)] — [P, ) Poos
X15X, )] — x1,x,)| = .
e . |Py1(x1,%, )] + |Piafx1,x,)]

(39)

From (35), observing with the aid of (34) that | P, (x,,x, )| and
|Pya(*15%,)| simultaneously assume their maximum values
(alternatively, minimum values), we conclude that

(1Py1(x )| = 1P12(% 1%} Denin

= |Py1(*15%5 )| max — |P12¥1%n )| max (36a)
(1P 12 )] — P12l 1%, Dmax
= |Py1(X 1%, )| min — 1P12(%15% )| min - (36b)

From Eqs. (33) and (28) in I, we obtain
P(xlrxn + l) = P(xl’xn )P(xn»xn +1 )

_ (Pll(xl’xn) P12(x1)xn))
Pyy(x1,x,)  Prylx1:x,)

B, 4,
% (An exp(2iB,_1} B, exp{ziﬂn_ll)'
Hence,
Pyy(x1,%, 1) = B, Pyy(x,,X,) + €xp{2iB, _ | }A, Ppolx,,x,,),
(37a)
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PiofxyX, 4 1) = A4, Pyy(x15x,) + exp{2iB, _ | } B, Pyy(x,,x,,).

(37b)
Proofof (33d): Let us determine | P, (XX, , | )| min- One
realizes from (37a) that

IPll(xl?xn+ l”min >0 (38)
if and only if either

(B |Pyy(x 1%, )| — Ay |Piax 1%, ) )nin >0 (39)
or

(A, |Prafx1,%, )| — B, |Pyy(xy,%,,)]) > O. (40)

With the intention of writing the inequalities (39) and (40) in
a different form, we start by rewriting the left-hand member
of (39). Utilizing the identity

B, |Pyy(xyx, )| — A4, | Praxyx, )|
=14, + B,)(|P11(x,,x,)| — |Pi2(x1,x,)])
— 44, — B,)(|Py,(x,x,)| + |Pra(xy,x,) ), (41)
we obtain, with the aid of (36a),
(B [Pry(x1%,) | — A, |Pr2(%1%, ) | onin
=44, + B, )(|Pyy (%1%, )| — |P12(X1,%,) ) uin
— 44, — B,)(|P11(x1,%,)| + [P12(X1,%, ) | Jmax
=44, + B IP11 (X%, ) | max — 1P12(X15%0 ) | mmae)

- i(An _Bn)(lpll(xl’xn),max + |P12(xl9xn)'mn)'
(42)

Using Egs. (33a) and (33b), which were assumed valid for
n — 1, and the definitions (12}, (19), and (20), we obtain from
(42)
(B |Pry(xy:x, )| — A, | P12 (%1% ) | )min
=44, +B,)(M,_, — no1)
—%(An—Bn)(Mn_l+Hn—1)=rn(n). (43)
By means of (43), the relation (39) can be written
I,(n)>0. (44)
Consider next the left-hand member of (40). With the aid
of (41) and (36b} we get
(A, [P (x1x, )| — B, |Pyy (X1%,) | )min
=1(4, - B, MPyy (%1%, )| + [P12(%1%0 ) min
—4(4, + B, P (XX, )| — 1P12(X15X, ) | Jmax
=1(4, — B)(|P1 (XX, ) |min + |P12(X1,X, ) | min)
—4i(4, + B, MIPyy (X 1%0 ) | anin = [P12(X15% ) |anin)-
(45)

Using (33c) and (33d), assumed valid for n — 1, we obtain
from (45)

(An|P12(x1’xn), -Bn ’Pll(xlrxn)“min

{4, —B,)(S,_,+G,_,)
= -4, +B,)(S,_, —G,_,), ifG,_
—B,P if G, _, <0.

n‘n—1>»

|>O)

(46)
Since — B,P,_, <0, it follows from (46) that the relation
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{40) can equivalently be written as
Q(An _Bn)(sn—l + Gn—l)

— (4, +B,)(S,_, —G,_,)>0. (47)
Making use of (23), (25a), and the definitions (12}{15), we
can write the inequality (47) in the simplified form

I, (m)> 0, where m # n. (48)
Utilizing the equivalence between (39) and (44) and
between (40) and (48), we obtain from (38)-(40)

|Py1(X15%s 4 1) in >0 T, (m) > 0. (49)
Since, according to the definitions (13) and (14),

G, =T,(m), (50)
Eq. (48) also can be written as

|Py1{x1%n 5 1 )|min >0 & G, >0. (51)

By making minor changes in the derivation proceeding
from (38) to (51), starting instead from the statement

|P11* 1% 4 1) min >0 (52a)
implies that either
|Pll(xl9xn+ 1) min

= (B, |Pyy(x15%, )] — 44| P12X15% ) Jin >0 (52b)
or
|Py1{X1X 5 4 1 M min

= (4, |Py,(x),x,)| — B, |P11(x1rxn)|)min >0, (52¢)
one can easily prove that
|Py3(X15%, 4 1) lmin >0 = 1P 11(X1 %0 4 1)l min = G- (53)
From (51) and (53) we conclude that

0, if G,<0,
|Pll(xl’xn + 1 ) Imin = Gn , if (;'l > 0. (54)

The assertion (33d) is thus shown to be true for n.
Proof of (33c): Inserting (54) into the formula

|P12(xl’xn+l)|2_ |Pyyeyx, 1 o )|* = P, (55)
which follows from (36} in I and (17) in the present paper, we
find, with the aid of (18),
0+ P2 =P, Iif G,<O,

,/G,z, +P: =5, if G,>0,
which means that (33c¢) is valid for n.

Proof of (33b): Using (37a), the definitions (19) and
(20), and also (33a) and (33b), assumed valid forn — 1, we
get
lPll(xl’xn+l)lmax

= Bn |Pll(x1’xn)|max +An |P12(‘xl’xn)|mu
=BnMn-—l +Aan—1 =£(Mn—l +Hn—l)(14n +Bn)
—%(Mn—l—Hn—l)(An—_Bn)=Hn‘ (56)
The assertion (33b) is thus true for 7.

Proof of (33a): From (55), (56), and (22) we obtain

|P12(xl’xn+l)|max = Hn +P31 =Mn’

which means that Eq. (33a) holds for n.
We discuss the case when n is even. It has now been

IPIZ(xl9xn+ 1 )lmin = {
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shown that the assertions (33a)—(33d) are true for n if they are
true for n — 1, provided that # is an odd integer >3. The
induction from n — 1 ton, in the case that » is an even integer
>2, can be carried out in nearly the same way and will there-
fore not be repeated here. Assertions (33a}{33d) are thus
proved.

V. MAXIMUM AND MINIMUM TRANSMISSION

Let us consider all the possible shapes of a barrier sys-
tem, consisting of NV barriers, that are compatible with the
requirement that the quantities B, /4, (k =1,2,...,N) as-
sume certain given values for a particular energy E of the
incident particle. These shapes together constitute a family
of barrier systems. From formulas (43a) and (43b) in I for
the transmission coefficient, and Egs. (33a)-(33d) and
(17) in the present paper, we conclude that the maximum
one of the transmission coefficients (for the particular ener-
gy E), pertaining to those barrier systems that are members
of the above-mentioned family, is given by

1, if G,(E)<0,
(Py/Sy)?, if G,(E)>0,
and the minimum one of the transmission coefficients (for
the same E ) by

min T'(E) = (Py/My), (58)
the quantities G,, S,, P,, and M,, being defined by (13)—(16)
and by (20). Equations (57)and (18)imply thatmax T'(E) < 1,
in case Gy(E)>0.

Since the reflection coefficient is given by the formula

R =1 — T, we immediately obtain, with the aid of (57), (58),
(18), and (22),

max T(E) = { (57)

R(E {o, if Gy(E)<0,
min RCEY =1 G./50)% i Gy (E)>0, 59)
max R(E) = (Hy/My)?, (60)

the quantity H, being defined by (19).

We realize from (10) and (14) that the condition
Gy(E) >0, occurring in (57) and (59), can be regarded as a
condition on the sizes of the single barriers. Since these sizes
are functions of the energy E of the incident particle, it is
clear that the condition G (E ) > 0, although fulfilled in one
energy interval, very well may be violated in another energy
region.

For convenience let us call the quantity a, (E ), defined
by (29b)in I, the size of the well between the barriers B (n) and
B(n + 1). Except for the particle energies near the top of
either of the barriers B (n) and B (n + 1), the quantity «,, is
approximately equal to the quantity L,, defined by (7) in I
[cf. the text from (B8) to the end of Appendix B in I]. We
realize that changing the distances between the barrier
humps provides a means of varying the sizes a,, of the wells.

Using the new terminology, we can now say that the
result (57) gives an exact expression for that maximum value
of the transmission coefficient 7' (£ ) (pertaining to a given
system of NV potential barriers and a fixed energy E of the
incident particle) that can be obtained by varying the shape
of the given potential ¥ (x) in all possible ways subject to the
condition that the sizes of the single barriers, relative to the
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fixed energy E, remain unchanged. The potential V(x) in-
volved in this maximum problem is thus specified to the ex-
tent that the sizes of the single barriers, relative to the fixed
energy E, will have certain given values. Otherwise, the po-
tential can be freely deformed, which means that the sizes of
the single wells, relative to the fixed E, are freely variable. By
means of the phase-integral expressions given in Appendix B
of I, the exact formulas above can be converted into accurate
approximate ones, suitable for evaluation.

VI. A NECESSARY CONDITION, ON THE SIZES OF THE
SINGLE BARRIERS, FOR COMPLETE TRANSPARENCY

It follows from the six equations in I-—(43a), (43b),
(28), (29a), (29b), and (33)—that the transmission prop-
erties of a barrier system depend solely upon the sizes of the
single barriers and the sizes of the wells between them. From
{57) and (18) we infer that max T(E) is equal to unity, only
if Gy (E)<0. Hence, for a system of N barriers and incident
particles of energy E, complete transparency is impossible
when G, (E) > 0, whatever the sizes of the wells between the
single barriers. In other words, formula (57) implies that
Gy (E)<01is a necessary condition, on the sizes of the single
barriers, for total transmission of incident particles of energy
E through a system of N barriers of arbitrary shapes.

The result may be understood as follows. From (Ada)
in Appendix A we realize that the relation G (E£) > 0 holds
when the size of the biggest barrier B(m), ie., (B,,/4,, )2,
exceeds the value [Hy (m)/My (m)]? which is a function
of the sizes of the other barriers in the system. Formula (57)
thus implies that if, for an energy E, the biggest barrier B(m)
is too big in comparison with the rest of the barriers, we
cannot have complete transparency for this E, even if the
sizes of the wells between the barriers assume their most
favorable values. The physical meaning of the quantity
[Hy (m)/M)y (m)]? is discussed in the text below (A6) in
Appendix A. It is shown there that [ (H, (m)/My(m)]*is
equal to the maximum reflection coefficient that can be at-
tained, for a given energy E, by any barrier system consisting
of N — 1 barriers having, relative to this E, the same sizes as
the barriers of the N barrier system considered, from which
the barrier B(m) has been excluded.

Transmission through a general system of two barriers
is treated in Ref. 5. Some comments will be added here.
From (57) and (A4b), with the aid of (Al), (A2), and
(13), we find that the necessary condition for total transmis-
sion in this case, G,(E) <0, can be written equivalently as
B,/A; = B,/A,. Wealternatively arrive at the same result by
using (14) instead of (A4b). In the special case of a symmet-
ric barrier system, it follows from (B10a) and (B10b) in
Appendix B that the relation B,/4, = B,/A, actually holds
for all values of E, if x, on the real axis is chosen to coincide
with the point of symmetry, and in Ref. § it is shown that
total transmission in fact occurs for certain discrete values of
E, namely for those satisfying Eq. (31) in Ref. 5 (see pp. 639
and 640 in Ref. 5).

From Egs. (43b), (33), and (28) in I we obtain for the
transmission coefficient 7, pertaining to a general system of
two barriers, the exact formula
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1/T =1+ |4,B, + 4,B, exp(2i B,)|? exp(2K, + 2K,),

(61)
which shows that even in the case of a nonsymmetric double
barrier complete transparency is possible under special cir-
cumstances. Indeed, if the relation B,/4, = B,/A, inciden-
tally happens to be fulfilled for any of the energies E that

satisfy the equation exp(2/ 8,) = — 1 [identical to (31) in
Ref. 51, we will certainly have total transmission for this Z.
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APPENDIX A: THE PHYSICAL MEANING OF THE
CONDITIONS G, (£)> 0 AND G, (E )<0

Let us consider an arbitrary system of N potential bar-
riers and an incident particle of energy E.
We define, fori = 1,2,....,n and n<N,

1 1
H, R A B
@) (A+BkI_Il("+")
1.3 I=I Ak—Bk) (A1)
M, () = —;-( I e +B0
i =1
1
A, — B
+5 I a-30) (A2)

In particular, the quantities H, (n) and M,, (») are identical
to H,_, and M, _,, respectively, which were earlier de-
fined in (19) and (20). With the aid of (A1) and (A2), we
obtain from (13) and (14) the formula

Gy = —;»(A,,. + B )My (m) — Hy(m))
—%(A,,, — B,)(My(m) + Hy(m))

= — A, Hy(m)+ B, My(m)

B, Hy(m
=AmMN(m)(——— v )) (A3)
A, My(m)
where, according to (11), 4,, M, (m) > 0. Hence,
B, HN(m)
Gy >0 —
N A, MN(m) Vol (Ada)
G <0@B <H”(m) . (Adb)
o A, My(m)
Using (A1), (A2), and (11), we can easily show that
B, Hy(m)
—_— <1, for k=1.2,..,N but k#m, (AS5)
A, My(m)
provided N3 3. For N = 2 we have instead
B
Ze _Hy0m) o gor k=12 but k#m. (A6)

A M,(m)

We recall that (B,, /A,, )? is the size of the biggest bar-
rier B(m) in the considered system of N potential barriers;
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Vix)-E

B(1) B(2) B(3) B(4)

FIG. 4. An example of a symmetrical
system of five potential barriers. Figures
B(5) 1(a), 1(b) and 2(a}-2(d) in Ref. 1, illustrat-
ing the general case of a system of N po-
tential barriers of arbitrary shapes, con-
tain information concerning our

cf. (10) and (13). Furthermore, it follows from (60) and the
definitions (19), (20), (Al), and (A2) that the quantity
[Hy (m)/My(m)]? is equal to the maximum attainable
value, for a fixed energy E, of the reflection coefficient per-
taining to a variable system of N — 1 barriers that is allowed
to assume every possible shape compatible with the require-
ment that the single barriers shall have the same sizes, rela-
tive to this very E, as the barriers of the given NV barrier
system with the barrier B(m) omitted.

Remembering also (6), we see that one can roughly un-
derstand the relation (A4b) as follows: Gy (E )<0, if and only
if the reflection coefficient (for E) pertaining to the biggest
barrier in the system is less than or equal to the maximum
one of the reflection coefficients (for the same E ) pertaining
to all those systems of N — 1 barriers that, relative to this E,
have the same sizes as the barriers of the N barrier system
considered, from which the biggest barrier has been omitted.

APPENDIX B: SYMMETRY RELATIONS FOR TWO
BARRIERS WHICH ARE MIRROR IMAGES OF EACH
OTHER

We shall start by writing down, without proof, some
relations that are valid for a symmetrical system of N poten-
tial barriers [see (29)], provided that the points x,,x,,....Xy ,
on the real axis are chosen to be symmetrically located with
respect to the point of symmetry.

We have

Wan10X,) = tWony_2ny2Xn_ny2)y B=12,...N,
(Bla)

w2n(xn+l) = T Won_an+ l(xN—n+l)’ n=12,.N,
(B1b)

where the upper sign pertains to the case when N is odd, and
the lower sign to the case when N is even. The quantities
Wy, 41 (X, 4 1) and w,, (x, , ) are defined by (8a}{8c)in L.

If, in the symmetric barrier system, the barriers B (/) and
B (k), i <k, are symmetrically situated with respect to the
point of symmetry, it is true that

K =K., (B2a)
Ll =Lk—l' (sz)

The relations to be derived below are independent of the
number of barriers in the system. For the sake of simplicity
we shall therefore derive these relations by considering a
small, easily handled barrier system. Let us consider a sys-
tem of five potential barriers that is symmetric with respect
to a point, chosen as origin. The potential ¥ (x) thus satisfies,
for all real values of x, the equation
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N~ % /\ﬁﬂ’\g[\ s o~ % . o
Mu t\-/'3 W\ Ss e\ Y 's\/‘s Yo

application of the phase-integral meth-
od, which is entirely relevant also to this
special case.

Vix)=V(—x). (B3)

By choosing x, = — x4, X, = — x5, and x; = —x,, we
achieve the result that the barriers B(2) and B(4), defined
within the intervals (x,,x;) and (x,,Xs), respectively, become
mirror images of each other (mirror-symmetric). See Fig. 4.
It is reasonable, although not necessary, to let the points x,,
X5, X4 and x5 coincide with the minima of the potential func-
tion V (x). If, however, we allow these symmetrically situated
points to be chosen more freely, as in Fig. 4, we realize that
the barriers B(2) and B(4), within their intervals (x,,x,) and
{x4Xs), may assume shapes of a more general kind than is
possible for any two mirror-symmetric barriers in a system
consisting of less than five barriers. This is the motivation for
the choice above of precisely five barriers.

Using Egs. (A.5b) and (A.10) in Ref. 6, and the inver-
sion formula (A15) in Appendix A of I, we obtain

Fi(x3,x3) = — Fplxg.xs)
Xexpli[wixs) — w(x,) + wix;) — wix,)]),

(B4a)
Fiy(x50%3) = Fiyx4%5)

X expli[w(xs) + wix,) — wix;) — wix,)]).

(B4b)

Inserting N = 5 in (B1b), we obtain, forn = 1,

Wo{x;) = wy(x;s) (B5a)
and, for n = 2, we get

Wylx3) = We{x,). (B5b) -
From (B2a) and (B2b) we find that

K,=K,, (B6a)

L,=L, (B6b)

With the aid of Egs. (10b), (23b), and (9) in I, and (B5a), (B5b),
(B6a), and (B6b) in the present paper, we can write (B4a) and
(B4b) as follows:

Fiy(x3,x3) = — Flx,xs)exp( — 2K5), (B7a)
Fy(x2%3) = Fro(xxs5)exp[i(26; — 20)]. (B7b)

Utilizing Eqgs. (27a), (27b), (27d), and (19) in I, we find from
(B7a) and {B7b) the relations

Fy(t3,2x,x;5) = F ¥ (£5,4;x4,X5), (B8a)
Fio{t3,2:%,%5) = Fio(ts,4;%4,Xs), (B8b)
Fyy(t3,2;%5,%3) = Fy (17,45 4,%5), (B8c)
Fylt3,2:x5,%5) = F 3 (t7,4;%4,X5). (B8d)

The elements of the matrix F(¢,,_,,n;x,.x,, ) are
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completely determined by the behavior of the function
V(x) — E within the interval (x, x,, , ) pertaining to the
barrier B(#n). This follows from the definitions of the F-ma-
trix elements by (3.22a)-(3.22d) in Ref. 4 and from the
definition of the function g( z) by (A36) in Appendix Ain]I,
taking into consideration that the problems connected with
the lower limit of integration in the integral defining w( z)
and the choice of phase of ¢( z) on the real axis are taken
care of by the definition of the matrix F(¢,, _ | ,#;x,, %, 1 1 )-

We conclude that the validity of the relations (B8a)-
{B8d) is entirely independent of the behavior of the potential
V(x) in the regions outside the intervals (x,,x;} and (x,;,xs)
pertaining to the barriers B(2) and B(4), respectively. Ac-
cordingly, the relations (B8a)—{B8d) are independent of the
other barriers in the system, i.e., independent of their shapes
and also of the number of other barriers. We thus realize that
the relations (B8a)-(B8d) are due solely to the mirror symme-
try of the two barriers B(2) and B(4), which are defined by the
potential ¥ (x) within the intervals (x,,x;) and (x,,xs), respec-
tively. The same relations must therefore be valid for any
two barriers, which are mirror images of each other, what-
ever positions they may occupy in a barrier system, provided
of course that the arguments of the pertinent F matrices are
changed so as to indicate the actual positions, in the barrier
system, of the two symmetric barriers.

Hence, if the barriers B(i) and B (k) in a barrier system
are mirror images of each other, we have

Fuy(ty_ %X 1) =F (e _ ks X, ), (B92)
F12(t2i—l’i;xi’xi+ 1) = F12(t2k—l’k;xk’xk+ 1) (B9b)
Foy(ty_1iX X 4 1) = Fy (L _ 1 okxexs ), (BSC)
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Foltyi 1 5%Xi 4 1) = Fta _1,KX0Xk 41 )- (B9d)

From these formulas and (18a)—(18d) in 1, we get the useful
relations

A, =A,, (B10a)
B, =B,, (B10b)
g, = oy, (B10c)
T,= — Ty (B10d)

between the barrier characteristics of two mirror-symmetric
barriers B (i) and B (k).

Let us finally regard the particular case when the barrier
B{j) in itself is symmetric with respect to the center
i(x; +x;,,) of the barrier interval (x,x, ), i.c., when
Vix)=V(x; + x;,, — x) for every x belonging to the bar-
rier interval. Formulas (B10a)—{B10d) naturally remain valid
also for this particular case. However, from (B10d), consid-
ering the fact that the barriers B (i) and B (k ) in this case are of
equal shape, which means that 7; = 7, [see (18d) in I], we
now simply obtain

7, =0. (B11)
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Another identity among squares of eigenfunctions
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A variant of an identity of H. P. McKean and E. Trubowitz [ Commun. Pure Appl. Math. 29, 143
(1976) ] for Hill’s equation is derived via contour integration. The identity is

1= ,=o(—1)jly2(1/l)| fj(x)

L. INTRODUCTION

In this brief paper, a variant of an identity of McKean
and Trubowitz' is derived via contour integration. The proof
is therefore similar to that of Deift and Trubowitz.> Before
proceeding we introduce notation.

The Hill’s operator His givenby Hf = —D*f +qf,
where D = d /dx and ¢(x) is a real, smooth function of period
1. The functions y, , (x, 4 ) solve

=Ay, (1)
with initial conditions
»0,4)=1, yi(0,4)=0, )
»20,4)=0, y;(0,4)=1
Define the discriminant
AR ) =p(l,A)+y:(1,4)
(}’5 '—_?: s M= ?:12)

Here, A(A) is the trace of the Floquet matrix and the roots of
A% — 4 correspond to Floquet multipliers + 1. It is well
known  (Magnus-Winkler’) that these roots
Ao<A KAy <A3<Ay<~  are  real  and satisfy
Ans A g1 = n*m* + O(1), while the eigenfunctions y,, y,
behave likecos A4 - x and sin yAx /44 , respectively. Hence
A(A)~2cosA4 for |4 | large. Denote by f, (1,4) the
Bloch eigenfunctions y,(¢,4) + m, (1) y,(¢,A1). We are
now ready to prove the main result.

1l. THEOREM AND PROOF

Theorem: Let f;(x) denote the normalized (periodic or
antiperiodic) eigenfunction for the eigenvalue A,. (If
A, = A, then choose any such eigenfunction.) Then the
following identity holds:

1= 3 (= 1)p(1, 4)] filx).
Jj=0
Prooﬁ Consider the contour integral

L=_L LAV A) (5, A VA
2m Rl =@+ o (AA)/27 -1 '
These estimates quoted above and the fact that
Y2(1L,A) f, (4, A) f_(t, A) corresponds to y,(1,A) for the
translation of ¢ by ¢ [i.e., g(- 4 £)] (see Ref. 1) combine to
show that the integrand behaves like 4 ~}( — 1 4+ O(1)) for
|A| large. For integers N— + «, we obtain the limit
Iy— — 1. Now apply Cauchy’s theorem to reduce the inte-
gral to a residue sum. The poles are at 4 = A, and since
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Ay =Ay_, implies p,(1,4,) =0, the double roots of
A% — 4 do not contribute. At simple roots A; the residue is
V(LA fo (8 A) (1, 4)
3 AGL)A(4)

_n(LAD[ -8R ;0]

- JAM)A(4)

= +3,(1,4;) f}(1), since A(4;) = +2. 3)
Note that we used the fact' that

AL A) [t 4)) = — A(4) fie).
In fact, it is well known that A(4;) =2 if and only if
Jj=0,3(mod 4). The sign of y,(1, 4,), when it is nonzero, is
also easily determined since the roots u; of y,(1,u;) =0
satisfy A, <g;<4 5. Thus y,(1,44) >0, »,(1,4,)5>0,
¥2(1,4,)<0, etc., so that y,(1,4;)>0 for j = 0,1(mod 4)
(and is <O for j = 2,3). Combining these two facts we con-
clude that the coefficient of f7(¢) is the identity (#) is non-
negative for even values of j and nonpositive for odd values of

J-

lil. REMARKS

(1) As in the analogous identity of McKean and
Trubowitz, which is

1= i € f3(x) (where € >0 with equality

/=0 only at double roots A, _, =4,).
(4)

the identity (*) leads to a family of trace identities, the first
of which expresses g(x) as a sum of f7(x).

(2) In discussing the structure of isospectral manifolds
for Hill’s equation, McKean and Trubowitz' use as the “ori-
gin” the point where u; =4 ,;_,. At such a point the odd
terms vanish and we conjecture that (*) reduces to the iden-
tity (4).

(3) Periodicity imposes constraints on the 4;s, so that
the set {4, } determines all the A,’s. It is not immediately
clear how to absorb this dependency into the identity (*).

'H. P. McKean and E. Trubowitz, “Hill’s operator and hyperelliptic func-
tion theory in the presence of infinitely many branch points,” Commun.
Pure Appl. Math. 29, 143 (1976).

2P. Deift and E. Trubowitz, “An identity among squares of eigenfunctions,”
Commun. Pure Appl. Math. 34, 713 (1981).

3W. Magnus and S. Winkler, Hill’s Equation (Wiley, New York 1966).
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Quantum field theories on the surface of a four-dimensional sphere are considered. The
Hamiltonian is rotation invariant and its eigenvalues are discrete. Scalar, vector, and spinorial
functions on S ? are discussed. The most general Lagrangians for Dirac, Weyl, and Majorana
fermions are derived. They are different from the ones in existing literature. The wave functions
and propagator are obtained and formulas for matrix elements involving spinors are presented.

The discrete symmetries—parity, charge conjugation, and time reversal—are described. The
Lagrangian in R X.S* transforms in a nontrivial way under these. Finally, the fermionic
Lagrangian is rederived using the tetrad formalism, and conformal transformations are discussed.
This leads to a generalization of the formalism to a time-dependent radius of curvature. As a
particular case, a new Lagrangian for de Sitter space is obtained, which, however, is not invariant

under the full de Sitter group.

I. INTRODUCTION

We have two reasons for considering a curved space-
time manifold. First, a physical system in a nontrivial gravi-
tational background may exhibit interesting behavior not
obtained in flat space. Demanding that we recover the Min-
kowski theory in the limit of vanishing curvature may elimi-
nate certain classes of theories.' Second, if the space is cho-
sen to be compact, the particle modes are discrete. If a
high-momentum cutoff is imposed, a quantum theory with a
finite number of degrees of freedom is obtained. This is an
alternative to making space discrete, which leads to prob-
lems in theories with chiral fermions and supersymmetry.

The simplest way to quantize a theory is through the
Hamiltonian formalism. For this purpose, it is useful to keep
the temporal dimension flat and compactify space alone.
The sphere S is maximally symmetric and is therefore pre-
ferable to a rectangular box with periodic boundary condi-
tions. One might expect the spherical curvature to compli-
cate the calculations but the special group theoretic
properties of S* result in considerable simplification.

Scalar and vector fields have been described in Refs. 2
and 3. After discussing these, we consider spin-} fermions
and their Lagrangian in Sec. II. The wave equation can be
derived solely from the requirement that the theory have the
global symmetries of R X.S>. The energy spectrum, wave
function, and propagator for fermions are derived and major
differences from flat space are pointed out. In Sec. III, for-
mulas for spinorial matrix elements are presented. In Sec.
IV, we discuss the three discrete symmetries—parity, charge
conjugation, and time reversal. Though the theory is invar-
iant under these, the Lagrangian itself transforms in a non-
trivial way under the first two. In Sec. V, we return to fer-
mions and rederive their Lagrangian using the tetrad
formalism. Following this, conformal transformations are
discussed and our formalism generalized to the case of a
time-dependent radius of curvature. This enables us to ob-
tain the Dirac and Weyl Lagrangians in de Sitter space. Al-
though they do not have the full symmetry of the de Sitter
group, they provide a good description of fermions, and the
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wave functions and spectra can be directly read off from Sec.
I1. Finally, we make a comment on the Weyl spectrum that is
relevant to a forthcoming paper on supersymmetry in
R XS°3.

A. Notation and choice of tetrad

The sphere S* can be parametrized in different ways.
One can use four Cartesian coordinates x,,, two complex
variables (u,v), or three angles {6,a, 8). Setting the radius
equal to unity,

B+ +x3+x=1, (1)
we define**

u=x,+ix,=cos0e*, v=x;+ix,=sinfe”, (2)
where 0<0<7/2, 0<a, B < 27. The volume element is

dQ = (1/27%) da df sin  cos 6 d6 . (3)

The manifold has an O{4) rotational symmetry, whose Lie
algebra is SU(2) X SU(2). The lowering operators of the two
SU(2) subgroups L, and L, are

L,_=u*gd,—-v*d,, L,_=u*d.—vd,. (4)
For scalar functions on the sphere, the two L_; can be dia-
gonalized with eigenvalues s, 7 = 1,2. As differential opera-
tors,

L;=4ud, +vd, —u*d,. —v*d,),

5

Lyy=4ud, —vd, —u*d,. +v*d,). ()
We define certain combinations of these operators

Ji=L; + Ly = —leyx; o,

K, =Ly — Ly =i(x40; — x; 3y) , (6)

Ji=—id,, Ky= —idg,
and the O(4) rotations

M;=%}euJi,

M, = %Ki ’ (7

M, = —i/2x,, 3, —x,0d,).
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The commutation relations of J and K are
[Jodi]1 =K K] = i€ I
(8)
[Vi.K;] = i€y K -

These correspond, in the limit of large radius, to rotations
and spatial translations of Minkowski space. Nearx, = 1, J;
rotates about the x; axis and — K, translates along it. The
three boost symmetries of M* are completely missing in
R xS?3.

Define a parity operation P, which interchanges L, and
L, as

(1 X5 X35 Xg)—( = X1, — X2 — X3, X,)
(9)

v—> —v*.

The metric for (¢,0,, 8) is ( — 1, 1, cos® 6, sin? ).

To write down a wave equation for fermions, one must
construct a tetrad field.> This consists of a frame of four
orthonormal vectors at each point in space-time. Since the
time direction is flat in our case, we only have to find a right-
handed triad on the sphere which is continuous everywhere.
This is possible since S is parallelizable. A convenient
choice is

u——u,

é(1” = (x4’ X3y — X2y — xl) ’

é(zl)=( ~— X3, X4y X1, — X5), (10)

é(sl) = (xz» — Xy X4y — X3) .
Here (a,b,c,d ) denotes the Cartesian components of a vector.
Derivatives along these axes will be denoted by d!" and the
components of a vector V by V) =V« &0, Tt is easily veri-
fied that

W= —2L,;, [d",3"]=2e,9Y. (11)
The second equation shows these unit vectors have a non-
zero twist due to the curvature. The divergence and curl of a
vector are given by

V.-v=gMhy®m

Y (12)

[VXV]IV =1€,, [V -3V —2v 1.
The — 2V{" in the curl formula follows directly from (11)
and is consistent with the curl of the divergence of a scalar
function being zero.

It is important to note that a different frame might have
been chosen:

é(12' = (x4’ — X3, X3y — xl) ’

&) = (X3, X4y — X1 — X3 » (13)
&) = (— Xp X1, X4y — X3) .

Then
AP =2Ly, [0P0P])= -2 € 917 (14)

This triad is twisted in the opposite sense and the curl of

a vector in terms of the components V' (? =V « 22 is given
by
[VXV],Q) — % €k [aj(Z)V,(cz) —_ a;cZ)V]&)] + 2V§2) .
(15)
The two frames are related by parity:

= _p. &, (16)
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No matter which choice we make, some formulas later will
look unsymmetric between L, and L,. Of course, physics
cannot depend on this. We will work with the first set and
use Eqgs. (10}~(12). The superscript (1) will be dropped from
the next section.

We note the commutation relations between the &, and
the L ,:

[L8”]=i(—1)7*'8 €zl . (17
Hence the triads are spin-1 objects:
[L%e] =26..¢". (18)

The reason for this becomes clear in Sec. I C.

B. Scalar fields and Lagrangian

Scalar harmonic functions? on the sphere are traceless,
symmetric tensors of rank s which belong to the representa-
tion (s/2, s/2) of SU(2) X SU(2). The normalized function of
highest eigenvalues s, is

S(s,8/2,8/2) = (s + )W —uf (19)

and the other S (s,a,b ) are obtained by applying the lowering
operators (4). These functions satisfy

S*s, 5, 85)=(— 17485, — 5y, —5)),
(20)
PS(s, 51, 8,) = (— 1FS(s, 85, 5,) -

The dimensionality is (s + 1)* and the value of the Laplacian
V2=4g,d, is — sis +2). This corresponds to the squared
momentum — p? in flat space.

These functions have the orthogonality property

fdﬂ S*(s,51,5,) S(5',57,85) =8,,6_ .6

’
$3,8] 52,55

(21

and the completeness relation
> S¥mr) S(mr)

= (27*/sin 6 cos 0)5(6 — 8")8(a — a')5(B—B"). (22)
The free Lagrangian for a complex, massive, scalar field is
L = 3,0* 3,0 — 3,9* 9, & — m*P*P 4 2eD* 3,0 .
(23)
Since we only require invariance under spatial rotation, a
term like ®*i 3,® multiplied by the inverse radius and an

arbitrary real coefficient can be present.
The dispersion relations for ®(s,z) = S (s, s,, 5,)e’E" are

E(s)=e+[€® + sls + 2) + m*]V2. (24)

The spectrum is symmetric about zero without the e term.
However, that is no reason for setting it equal to zero.

C. Vector fields and Lagrangian

Vector functions on the sphere are tensors symmetric in
s indices and antisymmetric in one more. Hencer + V is zero,
which is the property that vectors lying on the surface of a
sphere should have. The antisymmetry also makes them di-
vergenceless, so they form a basis for the transverse modes of
a vector field. They are of two types: V* (s5), which belong to
the representation ((s + 1)/2,(s — 1)/2)and V™~ (s) belong-
ing to ((s — 1)/2,(s + 1)/2). These are related by parity:

Diptiman Sen 473



PV*(s, 51,8,) = (— 1 'V (5,5, 5). (25)
Complex conjugation gives

VEHs, 51, 5) = (= 1)Y=+ IVES —s), —55) . (26)
The total dimensionality of V *(s) is 2s(s + 2). Their curl is
given by?

VXVi(s)= F{s+ 1)VE(s). (27)
The triads é* and é® are the vectors (1,0) and (0,1).

We now make the vector functions explicit. One way of
doing this is to introduce an auxiliary radial vector r’ and

take its scalar product with V. The vector V™ {s) of maximum
s, is given by

_ 172
r,.v+(S,S+1,s l)=(i) (—u)’_l[u'v—v'u].
2 2 2

(28)

The other '+ V* (s, 5,,5,) are obtained by acting on
thiswithL, +Lj;_andL, +L;_ .TheV~™ (55,5,)
are found by (25).

We follow a different and more convenient procedure.
Instead of the component along the fixed vector r’, consider
the projections on the three unit vectors. The quantities
V* =V .¢ are scalar functions. Define

Ve, =VizxiVv;. (29)
For V*(s), the V(s) are in the representation ((s — 1)/
2,{s — 1)/2). This must be so, since the &; belong to {1,0), the
V*(s) to ((s + 1)/2,{s — 1)/2) and the &, - V™ are scalars.
Solving Eq. (27) gives

Vi(s,s,8) =[6+2+1(—2s+1)/2s5(s+ 1)]'/?

XS(s—1,8,58), (30)
Viiss,s,)
= + [(sF2s5 + D F 25 — 1)/2s(s + D]'?
XSs—1,5+15,),
where — (s+ 1)/2<s,<(s+1)/2. The end points

5,=+(s+1)/2means ¥; =0and ¥, =0but ¥ _ isnot
zero. Since — (s — 1)/2<s,< (s — 1)/2, the dimensionality
iss(s+2).

For V= (s),the ¥, (s) are((s + 1)/2,(s + 1)/2) scalars.
From (27),

Vi(s,sps)=[(+2,+1)(s—25,+1)/
2s+2)(s+ D1Y2S(s + 1,51, 5,) ,
(31)
Viis,sp8)=Fl6+2+3)(s+2s+1)/

2(s+2)(s+ D]2S(s + Ls; £ Lsy) .
Here — (s —1)/2<s5,<(s—1)/2s0 Vyand V. are never
zero. Also — (s + 1)/2<s5,< (s + 1)/2, so the dimensiona-
lity is again s(s + 2).
We summarize the above results as follows: with
T=+1,
Vi(s, 8y, 8,) =cosa(s,s)S(s—7,5,5,),

V7, (5,51, 8) =2"*sina(s,s,) cos B (s, s;)

XS(S—T’S1+ l,S2) ’ (32)
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V7 _(s,5,,5,)=2"?sinals, s,) sin B8 s, s,)
XSE—75—1,5,),

(s 4+ 25, + 1)s — 25, + 1)]"2
2s(s + 1)
{(s =25, — 1} ]"2
fs+2s,2—13) 7
B~ (s,s)=m—tan™! [ {s+2s, +2) — 1) ]l/z.
(s — 25, + 27 — 1]

The normalization is fixed so { dQ V¥V, = 1.

If we had chosen the other frame &2, the ¥';* would
have been ((s + 1)/2,(s 4 1)/2) scalars and the ¥~ would
have been ((s — 1)/2,(s — 1)/2) scalars.

The vector functions written above are complex. One
can form combinations of them that are real. In the remain-
der of this section we assume this has been done.

The most general Lagrangian for a free, massive, Abe-
lian, vector field is given by

& = —F,, F™—im*V, V" + 11V}
+ Vo3,V +fimV,, (34)

als, s;) = cos™! [

B, )= — tan‘l[ {33)

where

Fp=0V, —3,Vy, F,;=8,V,—3V,—2,V,.

ij
(35)
The f,,, are again arbitrary real numbers. Indeed, the
last term f, m V¥, appears if the scalar Lagrangian (23) is
gauged and the Higgs mechanism is invoked. It can be eli-
minated by a shift in ¥, so we ignore it. The following dis-

persion relations are obtained.
For transverse modes,

V is a vector function and ¥, =0,

36
E?s)=(s+ 1>+ m?. 36)
The number of modes is 2s(s + 2).
For longitudinal modes,
Vl' =als(s’ sl’ sz) ’ (37)

Vo=il(E*—m’)/(f,— E)IS(s,51,5),
E*s)=sls + 2)[(m® = f2)/(m* + fi)] + m®. (38)

For these modes, F;; is zero. If f, = f, = 0, the dispersion
relation simplifies to

E?(s) =s(s 4+ 2) + m>. (39)

In addition, if m? = 0, F,,; vanishes also. The dimensionality
of these modes is {s + 1)°>. They transform as vectors under
rotations.

The spectra of transverse and longitudinal modes are
different due to the curvature.

II. FERMIONS
We first describe our notation.® The Pauli matrices
o= — 7 are well known. Define a fourth matrix
0° = ° = — L. Then the gamma matrices are
0 o" o1 (12 0 )
m —1 3 = = 9 40
(g 7). Peirrr=(¢ °) @
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and the sigma matrices
o=yl 41)

For two components spinors, ¥ and ¥ will mean ¥, and
W% with a, & = 1,2. The Pauli matrices acting on these carry
indices 077, and ™ **. Indices are raised and lowered by the

antisymmetric tensor € = — €, = io*. The ¥,, and ¥
are related by
¥, = —(¥,)". (42)

The Dirac equation in a general space-time is derived as
follows. Introduce a tetrad field of one-forms,” which are
coordinate systems that are locally inertial. Denoting the
tetrad by e™, m = 1,2,3,4, we have

em=e", dx". (43)
The “flat” index m is lowered by

Non =(— LLL1), (44)
while the general coordinate index u is lowered by

8uv = Mmn€ € - (45)
The line element

ds* =g, dx*dx’=e"+e,, . (46)
The spin connection one-form w®, is defined by

de’ = — o’y Ne®, @y =w,,, dx*. (47)
then the equation for a massive spin-} particle is

(iy™e, "D, —m¥ =0, (48)

with the covariant derivative
i n
D,=d,+ ) Dpmn 0" . 49)

This equation arises from an action that is invariant under
both general coordinate transformations and local Lorentz
rotations of the tetrads.® This procedure will be followed in
Sec. V.

Here we adopt a different method. This method works
due to the special structure of the group of R X.S3, which
contains an invariant subgroup generated by id, and
i 8, = 2L,,. This s just as in Minkowski space where the four
translations form an invariant subgroup of the Poincaré
group. We can therefore simply write down the equation

iy, —m¥ =0, (50)

and it is guaranteed that, under a global rotation, ¥ will
transform as

V(x’) = expli €,,,0™" ¥ (x) , (51)

where the €, are constants. Restoring the radius of the
sphere to its rightful place, it is easy to see that — i d,/R on
83 reduces to translations in the neighborhood of x, = R in
the limit of infinite radius. Hence Eq. (50) describes fermions
in R XS ? in the same way as the flat space equation.

Like the scalar equation, (50) can be slightly generalized,
as we will see.

The requirement that the transformation group of a
space-time should have an invariant subalgebra of four gen-
erators that have an unitary representation and reduce to
translations of Minkowski space in the limit of vanishing
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curvature is very stringent. It rules out de Sitter and anti-de
Sitter space, S *and R X H %, where H ' is the hyperboloid
x2 —x? —x? —x2 = 1. The argument above is therefore
not applicable to these. However, de Sitter space has the
topology of R XS 3, and we take advantage of this in Sec.
VA.

Spinorial functions on the hypersphere are constructed
by taking direct products of scalar functions with the four
spinors

1 0 0 0
0 1 0 0
s 52

0 0 1 0 (52)
0 0 0 1
which will be shown to form the J* = } representation.

The SU(2) X SU(2) structure still holds, except that one
of L, and L, remains unchanged, and the other becomes a
sum

L'=L+S. (53)
Here L is the differential operator {(4) and (5)] and acts

on scalar functions, whereas S is a 24-dimensional matrix
that acts on spinors and satisfies

S*= 3L, (54)
The first two spinors in (52) have the eigenvalue of °

equalto + 1and describe right-handed Weyl particles given
by the two-spinor ¥, . The most general Weyl Lagrangian is

Lw=Y(—i"9, +do*)V¥, (55)
where d is real.

The operators that commute with — 5" d, + do° are
i3y, Ly +0*/2=1i/2 3; + ¢’/2 and L,;. Under the rotations
L,;, ¥ does not change, ¥'(x') = W(x). Under the rotations
L,;, ¥ must be multiplied by exp(i€ - o). If we had chosen
the frame 8 the commuting operators would have been L,,

and L,; + 0°/2. In either case, the angular momentum oper-
ator is

J,-=L”+L2i+aj/2. (56)
So the spin angular momentum is given by
S, =d/72, §°=3il,. (57)

The number of Weyl modes for a given sis 2(s + 1)%, as is
also true for a Majorana particle. For a four-component
Dirac particle, the dimension is 4(s + 1).

For a Majorana particle with a mass term, the Lagran-
gian is
Lu=Y—ic"d, +deW + mW¥, + ¥, ¥%). (58)

This can be written as a four-spinor with a wave function of
the special form

¥,
v, = $+) (59)
In Minkowski space, the spatial dependence of ¥, factor-
izes off as a complex number exp{ — ip™x,, ), and the remain-
ing spinor can be made real by a suitable choice of gamma

matrices. This cannot be donein R X.S 3, but Majorana spin-
ors can be written as in (59).
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The Dirac Lagrangian can now be written down, since
such a fermion is a combination of two Weyl particles cou-
pled by a mass term:

Lo =V (—it"3, +d,3W, +V,(—ic" 3, +d,d°)¥,
+ m(¥,*,, + Wuaz @-2&)

=Wy 3, —m+e Y’ + eV, (60)
where

(%2)
Y=|_"],
\Ilza

e, =d, +d))2, e;={d,—d))/2.

Once again e, and e, are arbitrary, though a theory with
some additional symmetry may constrain them. For exam-
ple, it is found' that with a nonzero mass term, the Lagran-
gian is supersymmetric if and only ife, = — 2.

The symmetries of (60) are generated by id,,
L; + } €507, and L,,. Hence

(61)

J =€yl —ix; 3, +07/2). (62)
The spin angular momentum is
S, =lego’*, SP=11,. (63)

A. Wave function, dispersion relation, and propagator

Consider first a Weyl fermion. The field ¥, can be ex-
panded as

W= z [b,,\ll+(n)e‘“’*'"" + dn+ \I/—(n)e-——iw_(n)t] , (64)

where w , and w_ are non-negative and n denotes the differ-
ent momentum modes. The Hamiltonian

H=fda W(ig'd, — da°)V:

=Yoo, (b, b, +o_(n)d,fd,, (65)
provided the functions ¥ are normalized,
[a0 v, =50, . (66)

and canonical quantization is invoked.

(brby}={d}d,} =6, . (67)
To find the wave function, it is convenient to consider eigen-
vectors of io’ d;. These are of two types. The y (s, 5y, 5,) have
non-negative eigenvalues and the y _(s, s,, 5,) have negative
eigenvalues. For a given s, there are n_ (s) = (s + 2)(s + 1) of
the vy, with eigenvalue s and n_(s) = s(s + 1) of the y _ with
eigenvalue — s — 2. The total number is 2(s 4 1)2. The y{s)
only contain (s/2, s/2) scalar functions. Normalized expres-
sions for them are

cos 0 (s, 51)S (5, 5, 52)
X e 55 52) = (sin 0, (s,5)S(s, 5, + 1, sz)) ’
s+ 1+ (2.&', + l)]l/z , (68)
2(s+ 1)
s+ 1F (25, + 1)]"2
2s + 1) )

cos @, (s,5;) = [

sin @, {s,5,) = + [
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Ineachcase, — s/2<s,<s/2,butfory_, —s/2 — 1<s,<8/2
and for y _, —s/2<s,<5/2 — 1.
A few examples are presented:

i’ 3, =0: y,(0) — ((1)) ((1)) ,

| 2Y2\ (2Y%) (0
"fai:l‘)“(”_( 0 ) ( 0 ) (21/2u*)

0 u* v*
) (5) (2 )

o “) ()

icdd, = —3:y_(1) -(—v) E
The spinors have the completeness relation

z X;t (S, Sl’ sZ)Xl_ (S’ Sl! 52) = 5” + (S)IZ . (70)
The energy of y{s) is

E. ()= +(s+1)—d—1. (71)

In terms of these spinors, the Feynman propagator is much
simpler than in flat space.

SelE,s, £)=i/[-E—d~1£(s+1)]. (72)
There are no Pauli matrices to worry about.

The reason for the notation E, is that E, >0 and
E_<0,if — 3<d<0. It is convenient to make this assump-

tion.
Now look at a Dirac fermion. The Hamiltonian

H=Jdﬂ W(— iy 9, — e, )" — e,°)

=Za)+(n)b,,+ b, +eo_(n)d,; d,, (73)
provided the ¥ are normalized according to (66) and
V= —¥Hl, (74)

We define wave functions WV _(s,s,,5,0) and
V_{s, 5, 55, 0) with energies E_(s,0) and E_(s,0). Here
o = + 1, depending on whether ¥(s) is composed of y _, (s) or
¥ —(s)- The dimensionalities of ¥ _ (s,0) and ¥ _ (s,0) are there-
fore both 2(s + 1)%. Explicitly,
W, (551,5,0) = (c?s O (5) 2o (5 50 SZ)) (75)
sin 0, (s,0) ¥, (s, 5y, 5,)

and
E, (50)=e, + [(A,(s) — erf’ + m?]'2, (76)
where A,(s) is the io’d; eigenvalue of y,(s). That is,
A, 5)= +(s+1)— 1. The# (s,0) are given by
TV (5) +4,05) — e
[{ £ v, ls) + A, (5) —er)* + m2] /2’

cos @ (s,0) =

m
[(£v,(s) + A, (s) — e, + m*]*/? ’ {(77)

sin @, (s,0) =

vo(s) = [Aols) — &) + m*]'2.

The completeness relation for these spinors is more
complicated but has a block form
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2 \l/:t (S, sp S2, 0)\1’; (S’ Sl, Sz, 0')

$1,82,0

[(s+2)cos’ 8, (5,4 1)
s+ 1 +scos? 8, (s,— ]I,
T2 Y [(s+2)cosf, (s, + 1)sin6, (s,+ 1)
+scos@, (s,—sinf, (s, — ]I,

Just as in (72), the propagator has a simple form. From (75),

iy d¥(s,0) = — A, (s Y ¥(s,0), (79)
and we find
So(E, s0)=i-2— L+ e — A P, (80)

(e, —E) — (e, — Ao ()

The energy, wave function, and propagator simplify if
¢, = — l and ¢, = 0. Then the square of the Dirac operator
is exactly the Klein~Gordon operator, and

E, (5)= + s+ 12 +m?"?, (81)
0, (s,o)=tan"'{m/[E, +ois+1)]}, (82)
Sp(E, 5,0)= —i {[E+ols+ 1’ V/[E*— s+ 171} - °.

(83)

B. Interactions

The interaction terms for fermions look exactly as in flat
space,

Lyo =8P,V 42,0,V (84)
where ®; (®,) is a scalar (pseudoscalar).
For vectors,
Lov=—gV, V"V, (85)
Lov =8V, (P* "D — i I"DP*D)
— &V, V"D*D — 2egV, 0*d . (86)

The last term is needed to make the Lagrangian (23) gauge
invariant.
Without a vector mass and the nonminimal terms in
(34), the theory is gauge invariant,
Y —>exp(—igH V¥,
o —exp(—igS) P,
V,—>V,+d.5,
where S is a scalar harmonic function with an arbitrary de-
pendence on time.
Gauge invariance implies the existence of conserved
currents. These are

Jr=Uy"Vy,

(87)

(88)
J7 = i(®* "D — I "D*D) — 2gV DD + 2eg™D*D .
(89)

They are conserved by the Euler-Lagrange equations of mo-
tion. One therefore expects Ward identities to hold as usual.

C. Regularization

For the purposes of numerical analysis, one must define
a high-momentum cutoff that is parity and rotation invar-
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[(s4+2)cos @, (s,+ 1)sinB, (5, + 1)
+scos@, (s,—1)sinf, (s,—1)]I,
[(s+2)sin* 8, (s,+ 1)
+ssin’* @, (s, — 1],

(78)

r
iant. Choose a large number s and keep all functions up to
S'(s), W(s), and V £ (s). This is a system with a finite number,
about 5, of degrees of freedom that can approximate the
behavior of any flat-space theory, provided all mass param-
eters m; in the theory satisfy

R'¢m,«sR . (90)

Perturbative renormalization can be done in a similar
way. Dimensional regularization is inapplicable here since
we want the special properties of R X.S 3, and Pauli-Villars
regularization does not work in gauge theories. But since we
have broken Lorentz symmetry to begin with, an energy cut-
off can be imposed to make divergent integrals finite. There
is no need for similarly cutting off the spatial momentum
and, in fact, it might be convenient not to do so, in order to
use the completeness relations of the spherical harmonics.

Hl. MATRIX ELEMENTS

In this section, we derive formulas for some typical ma-
trix elements. They all reduce to spherical integrals of the
product of three scalar functions.? This can be simplified to
the product of two 3-j symbols® with a reduced matrix ele-
ment. Define

X(rst; rysy215728,15)

- f dQ S (1S 5, 510 SIS (1)

ro st r st
=R (rst)] 2 2 2 2 2 21, (91)
ST DR 41 rn s oL
with
Rir,s,t)=(—1P[(r+ Dis + Dt + 1)]"/* (92)

and a = (r + s + t)/2 must be an integer for the above inte-

gral to be nonzero. Henceforth, whenever possible, we will

simply write I(r,s,¢,), the other arguments being understood.
The matrix elements we calculate are

) J dQV(rry r)¥(ss, 5,)D(t 1, 1,)

I? = f dQ VH(r)\W(s)d(r),
(93)
I® = fdn W(riy'¥(s)d,d(t ),

I¥ = J dQ Y(riyWis)V £(t).

The I will also have arguments (rst,7,s,2,;7,5,1,; po - - -) but
we only write I (r,s,2,; po - - +) in the following.
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Consider Weyl fermions first. Then, by Eqs. (42) and
(68),

Iw(z)(rlsltl;pa)

= — LY(rs,2; p0)
- [aoxr xwem
= (—1)"*""[cos 8,(r,r)cos 8, (s, s )I( —r;5, ;)

-+ sin 0p(r,r1)sin 6,(s5,s)I(—r,—15,+112)].

(94)
J

L ®(rst;; po) =JdQXp+( ra'y, (s)3,®(t)

= — (= 1)"*"2it,[cos 8, ( r,r;)cos 8, (s, s )I( —ry s, t) —sin6,(r,r)sin6,(s, s )I( —r, — 15,4+ 1¢,)]

—(—1)"*"id(t, — t,)cos 6, (r,ry)sin 6, (s, s))I( —rys,+ 12, —1)

— (= 1)"*"A(t,t,)sin 8, ( r,ry)cos 0, (s, s )I( —ry 5,8, + 1),

Iw(4)( rlsltl; pUT) - f an Xp+ ( r)O"X(S) V"',- (t)

= (—1)"*"cosa(st,)[cos 6,(rr)cos 8, (s,s))I(rst—1, —r s ty)

+ sin Hp( rr)sin @, (s, s)l(rst—7, —r,—1s5,4+1¢))]
+ (= 1) +"2'25in @, ( r,ry)cos 6, (s, 5,)sin a(t,t,)cos B (4t M(rst—71 —ry— 15,8, + 1)

+ (— 1)+ 2Y%c08 6,(rr)sin g, (s, s)sina(tt)sin B (Lt )Mrst—71;, —rys;+ 14 —1).

To calculate I®, we need (11), 8,S(41,,1,)
= —2iL,;S(¢,¢,,2,). Define
A(tt) = [(t+2t, +2)(t —2t,)]1V2. (95)
Then
) —2it,S(t) —iA(t, —t) S(t;— 1)
73,8t =( P )
WS(1) —iA(L)S(E + 1) 2it,8(t,)
(96)
and
97)
(98)

Now I® and I can be further simplified in that, instead of all four of the I( — r, 5, £,), it is enough to know only two, for
example, I( —r; 5, ¢,) and I( — r, — 1 5, + 1¢,). This is because of the relations

A )I(—r =15, +1)= —A(r,—r,—DI(—r;5:8)) =A@, s)I(—r =15, +1¢),

(99)

A, —tDI(—ry s+ 1, - 1) = —A(@s,—s5;,— DI —ry5:8) —A(rr))I(—ry— 15, +1¢)),

which follow from a recursion formula for 3-j symbols,

ACr)ICr + 1s ) +A(s, s))I(r s+ 18) + At ))I(r s, t, + 1) =0.

For Dirac fermions, the integrals (93) can be expressed in
terms of the I{”:

I,V risity; po; p'o’)
= fd() Wp (ror,ryp )Y, (5,59, 52,0") P (1,1),1,)

= sin[0,,( rr,p') +6,(s5,0')]
Xlw(z)( rsit p'o’),
I, P(rsty; p0;p'0')
= —cos[8,(rr,p') —6,(s,5,0)]
XL, P(ry, spt;00),
I rysyty; pos p'o’)
= —cos[0,(rr,p')+06,(s5,0)]
XL, P ry, st 0°0)
In“(ry, syt p03 p'0")
= —cos[6,(rr,p') +0,(s,5,0")]

Xlw“)( ry, Spl pO'T) . (101)
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(100)

|
IV. DISCRETE SYMMETRIES

In flat space, we say a Lagrangian has a discrete symme-
try if it remains invariant under the transformation. In
R X.S?, things are not as simple. For example, under parity

V- -9, (102)

so the fermionic Lagrangian must change in form. We re-
quire that physics should remain the same and that the quan-
tum fields and the creation and destruction operators should
transform in the same way as in flat space. The Lagrangian
must then change if necessary. In other words, one is looking
for symmetries of the theory, not the Lagrangian directly.

A. Parity
Under parity, the coordinates transform as
Xy X, =1 Xy — X, . (103}
For a scalar, we may define
Dt, x4, x;) — DP(t, x4 — x;) (104)
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so the Lagrangian (23) does not change. This is also true of a
vector particle,

Vo(t, x4, xi) b V()(t) x4) - ‘xl') ’

(105)
Vilt, x4 x;) = — Vilt, x4 — X;) -
For a Dirac particle,
W(t, x4, x;)>V°W(E, X4 — X)) (106)
and the Lagrangian transforms as
ey —> — €,
e,—>e,,
W(x)iY° 0o + i/ 3\ — m + e ™Y + €Y\ ¥(x)
=Ny 8y + iy P — m — ey’ + e NWx) .
(107)

It is important to understand that the e, term does not vio-
late parity, but simply that it appears with the opposite sign
in the parity reversed coordinate system. The observer in the
new system finds particles with the same energy but parity
reversed wave function. The ¢, and e, terms have a R !
hidden in them. They are due to the curvature of the space
and the twist of the coordinate frame. So it is not surprising
that they change sign under a discrete symmetry. A term like
m'y®, where m’ has the dimension of mass but is unrelated to
R 7! and survives in the R— oo limit, would certainly vio-
late parity.

A similar situation arises with charge conjugation, this
time even with the scalar Lagrangian.

B. Charge conjugation

Consider the charged scalar field expanded in terms of
creation and destruction operators.

© =3 [aln)S, (nje* " +c*(n)S_(n)e -] .

(108)

The S (n) are scalar functions and a and c are the particle
and antiparticle destruction operators. Under charge conju-
gation, we require

aec, Pod*. (109)
This is a symmetry if in (23},

e—>—e. (110)
For the Dirac particle

V= z [b (Pl)‘l’_,_(n)eiou(n)t +d +(n)\ll_(n)e'i“’—‘""] ,

we want

¥ — i Pr (111)
This implies

e,—>e,, e——e,. (112)

This can also be understood as follows. Charge conjugation
is equivalent to interchanging the two Weyl particles in ¥,

v v
\v=(_“7)_»(_2",), d,<>d,.
7, v
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(113)

Hence

e,—e, but e——e.
For the vector particle,

Vs — V- (114
So in (34),

i =13 (115)

which is consistent with (110), assuming the f; term only
appears by spontaneous symmetry breaking.

C. Time reversal
This means
t——1t.

For the scalar field,
D, x) > P(—1,x),

a,c—a,c,

(116)

(117)
e—e.

Thus the Lagrangian remains unchanged. The Dirac and
Weyl Lagrangians do not change either.

d—d, e,e,—e e,. (118)
The wave functions transform as

Yy (4, x) = iy'P¥p (— 1, %),

(119)

Yy (5, x) > ¥y (— 1, x) .
For the vector particle,
Volt, x) = Vol —t,x), Vit,x)—>—V,(—1tx). (120)
So

fofsimfufss fom>—0r. (121)
D.CP

All the nonminimal terms in the scalar and Dirac La-
grangians change sign:

e—>—e, epe,—>—e,—e,.

(122)

The latter also follows from (60) and (61), since the Weyl
theory is CP invariant:

W(t, x4, x;) > ia’z\ll*(t, X4 — X;)

but

d——d. (123)
For the vector particle

h—hs Hfi—>—fo—fe (124)

The above rules can be summarized in a simple way if we
set the f] and f, terms equal to zero in the vector Lagran-
gian, as in fact they must be, if one demands gauge invar-
iance. Then the rule is that under CP, all nonminimal terms
(e,d.e},e,, f3) change sign and under T, none of them change
sign.

V. FERMIONS AGAIN

We now rederive the Dirac equation using the tetrad
formalism. This will prove the invariance of the equation
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under any coordinate transformation.

The sphere.S ? is the manifold of SU(2), as shown by the
parametrization

U=x,+ix+0. (125)
The SU(2) X SU(2) transformations act on U from the left
and right

U =u0,0U;. (126)
Hence SO(4) is isomorphic to SU(2)XSU(2) mod Z,.
Further, J corresponds to the diagonal subgroup U, = U,
which is SO(3). Since S * is a group manifold, one can take the
Maurer—Cartan forms as a basis for a triad.® The coordinate
frame we have chosen throughout is the left-invariant
Maurer—Cartan form:
Q=g 'dg=ide,
e, = —sin{a + B)d6 + sin 6 cos 9 cos(a + B )[da — dP],
¢ = cos(a + B) d6 + sin 8 cos & sin(a + B)[da — dB],

e = —cos? 8da —sin® 8dB,

& =dt. (127)
Then the spin-connection one-form has the simple structure
w¥=0, w= —e¢u e, (128)
Hence
Dy =3,
D, =e¢* (aﬂ + %‘w#jka"")
9 — é e Pepel o (129)
=3, +}eul vl
The Dirac operator is
iy"D,, =iy" 3, — 377 (130)
so the minimal Dirac Lagrangian has
ee= —3, e,=0. (131)
For the Weyl equation,
= —1e*o*3°,
(132)
i -
D, =4, + - o'a°,
S0 one gets
—ig"D,, =ig™d,, —30°. (133)

We use the two-component notation henceforth. The
covariant derivatives are

D, =3, +—;—sin(a +B)o' — %cosm +B)o?,
D,=9, — %sin 8 cos 8 [cos(a + B)o!
+ sin(a + B)0?] +%cos2903, (134)

Dy =95 + —;—-sin 8 cos 0 [cos(a + B)o!
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+sin(a+/3)al]+ésin2003.

For application to supersymmetry, we must consider
the modified covariant derivative, u = 6,a, B,

~ i .
D, =D, +—de,. (135)

The extra term is proportional to the Ricci scalar R, * in
general.

In our case, R,* = — 6. Global supersymmetry can
only be defined if there exist two Killing spinors £ satisfying

D,£=0. (136)
The modified derivatives satisfy

[D,,D,]=0, (137)

but this does not guarantee the existence of the spinors. In
fact, one can solve (135) and (136) with either sign. With the
plus sign,

D,=9,, &= ((1)) and ((1)) (138)
With the minus sign,

= u* v*

D,=2D,-4,, §=(_v) and (u) (139)

This is another great advantage of our choice of axes as
opposed to the usual one, which is

e'=df, e*=cosfda, & =sinbdB, (140)
Then

‘D0 = ae ’

D, =4, +ésin003, (141)

D, =9, +écos€az.
Once again, one can define modified derivatives

I)g = De i —;" 01 »

5a=Daiécosd902, (142)

These commute but there is no continuous Killing spinor
corresponding to them. In fact, Eq. (136) implies

(@5 +1=02 +P6 =05 +45=0, (143)

which means £ has sines and cosines of ¢/2 and £ /2. This s
unacceptable in S 3, which is simply connected.

Of course, (140) and (141) also give a Dirac equation
with

D, =34,,

D2=se09c9a+%tan003, (144)

Dy =csc 83, +-—;—cs0902.

This is much more complicated than (60) and difficult to
solve.
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A. Conformal transformations

Conformal transformations® of the metric change the
physical manifold, unlike coordinate transformations that
merely amount to relabeling. A conformal transformation is
defined by a continuous, nonzero, real function €}z, x),

8u(2) = & l2) = 0(2) 8,1, (2) - (145)
The scalar Lagrangian is conformally invariant if

e=0 and m?>=1.

The vector Lagrangian is invariant since we are in four di-
mensions, provided m?, f,, f, f, are all zero.

The fermionic case is more interesting. We used the fact
that the manifold is R X S and chose a particularly simple
tetrad field. One might therefore think that even the minimal
massless equation (130) would not be conformally invar-
iant. This is in fact true, except for two special cases. In the
first, {) depends only on time, and in the second,  is a func-
tion of space alone which is such that it does not change the
sign of the curvature.

More precisely, in the second case, {2 must be such that
each sectional curvature remains strictly positive and
bounded away from zero everywhere. The sectional curva-
ture at any point is defined'® as the Gaussian curvature of the
surface generated by two vectors at that point. In our mani-
fold, the time direction is flat so there are only three indepen-
dent sectional curvatures to consider. If all three are positive,
the spatial manifold locally looks like a region of S, so the
previous analysis works. In particular, one can define a con-
tinuous tetrad field which satisfies (128). With the above
property of the curvature, the manifold is bounded and has
the topology of S* globally.

If ) is a function of time alone,
ds* = R¥Y1)[ —d7* +dO? + cos’ Oda’® +sin’ 6 dB?] .

(146)
Changing variables to

t=de'R(T'),

we get the Robertson—Walker metric for a space of positive
curvature

ds’ = —dt? + R(t)[d0?% + cos® da® +sin? 0dB?] -
(148)

The Lagrangian and action are, of course, invariant,

z=¢(§w§m —%r‘y")‘l‘,

(147)

(149)
S=fd¢ dQ(—g)'? ZL(r,Q),

and the wave function is given by the conformal transforma-
tion
¥(r; R = )[R (1]~ ¥2¥(r). (150)
It remains normalized with the volume element R 3(7) dQ.
If Q1 depends only on time, we may consider massive
fermions also, and give d, e,, and e, arbitrary values. The

Lagrangian is the same as in Sec. II, except that the deriva-
tives are
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am = L a'r ’ —l’ ai ]
R(7) R(7)
the four-dimensional volume element in the action is
R *(r) dr dQ, and the wave function has the factor R ~3/2,
As a special case, consider de Sitter space

(151)

R=cosht=secr. (152)

This describes the manifold
— X+ +xx+xi+xi=1, (153)

with the pseudo-Riemannian metric

ds? = —dx% +dx? +dx3 +dx} +dx? . (154)
To get back to (148), parametrize as in Sec. I A,

x, =sinh ¢,

x, + ix, =cosh t cos 8 &%, (155)

x, + ix, = cosh ¢ sin 9 € .

This space is of great interest cosmologically. Quantum field
theory in it has been studied by several people beginning, as
often, with Dirac."" Its symmetry group has ten generators,
six rotations, and four boosts.

The action (149) describes fermions adequately, but it is
not symmetric under the full de Sitter group but only under
the subgroup that leaves x, invariant. The boosts act as rais-
ing and lowering operators between the different SO(4) re-
presentations. The wave functions corresponding to a com-
pletely symmetric action will be complicated combinations
of the ones derived in Sec. II.

From the point of view of this paper, the extra symmetry
of de Sitter space is the accidental result of a special time
dependence of the radius. Our formalism only takes advan-
tage of the special features of S 3.

B. Weyl spectrum

We point out an interesting feature of the Weyl Lagran-
gian that is relevant to supersymmetry. As in Sec. II, restrict
d to lie in the interval [0, — 3]. Then the spectrum with d
and — 3 — d are very similar. The energy, for d in the above
range, is a non-negative integer E. For any energy, the La-
grangian with d gives as many particles (antiparticles) as the
Lagrangian with — 3 — d gives antiparticles (particles). In
terms of E, the precise numberis (E +d+ 1)(E+d +2)
particles and (E — d — 1) (E — d — 2) antiparticles for the
first Lagrangian.

This symmetry resembles CP but is actually different
from it. The particles and antiparticles that have the same
energy, have different wave functions. In fact, the wave func-
tions belong to adjacent representations of SO(4).

The minimal Lagrangiand = — 3 is self-conjugate. For
each energy, it has the same number of particles and antipar-
ticles. This is also true for the scalar with e =0 and is a
general feature of minimal Lagrangians.

The conjugate cases with d equal to — 1 and — 2 are
specially interesting. If, for each Lagrangian, we count the
particles and antiparticles together, then for any energy E
the number of modes is 2E 2. Further, E is a positive integer.
This last property is shared by the two conformal bosons, a
massless complex scalar with ¢ =0 and a massless gauge
particle with all f; = 0. The fermions and the bosons have
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the same spectrum, though not the same dimensionality.

It turns out that under supersymmetry, the conformal
scalar and vector transform into thed = — 1 and — 2 fer-
mions. Which boson turns into which fermion depends on
whether the Killing spinors (138) or (139) are chosen as the
anticommuting parameters. For reasons given elsewhere,
the correct choice is (139). Then the scalar and thed = — 2
fermion transform into each other and similarly, the vector
and thed = — 1 fermion.

ACKNOWLEDGMENTS

I thank R. Cutkosky for many stimulating discussions.
This work was supported by the U.S. Department of
Energy under Contract No. DE-AC02-76ER0306.

482 J. Math. Phys., Vol. 27, No. 2, February 1986

'D. Sen. “Supersymmetry in R X.S3,” CMU preprint, 1985.

?R. E. Cutkosky, J. Math. Phys. 25, 939 (1984).

Y. Hosotani, Phys. Rev. D 30, 1238 (1984).

‘L. C. Biedenharn, J. Math. Phys. 2, 433 (1961).

*S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).

%Y. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton U.P.,
Princeton, NJ, 1983).

T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66, 213 (1980).

3A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton
U.P., Princeton, NJ, 1957).

°N. D. Birrelland P. C. W. Davies, Quantum Fields in Curved Space (Cam-
bridge U.P., Cambridge, 1982), Chap. 3.

193, Milnor, Morse Theory (Princeton U.P., Princeton, NJ, 1969), pp. 100~
105.

P, A. M. Dirac, Ann. Math. NY 36, 657 (1935); M. Gutzwiller, Helv.
Phys. Acta 29, 313 (1956); F. Giirsey, Group Theoretical Concepts and
Methods in Elementary Particle Physics (Gordon and Breach, New York,
1964).

Diptiman Sen 482



On the classical limit of phase-space formulation of quantum mechanics:

Entropy
Lipo Wang

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803

(Received 30 May 1985; accepted for publication 9 September 1985)

The classical limits of phase-space formulation of quantum mechanics are studied. As a special
example, some properties of both quantum mechanical and classical entropies are discussed in

detail.

I. INTRODUCTION

It has been common knowledge that quantum mechan-
ics approaches classical mechanics when Planck’s constant
approaches zero. Rigorous investigations have been carried
out during the last decade by various authors.'™ So far the
methods employed are restricted to the quantum mechanical
operator techniques and the questions considered are mainly
partition function and ensemble average. The purpose of the
present work is to examine the general problem of the classi-
cal limit # — O by means of the so-called phase-space for-
malism of quantum mechanics. With the help of the general
results, the unsolved problem of the behavior of quantum
mechanical entropies at the classical limit is discussed.

The phase-space formulation of quantum mechanics
has found many applications, particularly in statistical me-
chanics and quantum optics. Its basic feature is to provide a
framework for the treatment of quantum mechanical prob-
lems in terms of classical concepts. Following the appear-
ance of the well-known Wigner distribution function,” many
other distribution functions have been considered. For in-
stance, the antinormal-ordered (Husimi®) and the normal-
ordered distribution ( P distribution) functions,” the anti-
standard-ordered (Kirkwood®) and the standard-ordered
distribution functions.’ Each of those distribution functions
was created for a particular purpose.'’

Considering the properties of entropies, Wehrl stated,
“It is usually claimed that in the limit # — 0, the quantum
mechanical expression tends towards the classical one, how-
ever, a rigorous proof of this is nowhere found in the litera-
ture.”'! In a recent paper,'? Beretta took the first attempt at
this question. But some weak points can be found in Beret-
ta’s investigation, as shown in our paper. In fact, both quan-
tum mechanical and classical entropies are singular at the
classical limit, however, the difference between them does
vanish at this limit.

The paper is organized as follows. In Sec. I we briefly
review the concepts of the phase-space formalism of quan-
tum mechanics. Some useful results are derived. In Sec. 111
the classical limit of quantum mechanical description is con-
sidered. We discuss the relation between quantum mechani-
cal and classical entropies in Sec. IV. Conclusions and dis-
cussions are presented in Sec. V. Also, in the Appendix, we
wish to make some comments on the problems of complete
classical phase-space representation of quantum kinematics
and spectral expansion in the classical limit # — O discussed
in Ref. 12.

We are going to restrict our discussion to the case of one
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degree of freedom so that the Hilbert space is # = L 2(R)
and phase space is Z = R %. But we wish to emphasize that
the arguments can be easily extended to the case of many
degrees of freedom.

Il. THE GENERAL CLASSICAL PHASE-SPACE
REPRESENTATION OF QUANTUM MECHANICAL
OPERATORS

The mathematical form of the general question about
the classical phase-space representation of quantum me-
chanical operators is stated as follows. Suppose A and B are
two Hermitian operators. Find a pair of mappings, © and ©',
say, on phase space, which have the following properties:

6(4) = alg, p), (1)
o'(B)=b"4g,p) @)

and
Te(d ) = j f algs pMdg dp, o)
—-—f f alg, p)b (g, p)dq dp. @

This problem was solved satisfactorily by Agarwal and
Wolf,? but their results were mainly presented in terms of ¢-
number space, annihilation, and creation operators, which is
convenient for applications in quantum optics. For the sake
of statistical mechanics and discussions in the present paper,
we will derive the similar results in terms of phase space, i.e.,
g and p, language.

Denote the inverse mapping of © by £, i.e.,

eN=00=1, )
then®
A =274 [atg. PAtg — 0.5 — pig dp m
where the A operator is defined by
ANg —§,p' —p)=Q[8lg' — 9)6(p’ —p)]. (8)
Explicitly it can be written as follows:
A™Ng' —§g,p' — D)
= {20~ ffﬂ (u,0)
Xexp[ — ilulg’ — q)ﬁ+ op —p ))] du dv. 9)
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TABLE I. The filter functions Q(u,v) for the commonly used rules of associ-
ation, where the symbol (§"™),, denotes the Weyl-symmetrized form of the

product §°p™, e.g., (§°B). = @D + 4G + P§’)/3.

Rule of association Qu,v)
Weyl P —@p"), 1
Standard 7 expl — iuv/2#)
Antistandard g —pg" expliuv/28)
The inversion is
A P
a(g, p) = TrlAA'Yg — §, p — p)). (10)

Each mapping is characterized by a so-called filter function
Q(u,v) (Table I), which is chosen to satisfy the trivial normali-
zation condition

0(0,0) = 1. (11)
The operator A¥(g — §, p — p)is defined in the same fashion
as Eq. (9) with filter function

Qu,p) = [ —u, —v)] " (12)

The problem of expressing an operator in an ordered
form according to a prescribed rule is equivalent to an appro-

priate mapping of the operator on phase space.
The second mapping (' is determined by

B [b'.p18% ~ 4.p ~ Pldg ap, (13)
with inversion

b'(g, p) = 2k Te(BA™g — §, p — ). (14)
It is clear that

0 =)o (15)

Next we wish to find the relation between two different
mappings 2, and (2, say. The A-operator can be expressed in
a slightly different form

A*g—g,p—p)
= (Zﬂﬁ)‘szﬂ j(u,v)ﬁ (u,v)exp(_—l(q};‘iﬂ) du dv,
(16)
wherej =1, 2,
D (u,0) = expli(ug + vp)/#) (17)
is the well-known displacement operator if we define
a = (28)'%(@q + i), (18)
and
a= (2% —u+ ) (19)
We observe that
aig g, p — ) = (i)~ [ (S222) 000D
0, (u,v)
Xexp( — ilqu + pv)/fi)du dv
— )2 O,ihd /6q,t:ﬁ a/dp)
O, (i 3 /3q,i% 3 /dp)
X ffﬂl(u,vlﬁ (u,v)exp(—_—i(q%u—,ﬂ)
484 J. Math. Phys., Vol. 27, No. 2, February 1986

du do— Q,(ifi 3 /3q,iti 8 /Jp)
N,(i# 3 /3q,i% 3 /dp)
X Mg — g, p — p). (20)
From Eqgs. (10) and (20) it follows that
a™ig,p) = Ly i i#-2- ) g, 21
dq dp
where
Lyi(x, y) = Qlx, p)/Qy(x, y). (22)

Letting {1, — Q, j = 1, 2, and using Eq. (9), we obtain the
following differential relation between a'*)(g,p) and
a™g, p):

a(ﬂ;)(q’p) =L12( . (9

» i _ s i ( (¢} ) )
if P i % ) a®™(q,p).
(23)
In particular, we choose A= P, which is the density op-
erator describing the system of interest, then a(g, p) serves
as if it were a classical distribution function. . Conventionally
b'(g, p) defined by Eq. (13) is called the Q-equwalence of
operator B and a(q, p) defined by Eq. (10) the 0-distribu-
tion function, which is usually denoted by P (g, p). Thus

the expectation value of a quantum mechanical observable B
can be written in a classical form

(B) =Tx(pB)
= j f b "®g, )P g, pidg dp. 24)

Also the distribution thus defined satisfies the normali-
zation condition

J f P™g, pldg dp = Tx(p) = 1. (25)
For example, if we consider the simplest case where
Q(up) = Qup) =1, (26)

then it leads to the famous Wigner distribution function and
the Wigner equivalence (denoted by suffix w)®:
) du.

b""”(q,p)=f<p— %I§Ip+ ;)eXP(
(27)

The Wigner equivalence of an operator F= 3? can be
expressed in terms of those corresponding to B and C
through the Groenewold theorem'*

1% (g, p) = b* (g, p)exp(#G /2))c’ (g, p), (28)
where

5=(5) () - (3)(5): @

and the arrows indicate in which direction the derivatives
act.

One of the major advantages of the Wigner equivalence
is that it leads to the simplest forms for the quantum correc-
tions to the corresponding classical quantity,'# and therefore
is very useful to the semiclassical calculations.’s It can as-
sume negative values, which makes it quite different from
classical distribution functions.

Another choice of the filter function leads to the anti-
standard-ordered distribution function® (see Table I),
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which has the important property that it is non-negative
everywhere in phase space.'® The class of non-negative
quantum distribution functions has been shown to be rather
small.'’?

. CLASSICAL LIMIT # — 0

With the help of the formulas mentioned in the Sec. II,
we now consider taking the classical limit # — 0.

First of all we observe from Egs. (11), (22), and (23) that
any phase-space distribution function that describes the
same system, approaches the same limit at # — 0."® Also,
any phase-space equivalence (resulting from any rule of asso-
ciation) of the same quantum mechanical operator ap-
proaches the same limit at # — 0. Explicitly we have

lim b g, p) = b g, p), (30)
F ]

and
lim P®(g, p) = P!g, p). (31)
%O

Of course the necessary and sufficient condition for any of
Eqgs. (30} and (31) to be true is that the appropriate limit
exists, which will be assumed in the following discussions.

Equation (31) thus defines a classical distribution.

P“Yg, p). We can prove that P*(g, p) is real and non-niega-
tive everywhere in phase space simply by choosing a real and
non-negative quantum distribution function, e.g., the anti-
standard-ordered distribution function, on the left-hand side
of Eq. (31). In the case of a canonical ensemble, P Vg, p)
turns out to be the Maxwell-Boltzmann distribution.’

Now we would like to consider the properties that the
“classical functions” b(g, p) and P'“"(g, p) possess. The
conclusions at which we just arrived make it enough to re-
strict ourselves within the Wigner equivalence and distribu-
tion function.

By using Egs. (28) and (29) we get the Wigner equiv-
alence of B", where n is a positive integer,

(B = b "wg, plexp(#G /2i)B "~ 1)
= b ")g, plexp(AG /2i)

X [b"*Ig, p)exp(#G /2i)B"~3)*]. (32)

Obviously, exp(ﬁa /2i) approaches its identity at # — 0.
Hence

lim (B) = (6“g, )" (33)

It is easy to see that for any infinitely differentiable func-
tion R (t ), we have the following useful relation:

lim(R (B))® =R (b " (q,b)), (34)

where suffix Q) denotes an arbitrary (}-equivalence.
On the other hand we have

T pR B) = [ [ Ptg. pUR B))dq dp. (35)
Let # — 0 at both sides

lim Tr(5R (B)) = (R (B))a, (36)
where
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(RE, = f f PG, IR (bg, pdgdp,  (37)

and its existence has been assumed.

IV. RELATION BETWEEN QUANTUM MECHANICAL
AND CLASSICAL ENTROPY

Traditionally entropy is introduced in the phenomeno-
logical thermodynamical considerations based on the sec-
ond law of thermodynamics. The conception of entropy thus
defined frequently leads to some obscure ideals.'? The well-
known heat death provides a good example. In classical sta-
tistical mechanics the Boltzmann and the Gibbs entropies
are not very good ones either. The reason is that they never
lead to the third law of thermodynamics. Thus a correct
definition of entropy is only possible in the framework of
quantum mechanics.

If a system is described by a density operator p, its en-
tropy is then defined quantum mechanically by

S(p)= —kTr(pInp)

~ k[ [ Ptg. plan p1dg ap

—k f f P, p)(ln (%))(W)dq dp — k In[2rH).
(38)

Noticing that
(p/2mhi)*) = P)g, p), (39)

we find, according to Eq. (36), that the first term in Eq. (38)
approaches

—k f f P“g, p)n P*Ng, p)dg dp (40)

in the limit # — 0. But the second term diverges to positive
infinity. If the classical entropy functional is defined by

SEPEl = _k f f P*Ug, plin PVg, p)dg dp — K In{21r#),

(41)

then the quantum mechanical entropy approaches the classi-
cal entropy functional in the limit # — 0, in the following
sense:

lim(S(p) — In(27#)) = lim(§ NP — In(2mrH), (42)
or
Lim(S(p) — SUP) =0. 43)

Let us consider a simple example, i.e., an ensemble of
harmonic oscillators with a heat bath of temperature 7. The
easiest way to compute the quantum mechanical entropy is
to use the Wigner phase-space equivalence and distribution
function.

From Ref. 20,

b g, p) = (exp( — BH )
= sech{fiwf /2)exp{ — 2 tanh{fiwf /2)H/#iw),
(44)
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and the partition function is
Z = Trlexp(— BH)

= (2mh)~! f f b"*)g, p)dg dp

= (2 sinh(#iwB /2)) . (45)

Hence the Wigner distribution function is an immediate
result of Egs. (44) and (45),

P'lg, p) = (p/2h)"

= b""g, p)/(27HZ)
= (7#) ! tanh(fiwp /2)
Xexp(( — 2/fiw)tanh(fiwf /2)H ), (46)
where the Hamiltonian is
H=p*2m + ma*§*/2. (47)

The quantum mechanical entropy can be obtained by

S(p)zk(lnz—ﬁ ‘9(1?“2)

= (kB#iw/2)/tanh(#iwB /2)
— k In(2 sinh(fiwf /2)). (48)

The Wigner distribution function approaches the classi-
cal canonical distribution function at i — 0,

lim P'“lg, p) = (6B /2mlexp( — BH ) (49)

as predicted by the general considerations. The classical par-
tition function is, by definition,

Z = (fiwf)~". (50)
Finally, the classical entropy has the form
S =k — k In(fiwp). (51)

With the help of Eqs. (48) and (51), Eqs. (42) and (43) are
maintained.

V. CONCLUSIONS

We discussed the general phase-space representation of
quantum mechanics at the classical limit # — 0. We proved
that every representation approaches the same “limit repre-
sentation” at #— 0. The open question on the relation
between the classical and quantum mechanical entropies
was answered. The differences between the classical and
quantal entropies are shown to approach zero at the classical
limit % — 0.
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APPENDIX: COMMENTS ON TWO OF THE PROBLEMS
DISCUSSED IN REF. 12

In a recent paper,'? Beretta gave a set of rather restric-
tive conditions defining a complete classical phase space rep-
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resentation of quantum kinematics for systems with both
classical and quantum mechanical descriptions. With help
of the general considerations of phase-space representation
we wish to make some comments on Beretta’s ideals and
derivations. In order to keep consistent with the notations
that we have been using, we quote those conditions in a
slightly different form.

Given a system with quantum mechanical Hilbert space
¢ and classical space &, find two mappings w(g, p; p) and
b (g, p; B) that satisfy the following conditions. For every
density operator p on 7, every well-defined Hermitian op-
erator B on 57, every point (g, p)in &, and every continuous
real function R (¢ ) of the real variable ¢,

(i) wlg, p;p) is real and non-negative, {Al)
(i) blg,p;B) is real, (A2)
i) [ [ wig 5 Al dp = Te(R (9, (a3)

fiv) f f wig, p; PR (b4, p; B )dg dp = Tr{ pR (B).
(Ad)

The purpose of seeking this representation is to show
that the quantum mechanical entropy is exactly equal to a
“classical entropy functional,” which is defined by

S} = —kf f wig, p; Pl 2hulg, p; P)dg dp. (AS)

If such a representation exists, then we choose
R (t)= — kIn ¢ and from (A10) obtain

S(3)= —kTr(pInp) = S w). (A6)

Beretta did not know whether this representation exist-
ed or not. After making a conjecture, Beretta tried to prove
that this representation was just the one to which the
Wigner, the Blokhintzev, and the Wehrl*! phase-space re-
presentations (R,) converge in the classical limit % — 0.

Although we do not know whether this representation
exists, we are able to conclude that R, is an incorrect candi-
date for the representation, the reason being that in R,, Egs.
{A3) and (A4) hold only after limit # — O are taken in the
right-hand sides.

Now we turn to consider another problem discussed in
Ref. 12: the behavior of the spectral expansions in the classi-
cal limit # — 0. The density operator can be written as fol-
lows: .

p=3 wb (A7)
where ?J = |¢;){#;] is the projector onto the eigenspace
|¥;) with eigenvalue

w; = [exp( —BE;)|/Z (A8)
and
Hiy)) =El). (A8)
By definition we have
(A9)

$3-1
j=o

where I denotes the identity operator.
The Wigner equivalences of Egs. (A7) and (A8) are
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P¥g,p)= Y w,P{"q,p) (A10)
i=o

The relation between P (g, p) and g, p; f’,) in Ref. 12 is
P (q,p) = 2m#H)"'r(q, p; P)). (Al1)
Next we consider letting # — 0. It has been shown that*?

Lim P“Aq, p) = 6(I (g, p) — I;)/2m, (A12)

where I, is the semiclassical action associated with |¢;) [i.e.,
I = (j + y)#i with y the Maslov index].

While quantization disappears in the classical limit
#i— 0, we expect

lim w;, =0, (A13)

#%—0
since w; is the probability of the system being in state |¢/;).
Thus when lim, _, , is applied to both sides of Eq. (A 10),
the order of lim,_,, and 2;°_, cannot be exchanged. Fur-
thermore it is easily verified that
a)(q.p) = lim rig, p; P = 0. (Al4

Therefore Eqs. (34), (35), and (39), the conjecture, in Ref. 12
are not valid.
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Numerical integration in many dimensions. Il
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Extending a previous line of work, a powerful computational method is found for numerical
integration in many dimensions of functions of the form F( f(x, ,x,) + f5(x2 »X3) + f3(x3 ,x,)

+ e Sy (xa X))

I. INTRODUCTION

In a previous paper’ a method for fast and accurate ma-
chine computation of d-dimensional integrals, where the in-
tegrand was of the form F(f,(x,) + f5(x5) + = + f3(x3))
was presented. The first step was to introduce an integral
transform representation of the function F so that its argu-
ment appeared in an exponential, then each of the 4 integra-
tions over the coordinates x; could be done separately, with
the final product then numerically integrated over the trans-
form variable. If n lattice points were needed for the ade-
quate numerical evaluation of each one-dimensional inte-
gral, then this method would require of the order of n’d
operations: This is enormously better than the n¢ operations
that would be required in a direct integration method. Now
this method of approach is extended to a more complicated
integrand, in which the argument of the general function F
has the coordinates x; linked together in a chain.

Il. THE METHOD

Consider the integral over the d-dimensional product
space

I= (‘_ﬁ[I gi(x; )dx,.)F(;:;l filxoxi oy )) , (1)

where x,, , ; = x,. Start, as before, with some integral trans-
form

F(s)= f do F (o)™, (2)

where the integration takes place along some suitable con-
tour. Then we have

I= f do F (o) (o), 3)
where
d d
s0)=(11 [ et Joxo(uier S fiteixin)). @

Now introduce the numerical quadrature rule of choice
for each x;:

J-h (x)dx = i w;h (z;). (5)

=1
We assume, only for simplicity of notation, that we use the
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same quadrature rule (points z; and weights w;) for each x;
integration variable.
Now comes the coup. Notice, that with the definition

4j;(0) = w; &(z))exp[ulolfi(z;z,)] » (6)
we can write the multiple integration in terms of the matrices
AL

J (o) = Trace 4 '(0)4 *(0)--4 % (0). (7)

There are n* elements in each of d matrices, and these
must be evaluated for each of n values of 0. The multiplica-
tion of two matrices requires #° multiplications of numbers.
Therefore the total amount of computer time for this method
is of the order of n°d function evaluations plus #*d additional
multiplications. For n of the order of 10, this means that we
can evaluate integrals with 4 into the hundreds or more for
pennies.

Once again, a problem that seemed to increase exponen-
tially with the number of dimensions has been reduced to a
procedure that increases only linearly. The choice of the in-
tegral transform is of course important, and the reader is
referred to Ref. 1, where several examples are given.

Ill. FURTHER COMMENTS

If the entire integrand is symmetric in all variables (all
functions f; and g; given by a single fand g), then there is only
a single matrix 4; and then

J= 3 A) (8)
j=1
where the A; are the eigenvalues of the matrix A (for each
value of o). Thus we can even take the limit as d goes to
infinity, with the answer given in terms of the largest eigen-
value of 4.

If the structure of the integrand is that of an open chain
[i.e., if the function f}(x,,x,) is absent in (1)], then the prob-
lem is simplified a bit. The work of multiplying the matrices
is reduced by a factor of n.

The technique used here for handling the multiple sum
over chain-linked variables leads to the study of some well-
known problems in statistical mechanics. I have applied this
approach to the Ising model in one, two, and three dimen-
sions; and these results will be published separately.

IC. Schwartz, J. Math. Phys. 26, 951 (1985).
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The canonical formulation of field theory on open spaces is considered. It is proved, under
appropriate assumptions, that the Poisson bracket of two differentiable generators is also a

differentiable generator.

I. INTRODUCTION

The following question naturally arises in the study of
the Hamiltonian formulation of Einstein theory on open
spacelike sections. Given the generators of two asymptotic
symmetry transformations, supplemented by the appropri-
ate surface terms at spatial infinity that make them differen-
tiable (i.e., that make their functional derivatives well de-
fined),"? can it be taken for granted® that their Poisson
bracket is also a differentiable generator? In this paper, we
analyze this question and answer it affirmatively.

Because the theorem to be derived here can be applied to
more general situations than just general relativity, we will
adopt notations that do not explicitly refer to that case. The
canonical variables will be denoted by y* (x) and the Pois-
son bracket of two differentiable functionals F[ y], G[ y] of
the canonical variables will be denoted by

oF 8G
oyt (x) &F (x)
where 0#® is, for simplicity, a constant anstisymmetric ma-
trix. In (1), 8F /8y* (x) is the functional derivative of F with
respect to y* (x), defined by

SF

8y* (x)
for any allowed variation 8y” of the fields. The functional F
is said to be differentiable if its variation can indeed be
brought to the form (2), with functional derivatives §F /
Sy* (x) that are regular functions of x.

The formula (1) can be rewritten in various useful ways
as follows:

[F,G]= o' d"x, (1)

oF

& x)d"x 2)

[F,G] =6,G= —6,F (3a)
[5G \
- f oy 0 1, (3b)
with
SF
L) = o,
) =5 4)

In the open case considered here, the field configura-
tions y* (x) are restricted by appropriate boundary condi-
tions at spatial infinity, which read

* Chercheur qualifié¢ au Fonds National Belge de 1a Recherche Scientifique.
* Permanent address.
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o, v J}‘l...,-q,xj) -0, (5)
for some given functions y* of the fields and their derivatives
V., =0 /3x" 3x"..9x, and for some specified rate of
approach.

If the differentiable functional G is such that
¥ (x) + 85" (x) obeys the boundary conditions whenever
y* (x) does, G is said to be a differentiable generator. In that
case the infinitesimal canonical transformation generated by
G maps an allowed configuration on to another allowed con-
figuration.

From now on, F and G will always stand for differentia-
ble generators which are given by integrals of local densities,

F=ff(yAay:)y:Iy---yytl...kmy xi)d"x’ (6a)

G= f I Vo Vs Vi, XV . (6b)

Moreover, we assume that f and g are differentiable (as

many times as needed) functions of their arguments. This

case covers all field theoretical models of common interest.
From (6), it is easy to obtain®

6F=Jd”x3§yf75ﬂ +§d~—*sk Vi), )
where the following conventions have been adopted:
of af af m af
= —4 i o R - ,
o "o % (=" G
(8a)
&f & &f
ViSY) =28y + =6y} + - + 8Viye, s
et et Nt "
(8b)
 __ & 5 _o
m— A
4 e ( - ) jakj+ oo ay‘zlmkm . (80)

The functions §f /ﬁyﬁ,_,,kj are the ‘““variational derivatives”
of f with respect to y‘,:l"_k].

Since the (already improved) functional F is differentia-
ble by hypothesis, its variation (7) must reduce to the form
written in (2) for any §y* that preserves the boundary condi-
tions (5). For the case in which the variations §)* are of
compact support but otherwise arbitrary, the surface inte-
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gralin (7) vanishes and the variation SF indeed reduces to the
form (2). It then follows that at each point x,

OF  of )

o' (x) &t
where the right-hand side of (9) is understood to be evaluated
at x. Now by comparing (7) with (2) for arbitrary variations

8y* compatible with the boundary conditions, the surface
integral is seen to vanish,

3Ed"— 1S, V% (&) =0, (10)

for all allowed 8y* . Similar expressions hold for G.

We are now in a position to formulate the main theorem
of our paper.

Theorem: The bracket [F, G] of two differentiable gen-
erators is itself a differentiable generator.

This theorem contains two assertions. The first one is
that [F, G] is differentiable. The second one is that 5, ¢ | y*
has the correct asymptotic behavior, i.e., that [F, G] gener-
ates a canonical transformation that preserves the boundary
conditions,

Il. PROOF OF THE THEOREM

In order to prove the theorem, we first demonstrate the
following lemmas.

Lemma 1I: Let (Y yies Vi %7) and
VY Vs Vis X7) be two allowed, field-dependent,
“infinitesimal” variations of y* (i.e., let y* +u* and
y* + v obey the boundary conditions). Then, the bracket
[u, v]* defined by

(u, v]* =8,v' —8,u' (1

is also an allowed infinitesimal variation of y*. In (11),
8,v* stands for the change in +* induced by the variation

p,

61/‘2

(12)
k=0 ayll <y

lull i
The proof of this lemma is straightforward. Infinitesi-
mal variations 8y” are indeed characterized by

q

Sy* = Z aX — by, 0.
Also, note that 6{“, v 11’“ is equal t0 8,8,y — 8,6, ¥* [use
Suhi.i, = (8,h),,.; ). Thensinced, y* and 5, y* fall off for
all admissible field configurations, it follows successively
that§,8,y° 6,6,y and §;, ,, y” also go to zero at infinity
and thus, that [u, v]“ preserves the boundary conditions. [

Lemma 2: Letu” and v* be as above. In performing the
integrations by parts needed to transform

e

into a volume piece containing only undifferentiated +* plus
a surface integral, that surface integral is simply given by

Sﬁd"-lskA}‘(u,v),

with

(13)

(14a)
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Af(p,v) =8, VE() =8, VE u) + VE(v ).

(14b)
This can be seen by using again the simple identity

5v5y f— 5y6uf= 6[1',;1.]./: (15)

By integrating (15) over x and taking into account (7) and
the definition of the bracket [v, u]4, this yields

fa( Adnx = fa(‘sf)v‘dx

+§ar s Aty (16)

where 4 {( u, v) is given by (14). Since the volume integral
on the right-hand side of (16) contains no derivative of +4,
the second lemma is proved. O
Incidentally, (16) shows that the polynomials 8, (6f/
dy* ) are “self-adjoint,” as indeed they should be (see, e.g.,
Ref. 4, pp. 202-204).
Lemma 3: Let u* and v* be given by

6 og
A = 6 = A’ V‘ = 6 = A.
H 4 57 34 57 (17a)
The bracket [ x, v]4 is then equal to
A _ Sf 53 CD) oFA
(1, v] 3 B( 5° 357 (17b)

This is a straightforward consequence of the following iden-
tity of the calculus of variations:
(5f5803) 5. 98 565f
oyA\8y? y°
(where 8z =6, 866 =6,).

To prove this identity, integrate the right-hand side of
(18), multiplied by an arbitrary function €* of compact sup-
port, over the whole space and make all necessary integra-
tions by parts. The resulting surface integrals will all vanish
since € is identically zero sufficiently close to spatial infin-
ity. This gives, using the equality (16),

[ et Lo

_f(spyAa ‘;ﬂ — 8oy 6.

fal By

Again making an integration by parts and taking the arbi-
trariness of €? into account, (18) is easily seen to hold
true. O

We now turn to the demonstration of the theorem itself.
The first step in the demonstration amounts to showing that
[F, G1] is differentiable. This is done by relating the surface
term that appears in the variation of [F, G] to the surface
terms that arise in the variations of F and G, and that are
known to vanish.

The definition (1) and the equality (9) may be used to
write the variation of [ F, G] for an arbitrary (allowed) vari-
ation v* of y* as

1501 (o (B [a(Gprs

(18)

3 )
(19)
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We want to prove that the surface integrals arising from
the appropriate integrations by parts in each term of the
right-hand side of (20) are separately zero. Since these terms
have the same structure, it is enough to show this property
for one of them.

From the second lemma, we know that the surface inte-
gral arising in §6,(8f/8)%)8sy° d"x is given by
$4 %855 y,v)d" 'S, [formula (14)], where

A6 3, V) =8V (v) — 6,V {66 y) + V{[¥: b6 ¥])-
(21)

But each of the terms in 4 (8 y, v) contribute zero, be-
cause (i) $V%(v)d" 'S, vanishes for any allowed vari-
ation performed about any allowed configuration, and so
also does

§6G Vivyd"—'S, = 8G§ Vi(v)d" 'Sy

(ii) similary, § 8,V f(85y) d” 'S, vanishes for an identi-
cal reason; and (iii) [v, 85 p]* is an allowed variation by
virtue of the first lemma, and so its flux integral
$VE([v, 65 y])d" 'S, is also zero. Hence, there is no un-
wanted surface term in 8, [F, G].

This proves that the Poisson bracket [F, G] is differen-
tiable; its functional derivatives are equal to [see (1) and

N1,
8[F,G] __& (_@gg_)a,c.
A (x) &1 \&yP &©

Then the result of the third lemma can be rewritten as

8ir6 1V = [6566 1V (23)

and it follows from the first lemma that 8,  ; * is an al-
lowed variation. This shows that the canonical transforma-
tion generated by [F, G] preserves the boundary conditions
and completes the demonstration of the theorem.

The conclusion of our paper is that as soon as the ca-
nonical generators of a field theory are supplemented, in the

(22)
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spatially open case, by the appropriate surface terms needed
to make them well defined, then their Poisson brackets may
be taken as many times as desired (provided these generators
are given by the integrals of C* local densities). In that
sense, the problem of the surface terms arises only once. In
addition, the Poisson brackets possess the nice properties
expected from classical mechanics with a finite number of
degrees of freedom [cf. (23)].

As a final point, we note that the results of our paper}:an
be easily extended to the case when some of the variables
! (x) are fermionic.
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This paper examines properties of solutions to the Yang—Mills equations in four dimensions and
in particular on the manifold CP?: Two solutions are found: one is neither self-dual nor anti-self-
dual but is a solution of the full Yang—Mills equations, the other is a self-dual solution.

I. INTRODUCTION

The attention of both mathematicians and mathemat-
ical physicists in recent years has been drawn to Yang-Mills
theories. There are deep results of a nontrivial mathematical
kind, cf. Ref. 1; and, of course, physics is making an increas-
ing use nowadays of Yang-Mills and Yang-Mills-Higgs
theories. These theories are mathematically interesting in
various numbers of dimensions, and physicists similarly
vary the number of dimensions so as to be able to discuss
vortices, monopoles, instantons, and Kaluza—Klein theor-
ies, to mention a few of the possibilities considered (cf. also
the selective list of Refs. 2-6 and references therein). We
shall limit ourselves in this paper to four dimensions.

In four dimensions there are extra things that can hap-
pen: there is the vital and fundamental relationship between
an oriented four-manifold M and its associated twistor space
Z, and also the fact that the Yang-Mills curvature F, being a
two-form, has the possibility of being self-dual. The most
studied case in four dimensions is that when M = S* (see
Ref. 1) for which the corresponding twistor space Z is CP>*—
the complex projective three-space. Another example that
has received considerable attention’ is the torus T'*, this be-
ing the manifold that is natural when periodic boundary con-
ditions arise. In this paper we look at the manifold CP? com-
plex projective two-space. This manifold is a
two-dimensional complex manifold and so can be regarded
as an orientable manifold of rea/ dimension 4. An additional
motivation of choosing M = CP?is that, as well as CP* being
a well-known compact four-dimensional manifold, it has a
twistor space Z, which is a Kahler manifold. Kédhler mani-
folds are complex manifolds endowed with a metric that is
Hermitian and possess the further invariance property that
the Hermiticity operations are preserved under parallel
transport. For an introduction to Kéhler manifolds and
physics, cf. Ref. 8. In this respect Z is a surprising rarity—
the only other compact four-manifold M whose twistor
space Z is Kiihlerian is S* (see Ref. 9).

On CP? we wish to study the G-invariant Yang-Mills
action S where

S=|F|t= _Lpz tr(FA%F), (1.1)

with G some compact Lie group, which in this paper is either
SU(3) or SU(2), and the * operation on the Yang--Mills cur-
vature is defined with respect to the so-called Fubini-Study
metric on CP? (see Ref. 10). This means that if we have a two-
form @ on CP? then

© = w5 dx* Ndx?, (1.2)
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with 4,B = 1,...,4, then *o is given by
o = (VB/2)€45Pwcp dx* Adx?, (1.3)

and g is the determinant of the Fubini—Study metric 5.

The organization of the rest of this paper is as follows: In
the next section we give two extremal connections 4 and 4’
for S. The first of these connections A is su(3)-valued, while
the second 4 ' is su(2)-valued. It turns out that the curvature
F of A is neither self-dual nor anti-self-dual, but satisfies the
second-order Yang-Mills equation

D*F=0. (1.4)

This solution has been independently found in CP” context
by Hogan.'! However, neither the Chern class ¢, of 4 nor the
action S were calculated there. Here we calculate ¢, and S.
We shall show that ¢, is zero and that S is infinite. This
means that A4 is actually a singular, noninstanton, solution of
the Yang-Mills equations. Atiyah'? has recently discussed
the significance of some solutions to the Yang-Mills equa-
tions that possess singularities. The second connection 4’
has topological charge ¥ = 1 and is self-dual with action S
equal to 87°. Finally the last section contains our concluding
remarks.

Il. THE YANG-MILLS EQUATIONS ON CP2; THE
CONNECTION A

As coordinates on CP? we use the homogeneous coordi-
nates (z°2',2%) and work for the most part on the patch
z° = 1. The Fubini-Study metric on CP? that we use is de-
noted by g,, with g, given in the block-off-diagonal form

0 gas>
g,z = . 2.1
8an (Kﬁ 0 2.1

The capital letters 4, B run over 1, 2, 1, 2, the lowercase
letters a, b run over 1, 2, and the Hermitian matrix g; is
given by

oo L[ < ]
* 2l (1+27P
=4, 3 InJ(I + z7), (2.2)

where d,=d /dz° and d, =3 /z".
Turning to the Yang-Mills action we have more expli-
citly

S= — | tr(FA*F)
CP? .
1 ~AA'=BB’ [Z
= =5 tr(F 5 F 5 )8 & VR0, (2.3)
2 CP?
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where o is the volume form on CP? and
F=(F,/2)dz* NdZ". (2.4)
As we said in Sec. I the Euler-Lagrange equations for .S are
D*F=0. (2.5)
A solution to (2.5) is given by taking an ansatz of the form
A =f,0F, +f, 0F,, (2.6)

where £, and f, are functions, F, and F, are matrices belong-
ing to the Lie algebra su(3) of SU(3), both are homogeneous
of degree zero in 2°,...,2%, and F, and JF, stand for the one-
forms (JF,/dn°dn° and (9F,/3%°)d7°, respectively, with
%°, 7° local complex coordinates on CP. It turns out that
we can satisfy the Yang—Mills equations for the case when f;
and f; are both constant. To this end let a, 8 run from 0,...,2
and consider nine 3 X 3 matrices Tz, where T4 is a matrix
that is zero everywhere except at the (@,8) location, which
has a nonzero entry equal to unity. Now if we write

F= Zﬁfaﬁ(z)?zﬂTaﬁ’

with f_; a real function homogeneous of degree — 2, then
the choice

A=93F—3F (2.8)
gives a connection. A straightforward computation shows
that this connection obeys the Yang-Mills equations (2.5)

provided f,5 = (— 1)**#/y/1 + z°z*, where we now work
in the patch z° = 1. Note that desu(3) although Fesu(3). The
connection (2.8) has a curvature F that is not self-dual or
anti-self-dual. This can be seen directly from F itself but it
will also be a consequence of the fact that we will find the
action S and the second Chern class ¢,(F) to be different.
Of interest first is what is the value ¢, of ¢,(F ), where

1
C2—-§”—2LP tl'(F/\F)

(2.7)

(2.9)
for su(3). The integrand tr(F A F) is readily calculable and
one obtains, with f = (1 4 zZ°),
tr(FAF) =f~%(8% + 2°2) (6¥Y + ZZ)
X (5% — 7°28) (f5" — 77")
X (2f ~Z2°27° — f ~'7°2°6%

— 1228 — f 176

_f—lidzbaae + 6abad¢ + 5“6“)

XdZ Ndz* NdZ" NdZ°, (2.10)
and this eventually simplifies to, with
G =f~YZ°d") \ (2°dZ"),

tr(FAF)=2GAG, (2.11)

and this is immediately zero. Thus ¢, is zero and the next
question, since F is not self-dual, what is the action S ? This
means that we need to calculate

t(FA*F) = jtr(F g Fcp 1§*g"P\g d*z,

and d *z the volume form on CP2 In (2.12), g is the determi-
nant of the Fubini-Study metric g, of (2.1) and g€ denotes
the inverse of .. This leads to § being expressible in terms

(2.12)
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of g, the determinant of the 2 X 2 matrix g,;, via
g=¢, (2.13)

while 4 may be calculated directly or by using the explicit
off-diagonal form (2.1) and the characteristic polynomial for
8.5+ With these facts one finds, after a lengthy computation,
that

tFA*F) = — 2f ~2(f ~2°257%7" — f~ 13785

— [T — f 17

_ f—»l?izg‘sah + 6ag‘sdh + 5ah5gd)

Xg*g% g d %z (2.14)
If we introduce the notation r=tr g% h=7"2%%,
1 =72%¢"%%, and m = tr(g"%g?), we obtain

t(FA*F)= —2f ~22f ~2h2 —2f -]

—2f "'t +m+tYgd’z. (2.15)
However, using the characteristic = polynomial
P(A) =A% — A — g with A = g ;, it is possible to relate the

functions /, m, and ¢ and express them all as functions of f.
We simply quote the result of doing all this. It is that (2.15)
is equal to

1 1
2( 5 +f3 +7 f?(l +f2)X+'F)d Z,
where X = (2°2°)(z°2°).

It remains to integrate the expression in (2.16) over the
manifold CP2. In theory™ this integration could require spe-
cifying a partition of unity subordinate to some covering
{U,} of CP%. However in the case CP? may be covered by the
three patches U, specified by z, #0, respectively. Further
each of the patches U, is dense in CP? and hence we need
only integrate over one of them—U,, say. Hence

S= —f tr(FA*F)
Cp?

(2.16)

=2f (15+f13+—1f——f—5( +f2)X+F)d4
2.17)
This means that S is reducible to a sum of four-dimensional
integrals—the integrals involving X need some considerable
attention. When this is given we obtain the formulas [I"(z) is
the gamma function]

£d"z
v f*
a2 Fla—6)(a—6)(a—275)
Ta—4)(a—1)(a—2)(a—3)(a—4)"
, (2.18)
X2 14, _ gy L@ —10)(a —10)-(a —7) -

v f° " T(@—8)(a—8)-(a—1)
For the action S we eventually find the expression 572/
12 + S,, where S; stands for the expression

im[22De =2 224172

a1 Ta)  (@—2a—laa+3)
Tle—2) , (2.19)
INa + 2)

which is, in fact, infinite so that §' diverges. This infinity has
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arisen on integrating over the patch z,#0, where one can
easily verify using (2.7) and (2.8) that 4 and F are regular.
Since CP? is compact the infinity of S shows that the singu-
larity is at z, = 0.

The connection A ': We now take the group G tobe SU(2)
rather than SU(3). Our ansatz for 4 ' is

A' =da — da, (2.20)
where in this case a is given by (@ and 8 run from 0 to 1),
a=a,T,.,,

and e,z is a homogeneous real-valued function given by
g =4 — 1)* #7285 In(1 + zZ°). The curvature Fof 4 'is
straightforward to evaluate and is given by expression

_ dz' Ndz' + dz* N dZ*
(14 2Z%
22V dz' AdZ + 7ZF2d22 NdZ? + 222 dzP AN dF?

(1+27)
1= 1
_2'Zd7Adz ](Too_ T,
(1+z7)

Using (1.3), we do a routine calculation of *F, which verifies
that Fis self-dual so that F = *F. Of interest next is the value
of the topological charge k. Since X = — ¢, we have

1
= FAF).
k 87’ LP’ trFAF)

The techniques developed for the SU(3) solution suffice also
to evaluate this expression and we obtain finally for k the
integral

—1 40

87 Ju, (1 + 22’
where ® =dz' Adz' Ndz* Adz*. This integral is now
straightforward to perform and we confirm that k =1 as
claimed. We also calculated the action S and find that
S = 877, as it should. Thus 4’ is a self-dual solution with
k=1.

l1l. CONCLUSIONS

We have carried out an investigation of the Yang-Mills
equations in four-dimensions, and have considered solutions
to the Yang-Mills equations for the groups SU(2) and
SU(3). In particular we have shown that a solution 4 to the
SU(3) equations on CP? endowed with the Fubini-Study
metric is trivial topologically and possesses a singularity on
CP?. For the SU(2) case we have found a self-dual solution
with unit topological charge. An interesting question also is
the geometry and topology of the solution space on CP2. A
further point of interest in the study of CP? is that its twistor
space’ Z = CF(3) and is one of the only two Kihlerian twis-
tor spaces possible. The number of non-instanton-like solu-
tions to the Yang-Mills equations on CP? is an interesting
topic'*; in two dimensions all the topology of the space of
solutions can be fully analyzed using an equivariant Morse
theory,'® but in four dimensions, where the criteria for appli-
cability of the Morse theory are not met, the situation is open
even for manifolds such as § ¢. There are interesting calcula-

F

(2.21)
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tional results,'® not touched on here, for taking a step nearer
to the quantum field theory; the significance of the solution
discussed here may be in its relation to the properties of
singular solutions as discussed by Atiyah,'? or in its embed-
ding in a space of higher dimension, these are points under
further study.
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Kruskal’s asymptotic theory of nearly period motion [M. Kruskal, J. Math. Phys. 4, 806 (1962)]
(with applications to nonlinear oscillators, guiding center motion, etc.) is generalized and
modified. A new more natural recursive formula, with considerable advantages in applications,
determining the averaging transformations and the drift equations is derived. Also almost
quasiperiodic motion is considered. For a Hamiltonian system, a manifestly Hamiltonian
extension of Kruskal’s theory is given by means of the phase-space Lagrangian formulation of
Hamiltonian mechanics. By performing an averaging transformation on the phase-space
Lagrangian for the system (L — L) and adding a total derivative dS /dr, a nonoscillatory
Lagrangian A = L + dS /dr is obtained. The drift equations and the adiabatic invariant are now
obtained from A. By truncating A to some finite order in the small parameter €, manifestly
Hamiltonian approximating systems are obtained. The utility of the method for treating the
guiding-center motion is demonstrated in a separate paper.

I. INTRODUCTION

A nearly periodic Hamiltonian system was shown by
Kruskal to possess an all-order adiabatic invariant.' The the-
ory may be used as a general method of finding the adiabatic
invariants of various Hamiltonian nonlinear oscillators. It
may also be applied to the motion of a gyrating charged
particle in a strong magnetic field. It provides a systematic
method for deriving to arbitrary order the (possibly) three
adiabatic invariants—the magnetic moment, the longitudi-
nal, and the flux invariants—and the associated drift equa-
tions. The method of Kruskal has, however, certain less sat-
isfactory features that will be discussed later on in this
section, and that motivates the present paper.

Following Kruskal we shall first consider nearly period-
ic but not necessarily Hamiltonian systems. Without the Ha-
miltonian property we do not obtain any adiabatic invariant,
but we still derive the drift equations to arbitrary order,
which determines the asymptotic solutions. Let us therefore
consider a system of m + 1 ordinary differential equations

% —g(yvie), (1.1a)

dv

av _ , 1.1

= Y y,v;€), (1.1b)
where yeR ™, veR, and

g(y.vie) = g yv) + €8Py V) + - -+, (1.1c)

W yve) = y) + ey )+ - (1.1d)

are formal series in the small parameter €. The functions are
periodic in v with period 2#. An ordinary differential equa-
tion with all solutions nearly periodic may, in appropriate
coordinates, be written in the form (1.1)."

The generalization to the nearly quasiperiodic case is
given in Appendix A. The nonautonomous case when g and ¢
depend on e is considered in Appendix B.

We are interested in solving (1.1) for times of order 1/¢,
i.e., for many periods of the rapid-angle variable v. Direct
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iteration in (1.1) produces secular terms €7, (€7 )?, etc., and
is not useful. Instead we may derive new equations approxi-
mating (1.1) with the rapid-angle variable averaged away.
Straightforward averaging of (1.1) yields the equation

1 21

y=—1 slyveldv, (1.2)
27 Jo

which turns out to be valid only to lowest order in an as-
symptotic expansion. In order to obtain an all-order theory
we make use of an averaging transformation approach. The
basic idea then is to find new coordinates such that all the v
dependence enters in the coordinate transformation leaving
the transformed system independent of the rapid angle. For-
mally, a coordinate transformation means no approxima-
tion, but in our case, the transformation is a formal, usually
not convergent, power series in €. New constants of motion
for the transformed equations may exist as formal series in €
and are called adiabatic invariants. The way we usually deal
with these series makes the question of convergence less im-
portant; only terms of low order in € are calculated, so the
most important thing is that these few terms have good ap-
proximating properties.

Various methods for deriving the averaging transforma-
tions have been developed. When (1.1) are the canonical
equations, we may use the Poincaré—von Zeipel method. By
means of canonical averaging transformations we then
eliminate the rapid-angle coordinate from Hamiltonian. Al-
ternatively we may, without any Hamiltonian structure, find
an averaging transformation directly from the dynamic
equations (1.1). This is done by Kruskal' and by Krylov,
Bogoliubov, and Mitropolsky.> An important contribution
of Kruskal was the inclusion of an adiabatic invariant which
exists when (1.1) is a Hamiltonian system.>

If (1.1) is a Hamiltonian system but ( y,v) are not canoni-
cal variables, the application of the Poincaré—von Zeipel
method may be far from straightforward. For example, con-
sidering the guiding-center motion of a charged particle in
an inhomogeneous magnetic field, this happens to be a non-
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trivial problem.* The method of Kruskal may be used in
place of canonical perturbation theory, but has the unsatis-
factory property of producing non-Hamiltonian approxima-
tions of (1.1) to each finite order in € when (1.1} is a Hamilton-
ian system. This problem was recently solved by Littlejohn
by the development of two versions of noncanonical Hamil-
tonian perturbation theory. Both methods are basically gen-
eralizations of the Poincaré—von Zeipel method. In the first
method,** the Poisson bracket formulation of noncanonical
Hamiltonian mechanics is used and symplectic averaging
transformations are used to eliminate the angle variable
from the Hamiltonian. In the second method®?® arbitrary
(nonsymplectic) averaging transformations is allowed. This
is possible due to the very convenient phase-space Lagran-
gian formulation of noncanonical Hamiltonian mechanics
(see Appendix C).° The averaging transformation is, in this
case, used to eliminate the rapid-angle variable from the
phase-space Lagrangian. Littlejohn makes use of Lie trans-
forms to find the averaging transformations from the condi-
tion of a nonoscillating phase-space Lagrangian.® Remarka-
bly nice looking formulas for the guiding-center motion have
been derived in this manner.’

In the present paper we are going to improve and gener-
alize the Kruskal method rather than the Poincaré-von Zei-
pel method. The former method has the advantages of a sim-
ple mathematical structure and an explicit, compact, and
easily derived recursion relation determining the asymptotic
expansion to all orders. Furthermore, non-Hamiltonian sys-
tems also may be considered. However, Kruskal’s theory
also has quite serious drawbacks, which makes it less attrac-
tive in applications. We have already mentioned that it pro-
duces non-Hamiltonian approximations to Hamiltonian
systems. Furthermore, the recursion relation gives inconve-
nient new variables. It is probably no accident that
Northrop, in his well-known book'® on the guiding-center
motion of a gyrating charged particle, prefers to use a WKB
ansatz (also due to Kruskal) when deriving the guiding-
center drift equations and only make use of Kruskal’s gen-
eral theory' for deriving the adiabatic invariants. The prob-
lem is evident in Ref. 11 where a straightforward application
of Kruskal’s recursion formula is seen not to give the usual
lowest-order guiding-center position.

These problems with Kruskal’s method are solved in the
present paper.'? The class of averaging transformations is
quite large and we determine this class explicitly in order to
make possible a favorable choice in each specific problem.
Further, by considering the inverse averaging transforma-
tion in our recursion formulas (2.5), we avoid unnatural ini-
tial conditions like (B20) in Ref. 1. The relations (2.5) not
only determine the whole class of averaging transforma-
tions, but the subclass that possesses certain gyrogauge in-
variance properties (see Sec. IV B) is also easily identified.
The class of averaging transformations is determined by the
functions (Y) and (Y'), both formal power series in €, serv-
ing as free parameters. The gyrogauge invariance of the slow
drift variable z is obtained if (Y) is chosen in a “physical-
geometric”’ way. These free parameters are in practice cho-
sen, order by order, to simplify, for example, the trans-
formed equations and the constants of motion. When deal-
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ing with a Hamiltonian system we try to get a simple formula
for the phase-space Lagrangian. Compared with Kruskal’s
original approach, we have now achieved additional possibi-
lities for obtaining convenient asymptotic formulas first by a
more natural form of the recursion relation, and second by
carefully displaying the free parameters, which are chosen in
the end to make the results simple.

The phase-space Lagrangian formulation of Hamilton-
ian mechanics is a perfect tool for developing a noncanoni-
cal, but still manifestly Hamiltonian, perturbation theory
from Kruskal’s theory. In terms of the phase-space Lagran-
gian L for(1.1)and an averaging transformation determined
by (2.5) we get an explicit expression for a nonoscillating
phase-space Lagrangian A. The adiabatic invariant and the
drift equations are now obtained directly from Euler’s equa-
tions. We get Hamiltonian approximating systems by trun-
cating A to finite order in €. The adiabatic invariant may be
used to reduce the order of the system by 1, and since we
already have eliminated the rapid-angle variable, we have a
reduced system two orders lower than (1.1). Kruskal proved
that this reduced system is also Hamiltonian.! This result
follows much more easily with the present method, but more
important is that we now also get finite-order Hamiltonian
approximations of the reduced system.

Itis straightforward to obtain a systematic all-order the-
ory for the guiding-center motion of a charged particle by
means of this method. We have investigated'® how the free
parameters may be chosen in order to simplify the form of
the guiding-center Lagrangian. In particular the algebraic
results in Ref. 7 are confirmed apart from a claimed gyro-
gauge invariance property of the guiding-center Lagrangian.
What is of interest, we believe, is the gyrogauge invariance of
the slow guiding-center variables. However, the requirement
of this invariance property probably forces the all-order La-
grangian to take a more complicated form than in Ref. 7.

The new recursion relation determining all averaging
transformations is given in Sec. II. The manifestly Hamil-
tonian extension of Kruskal’s theory is presented in Sec. III,
and some invariance properties are considered in Sec. IV. In
Sec. V we summarize the procedure of obtaining A, and also
give a direct method of deriving A from L without explicit
use of (1.1). This alternative is close to Littlejohn’s second
method but it is mathematically more elementary and Lie
transforms are used. Section V also includes a discussion
comparing the methods for obtaining A.

Il. THE AVERAGING TRANSFORMATIONS

We are going to determine the class of near-identity co-
ordinate transformations (y,v) — (z,4) such that (1.1) in
terms of (z,¢) transforms into

z=h(ze), ¢=w(ze), (2.1a)
h(ze) = eh(z) + - - -, (2.1b)
o(ze€) = 0% (z) + e0V(z) +-- -, (2.1c)

where we note that h and w, to all orders, are independent of
the rapid-angle variable ¢. These transformations are called
“averaging transformations” and (z,¢) are called “nice varia-
bles.”” Let us write an inverse averaging transformation
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y =z + Y(zde), v=4¢ + Y(zde), (2.2q)
where

Y(z.gie) = €Yz g) + - - -, (2.2b)

Y(z,4;6) = €Yz, B) + - - - (2.2¢)

Here Y and Y are periodic with period 27 in ¢.
Let the function F( y,v) be periodic in v with period 27.
We define the operations V, 3, ~, ", I, and j by"

(VF)(yv) = aF—f;;”ﬂ , (2.3a)

@F) yv) = ?—F?;"—”’ , (2.3b)
vV

(F) 3= f " F(ymidv, 2.30)

F=F—(F), (2.3d)

F(ym) = 0 y)r‘([: FlywvY, (2.3

I(yv)=y, {yv)=v. (2.3f)

The inverse averaging transformation may now be written
(I+Y,j+ Y). Weuse the symbol o to denote composition of
functions. We have, for example,

g(z + Y(z,4;€)0 + Y(z.4;€);€)

=go(I +Y,j+ Y)z.pse) (2.4)
The formal series (Y)(z;€) and {Y')(z;e) are now regarded as
free parameters. To each choice of these we have Y, Y, h, and

o determined recursively, order by order in ¢, by means of
the relations

h+¢93Y

=go(I+Y,j4+Y)—h:VY — (0 — ¢")3Y, (2.5a)
w+¢(0)a’f

=9o(I4+Y,j+Y) —h-VY — (0 — ¢9)IY. (2.5b)

Furthermore, every averaging transformation may be ob-
tained in this way by correspondingly choosing {Y) and
(Y).

The proof of these results concerning (2.5) is merely a
matter of simple checking which is conveniently performed
in the following steps.

(a) Giveng®, ®, (Y®), and (Y*®) fork =0,. . . ,n,
then Egs. (2.5) determine h”, ™, Y, and Y».

(b) Leth, w, Y, and Y satisfy (2.5). Then (1.1) trans-
forms into (2.1) by means of the coordinate transformation
(y,v) — (z,0) defined by (2.2).

(c) If (2.2) is an inverse averaging transformation so
that Egs. (1.1) transform into Egs. (2.1) then the relations
(2.5) follow.

From (a) and (b) it is clear that (2.5) produces averaging
transformations and corresponding transformed equations
in the wanted fashion. From (c) it then follows that all aver-
aging transformations are obtained in this way.

Let us now prove (a), (b), and (c). We use induction for
(a). First take n = O. Substituting g% = 0, y( y,v) = "% y),
(¥y?) =0, and (Y®) =0 in the €° part of (2.5) gives h®
= 0,09 = ¢%, YO = 0, and T = 0. Assume (a) is true for
n =p — 1. Consider the € ? terms in (2.5)
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h® 4+ ¢(0) Y = g® +R®), (2.6a)
0P + YO NP =y P L YO VYO 4P, (2.6b)

where R® and 7”’ are known by the assumption above.
Now given g, ¢, (Y?), and (Y”) we want to show
that (2.6) determines h'”, y», Y and Y. Then (a) is
proved for n = p and is, by induction, true for all 7. Now Y
is the only unknown quantity on the right-hand side of (2.6).
From (2.6a) we obtain

Yo = o 4 RO, (2.7)

WP = ( g?) + (RP), (2.8)
and from (2.6b)

o = g0 4 YO . gy 4 50, (2.9)

0 = (PP + (YP) « V@ 4 (#?). (2.10)

Thus Y?, h®, and & are determined and so is Y after
substitution of (2.7) in (2.9). To demonstrate (b) we substitute
(2.2)in (1.1) and eliminate the g and ¢ terms by means of (2.5).
Then, order by order, (2.1) follows. The demonstration of (c)
is completely straightforward.

lIl. HAMILTONIAN PERTURBATION THEORY

We now consider the case when (1.1} is a Hamiltonian
system but ( y,v) are not necessarily canonical coordinates.
Then Egs. (1.1) are the Euler equations for a phase-space
Lagrangian function

L ( y,v, )",1.’;6) =y 'Y( Y7V;€)
+ vl y,vie) — H(y,vse), (3.1)

as shown in Appendix C. Let us now transform (3.1) by (2.2)
and write the phase-space Lagrangian in (z,4) coordinates as
[see (4.32)]

L(zg.ndie) =12 Yzpe) + diilzde) — Hzge.  (3.2)
The Euler equations of (3.2) are (2.1) which are ¢-indepen-

dent. However, L is in general ¢-dependent, but we prove in
Appendix E that a rapid-angle independent phase-space La-

grangian A may be defined by
A=L +—d—(s+sl), (3.3a)
dr
Si(zd€) = — [ f (7(z8") )~d¢']~, (3.3b)
0

where S (z;€) is a free parameter. We note that A contains the
free parameters (Y), (T), and S which are to be chosen as
conveniently as possible. Of course A and L have the same
Euler equations (2.1). A useful expression for A is

A=I)+%. (3.4)
dr
The averaging in (3.4),
Dlapidie = [ Liassbids, 3.5)
2r Jo

simplifies the algebra in applications by eliminating a lot of
terms. From (3.2), (3.3a), and (3.4) we note that

H=(H).
Let us write

(3.6)
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Azdndie) = T(ze) 2+ J (ze)d — K (ze). (3.7)

The Euler equations of A give the drift equations to all or-
ders. By truncating the series A = A® + €AY ..., weob-
tain Hamiltonian approximations of these equations to any
desired order. We also find the adiabatic invariant J(z;e€);
J =0 to all orders in € as a consequence of JA/d¢ = 0 in
Euler’s equations.

Let us now consider the reduced system obtained by
eliminating ¢ and J. We then first change coordinates,
(z,0) — (W, J,8), so that J becomes one of the independent
variables. To simplify the notations, we assume that (z,4) in
(3.7) already has been chosen so that z,, = J and we denote
z = {w, J ). The phase-space Lagrangian for the reduced sys-
tem may now be written

m—1
Ag(w.w; J.e)= > Ti(w; Jew, — K(w; Je), (3.8)
i=1
where w,weR ™~ . Since here J also is considered to be a
parameter, we now write J after the semicolon in (3.8). The
Hamiltonian property of the reduced system thus follows
almost directly by the phase-space Lagrangian formulation
of Hamiltonian mechanics. The proof of this fact in Ref. 1
was quite complicated. Furthermore, we now obtain Hamil-
tonian approximating systems by truncating the series A,
=AQ +eAP +---.

IV. GAUGE INDEPENDENCE

We consider the nonuniqueness in the choices of coordi-
nates and of phase-space Lagrangians and investigate some
invariance properties. Let us, like Kruskal,' consider an or-
dinary differential equation

x=F(x;), xeR™"!, (4.1a)

Flx;e) = FOu) + eFV(x) + - -, (4.1b)
such that

% = FOx) (4.2)

has all solutions periodic. There exists a coordinate transfor-
mation x — ( y,v)so that (4.1) transforms into (1.1).! We take
(4.1) to be our physical-geometrical equation which we ex-
press in terms of the nonuniquely determined coordinates
(¥,v) and (z,4). We have coordinate transformations

C:R™"*' SR™
where C depends on some free parameters which we do not
display explicitly. The averaging transformations 4,

A: R™*' S R™ L (yv) > (2,9), (4.4a)

A '=(1+Y,j+7), (4.4b)
where Y and Y are determined recursively by (2.5), depend

on the free parameters (Y) and (Y). When (4.1) is a Hamil-

tonian system we write the phase-space Lagrangian
L(x,x;€) = G (x,%;€) - X ~ Hx;€). (4.5)

Without changing the Euler equations we may add the total

derivative of an arbitrary function .#(x;e€) to .£, we write
sz +-L 7. (4.6)

dr
For the system (1.1) we choose the phase-space Lagrangian L

x—{y,v), (4.3)
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obtained from .# by the coordinate transformation C. We
write

C
& L, 4.7)
The averaging transformation 4 yields
4 —
LI, (4.8)

where L is related to the ¢-independent phase-space Lagran-
gian A by (3.4).

A. The adiabatic invariant

The adiabatic invariant # (x;€) of a Hamiltonian system
(4.1) may be written
F =JodoC, (4.9)

where J (z;€) is determined by (3.7). In order to show that ¢
is independent of the free parameters in 4 and C we intro-
duce a second choice of these indicated by primed quantities

F ' =J"e4'eC’, (4.10)
and we show that

Flxie) = _F (x;€). (4.11)
Define B by

B=A'"0C'oC o4 7} 4.12)

so that B is the transformation between the unprimed and
primed sets of nice variables

B(z,¢;¢) = (z'.¢'). (4.13)
Then B is of the form'

B (z.4;€) = (B(z;€).¢ + B (z:€)). (4.14)
From

LST (4.15)
and (4.14) we obtain

(@) ST, (4.16)

From (3.4) we note that (L ) and A have the same ¢ term and
according to (3.7) it is J@. This fact together with (4.16) and
(4.14) gives

J=J'°B, 4.17)
and (4.11) follows.
B. Gyrogauge invariance of the z-variable

The transformation

AoC: x — (z,¢) (4.18)

depends on the free parameters of 4 and C. We shall demon-
strate an invariance property of the z variable, i.e., of the
mapping z,

3 =I040C, jz(x€) =z, (4.19)
when we restrict the freedom of choosing 4 and C. Let there
be some natural choice for the y-variable, i.e., we are given a
function &: R™*!'—R™ and consider only coordinate
transformations C such that
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IoC=g. (4.20)

We then choose the free parameters (Y) of 4 independently
of C, i.e., we choose a function k = ek + ek? + ..., ki":
R™ — R ™ and take

(Y)=k. 4.21)

The conditions (4.20) and (4.21) restrict the allowed choices
of C and A. The remaining freedom is associated with the
choice of rapid-angle variable. We will show 5y =Io4oC is
uniquely determined by (4.20) and (4.21) and thus indepen-
dent of the choice of rapid-angle variable, we call this prop-
erty “gyrogauge invariance.”’

Let us, as in Sec. IV A above, introduce primed varia-
bles4’, C’, etc., associated with an alternative choice of free
parameters, still requiring (4.20) and (4.21). We obtain

IeC=1I0C’, (4.22)

(Y) =(Y'), (4.23)
and want to prove that these imply

5 =3"1e,I04oC =104 'oC". (4.24)

~ From (4.12) and (4.22) we have

IoA ~! =1o(4 ')~ 'oB,; (4.25)
inserting (4.4b), we obtain

I+Y=(I+Y'oB, (4.26)
and then averaging with use of (4.14)

I+ (Y) =(I+(Y'))°B. (4.27)
Inserting (Y) = (Y') = k yields

I+k=(I+Kk)°B. (4.28)
An order by order calculation now gives

B=1I (4.29)

and (4.24) follows.

C. Independence of gauge in .

LetueR "anda = (a,), A = (4,) be mappings from R " to
R ". Then we can prove the identity

A+ alu)) -~ (u + alu)
=Au)-u— i J a,(u)B, ;(u + aa(u))
X——d—(uj + aa;(u))da
dr

1
+ A J A (u + aalu)) - alu)de, (4.30)
dr Jo

where B, is the antisymmetric derivative of 4, i.e., in usual
index notation

B, =A,,—A4,,. {4.31)
This identity is useful for eliminating certain gauge-depen-
dent terms in the perturbation series. The phase-space La-
grangian L for the system (1.1) may contain gauge-depen-
dent terms A (i} - &4, where for notational convenience we
have denoted u = ( y,v), such that the antisymmetric deriva-
tive of A is gauge independent. These terms refiect the arbi-
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trariness in .¥ and L due to (4.6). The construction of the
rapid-angle independent phase-space Lagrangian A involves
L

L(z¢.5.8:€)

=L (Z + Y(Z,¢), ¢ + T(Z,¢),

2+2-VY+83Y, 0+ Y +2-VYie) (4.32)

Straightforward Taylor expansion of the right-hand side
around (z,4,z,¢) would produce a lot of gauge-dependent
terms involving derivatives of 4. This problem is avoided by
first applying the identity (4.30). Note that the d /d7 part of
(4.30) may be neglected without changing the dynamics.

The equality (4.30) may be rewritten as

d

J: Ta [A ( + aa(u) - % (u + aa(u))]da

— % J: A (u + aa(u)) - alu)da

Lj=1

1

a;,(u)B,;(u + aa(u))

x-;‘; (4; + aa,(u)Mda. (4.33)
This equality is easily proved by performing the a and 7
derivations on the left-hand side of (4.33).

V. SUMMARY AND A DIRECT METHOD OF FINDING A

In this section we first recapitulate, step by step, the
procedure of constructing A given in Secs. I-IV. We include
the method in Sec. IV C of avoiding gauge-dependent terms
in the perturbation series. We then suggest an alternative
method of deriving A from L without explicit use of (1.1) and
(2.5). Finally the two methods are compared and discussed.

Let us now consider the derivation of A.

(a) The phase space Lagrangian L ( y,v,y,V;€) has (1.1) as
Euler’s equations. We substitute (2.2) in L and obtain
L (z.4,2,8;€).

(b) If L contains gauge-dependent terms, they may be
eliminated as explained in Sec. IV C. We get

= = dS,

L=L+ dar’
where S,(z,¢;¢) is obtained from the last term in (4.30).

(c) Let 7(z,0;€)¢ be the ¢ term in L. We eliminate the
oscillating part of it by the transformation

(5.1)

= ds das
A=L 4%, 45 52
* dr * dr >22)
where
Si(zdie) = — [f(ﬁ(z,¢;e))~d¢']~, (5.20)
0

and S (z;€)is a free parameter.
(d) Define Y and Y by the recursion relation (2.5). Then,
as shown in Appendix D, A is ¢-independent. We thus have

dr
which is a more convenient formula than (5.2)
(e) The so-constructed A contains the free parameters

(5.3)
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(Y), (1), and S. This freedom may be used to simplify the
expressions for A and the constants of motion. We may ob-
tain a gyrogauge-invariant z variable, by means of a phys-
ical-geometrical choice of {Y) as explained in Sec. IV B.

We now present an alternative method of deriving A
without explicit use of (1.1) and {2.5). The steps (a), (b), (c),
and (e) above are unaltered, but (d) is replaced by the follow-
ing.

(d') Require A to be ¢-independent. This gives con-
straints on Y and Y since A depends on them. Then Y and
Y™ must be uniquely determined for » = 1 while for n>2
they may depend on the free parameters (Y?), and (Y} for
p<n — 1.

This direct method is not a satisfactory theory by itself,
but depends on the results obtained by the explicit use of
(1.1) and (2.5). It follows from these results that if Eqgs.
(1.1) are Euler’s equations for L, then Y and Y must be
determined by (d'). We might hope that the direct method
would avoid some unnecessary algebra since the use of (2.5)
requires the explicit calculation of (1.1) and of the functions
h and . We have rederived Littlejohn’s results for the guid-
ing-center motion valid to one order higher than usual with
both methods. '’ The price we have to pay for a rather moder-
ate decrease in the amount of algebra needed in the direct
method is a considerably less straightforward calculation.
While the use of (1.1) and (2.5) requires only straightfor-
ward algebra and the whole structure with free parameters is
clear from the outset, we must, with the direct method, work
very carefully so that each choice of terms we make in Y and
Y is forced by (d’).

Littlejohn has developed a direct method of deriving the
averaging transformations by requiring A to be nonoscillat-
ing. He makes use of the technique of Lie transforms. The
result for the guiding-center motion was, however, given
without derivations, and from the published work on his
method it seems to be difficult to compare it with the other
two methods above.

APPENDIX A: ALMOST QUASIPERIODIC SYSTEMS

The generalization to quasiperiodic systems is straight-
forward. We then replace (1.1) by a system of m + k ordi-
nary differential equations where k is the number of rapid-
angle variables. We make the replacements v — vand ¢ —1
in (1.1) and require g and 1 to be periodic with period 27 in
each of the k-angle variables. All relations in Sec. II may be
used with minor modifications. We make the obvious re-
placements @ — ®, 3 — 9, ¢ — ¢, j — j, where j(y,v)=wv
and

1 2 27
iy = [Fave- [ Fiyim, (A1)
Flym = [0°(5) -8 F(ym)]™ (A2)

We may express Fin terms of s Fourier components F, ( y),
where neZ* and Z is the set of all real integers. We have

F(yv)= 3 Fu(y)explin+v) (A3)

A F
Blyw) = —i Z u(¥)

Py P 03] exp (im * v). (A4)
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In (A4) the problem of small denominators appears, this will
not be discussed in the present paper.

The recursion relation (2.5) may be used with the minor
changes in notation introduced above.

APPENDIX B: NONAUTONOMOUS SYSTEMS

The nonautonomous case when g and ¢ in (1.1) are
weakly dependent on 7 is easy to include in the theory. We
will treat this 7 dependence as a parameter, avoiding the
obvious but less practical alternative of increasing the order
of the system by 1 and treat 7 as a variable on the same
footing as ( y,v). In place of (1.1) we have

& gymene (Bla)
dv
- Y y,vi€re), (Blb)
g y.vere) = ey, vier) + - - -, (Blc)
Y yviere) =¥ yier) + e (yvier) + -+ (Bld)
The recursion relation (2.5) is replaced by
h+¢?9¥=go(I+Y,j+7Y)—h-VY
ay
— (0 —¢Y")IY —¢€ , B2a
(@—9¢7) d(er) (B2a)
o+ 92 =¢o(I+Y,j+Y)—h-VY
—(@—YIT — € X _ (B2b)
d(er)

The transformed Eq. (2.1) and the inverse averaging trans-
formation (2.2) are changed only by the inclusion of the pa-
rameter e7in Y, Y, h, and  just as in (B1).

APPENDIX C: PHASE-SPACE LAGRANGIAN
FORMULATION OF HAMILTONIAN MECHANICS

Let us consider a Lagrangian function L of the form
L (xx;7) = yilx;7)%; — H (x;7), (C1)

wherex = (x,,. . . ,X, ) and we sum over the index /, 1<i<n,
in (C1). Such a Lagrangian is associated with first- rather
than second-order systems. The Euler equations are

(%—%)x,: —0H (C2a)
dx; OJx; Ix;
If
ay;, 9y
det ( —a;j - E‘T );éo, {C2b)
then (C2a) may be written in the standard form
x = fx;7). (C3)

A Lagrangian (C1), which satisfies (C2b), is said to be nonde-
generate.

The class of equations (C3) that are derivable from a
Lagrangian function of the form (C1) are precisely the class
of Hamiltonian systems.? Thus we get the phase space La-
grangian formulation of Hamiltonian mechanisms.

It is observed in the standard textbooks on classical
mechanisms that the Lagrangian L defined by

L(gp.gp;r)=p- ¢ — Hlgp;7) (C4)
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has the canonical equations as its Euler equations. Thus the
class of systems {(C3) obtained from Lagrangians of the form
(C1) clearly includes all Hamiltonian systems. Conversely,
we also have to prove that if (C3) is derived from (C1), then
(C3} is a Hamiltonian system. The proof is a simple applica-
tion of Darboux’s theorem. Consider the first-order differen-
tial form

Y=Y, dx;. (C5)
Now dv is a closed nondegenerate two-form and so, accord-
ing to Darboux’s theorem, n is an even number and there
exist new coordinates g,peR ™? such that dy — 272, dp;
Adg; and thus

n/2

y— Y p:dg; +dS(gp;7), (C6)
i=1
for some function S and
n/2 dS ( c?S )
L 9 +——|K+— ), C7
- i;l Pt dr ar (€7)

where H — K. Here the arrows — stand for “transform into
when we make the coordinate change x — (¢,p).” The Euler
equations of (C7) are Hamilton’s equations with the Hamil-
tonian K + S /dr.

APPENDIX D: PROOF THAT A IS ¢-INDEPENDENT

The phase-space Lagrangian A defined by (3.3) may be
written
A(z,0,2,8;¢) = [(z.9;€) + 2 + J (z;€)p — K (2,8s€), (DY)
and has the Euler equations (2.1). We note, by the construc-
tion of A, that Jin (D1) is ¢-independent. We will now show
that I' and K are also independent of ¢ so that A may be
writtenasin(3.7). The((d /d)(d /d¢) — (8 /d¢))component of
Euler’s equations for (D1) together with (2.1a) implies

K=h-T. (D2)
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Then from ((d /dr)(d /dz) — (3 /z)) part of Euler’s equations
together with (2.1) and (D2) we obtain the following formal
differential equation for I':

4 F— _w.F
dr
The coefficient on the right-hand side in (D3)is O (€). A direct
order by order calculation or the application of Kruskal’s
theorem of phase independence' gives I’ = 0. From (D2) we
note that K = 0, also, and the proof is complete.

(D3)
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Stability of forced nonlinear oscillators via Poincaré map
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The behavior of nonlinear oscillators x(¢) driven by a periodic external force is completely
determined by the corresponding Poincaré map, which loses stability only in certain well-known
ways. These translate into different classes of perturbations § (¢ ) of x(¢ ) that must be considered. By
choosing simple representatives in each class, the stability of approximate solutions can be studied
analytically. The Duffing equation is considered as an example. An extra island of stability is
predicted for a range of driving forces and this is confirmed by numerical computation.

I. INTRODUCTION

The stability of the asymptotic oscillatory solutions of
externally driven nonlinear oscillators x(¢ ) has been exten-
sively studied. Although it is straightforward to obtain an
approximate solution x(¢ ), e.g., by suitably truncating the
higher harmonics of the response to the external force, the
issue of stability against arbitrary small perturbations
x(t}—x(t) + & (¢ } is more complicated. A recently developed
technique well suited to the question of stability is a vari-
ational formulation,' in which a trial function with slowly
varying coefficients 4 (), B (t),... is put into the variational
integral, and evolution equations are obtained for A (),
B(t),... . The possibility of subharmonic response has been
treated in a similar fashion.® Such analytic studies are com-
plemented with a host of numerical®’ and experimental® re-
sults for various systems.

However, these oscillators are described by a nonholon-
omic ordinary differential equation (ODE) with a number of
parameters ¢;. Numerical computation or experiments can
yield a wealth of information at specific values of «;, but is
less useful in characterizing the global properties in the space
of ;. In particular, unstable solutions to the ODE, though
inaccessible to numerical computation or experiment, are
nevertheless important. For example, the collision of an un-
stable solution with a stable one causes the latter to disap-
pear; two stable solutions in disjoint regions of parameter
space may be linked by an unstable one. Thus the approxi-
mate analytic study of nonlinear oscillators remains useful.

On the other hand, the analytic studies’~> have in the
main considered only instabilities caused by the growth of
slowly varying coefficients. It must, however, be realized
that such instabilities are only one of several possible types,
and a more systematic investigation of other instabilities
would be desirable. Our starting point is the observation that
for systems that are holonomic except for an external force
of period 7, the Poincaré map {x(nT)x(nT)}
—{x(nT + T)x(nT + T)} is sufficient to characterize the
stability and indeed the entire solution. This is, of course, the
principle of stroboscopic sampling that has been used suc-
cessfully to reveal fine structure in numerical computa-
tions.” The possible mechanisms for the loss of stability of
maps have recently become well cataloged®; these mecha-
nisms translate into different classes of perturbations £ (¢)
that must be considered. In the main part of this paper (Sec.
III), we show how stability may be tested with respect to a
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judiciously chosen £ (¢ ) within each class, giving a fairly accu-
rate analytic global picture. Unexpected features may also be
revealed in certain regions of parameter space.

These remarks will be illustrated with the Duffing oscil-
lator

X= —yx—x+4x>+ Fcoswt (1.1)

and the results are presented in terms of the response curve
showing

R =6({x*) — (x)?)

vs w” for fixed ¥ and F, where ( ) denotes the average over a
period, from ¢t = nT to (n + 1)7, T = 27/&. The following
well-known properties’>*%8 are reproduced by the stability
analysis.

(a) The response curve for small F'is the usual resonance
type, skewing as F increases.

(b) In the nonlinear region, the response curve breaks
into two disjoint parts, and if »? is varied adiabatically, the
response jumps from one to the other, showing hysteresis.
The low-frequency part first loses parity invariance and then
becomes chaotic via the period-doubling scenario.®

Our analysis predicts a third possibility, which is con-
firmed by numerical computation.

(c) In a certain small range of F, the response curve
contains an extra isolated portion which occupies only a
small region in the &*-R plane and is not reached from the
other parts by adiabatic variation of the driving frequency.
Thus this novel feature might not have been discovered with-
out the analytic treatment as a guide.

In all cases, connection between the disjoint parts of the
response curve is provided by unstable solutions, giving a
global view which complements numerical results. It is sug-
gested that the method outlined in this paper, based on re-
cently gained knowledge on maps, will be used for the quali-
tative study of the stability of other externally driven
nonlinear oscillators.

N. APPROXIMATE SOLUTION
A. Symmetric solution

Symmetry of the Duffing equation under parity inver-
sion x— — x, t—t + T /2 would suggest that a solution be
sought with only odd harmonics. For not too large driving
forces, the third (fifth,...) harmonic is important only when
0*=1/3% (1/5%...), so for ®*R 0.2, it will be reasonable to
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FIG. 1. Schematic relation between R and »” based on approximate algebraic analysis. Solid line represents stable solution; broken line represents unphysical

or unstable solution. The four figures (a)—(d) refer to increasing values of F.

substitute
x(t)=a cos wt + b sin wt (2.1)

into the Duffing equation and drop higher harmonics, giving
an algebraic equation for the response R:

R[(1 —@*~ R} + Pw?] = 3F2, (2.2)

where in this case R = 3(a® + b 2). The underdamped case
(¥ <2) is more interesting and we set ¥ = 0.4 everywhere
below.>¢ The graphs of R vs »” are shown schematically in
Fig. 1 for increasing F. (The curves GH refer to the asymme-
tric solution; see below. Broken curves refer to unstable solu-
tions; for stability see Sec. IIL.) For small F, the four extremes
are joined along AB, CD, the former being the usual reso-
nance curve [Fig. 1(a)]. As F increases, CD intersects GH at
R =} and AB skews, R becoming multivalued in w? [Fig.
1(b)]). Next the curves AB, CD touch and reconnect along
AC, BD [Fig. 1(c)], with AC shifting to smaller »? [Fig. 1(d)]
and finally disappearing to negative w” with increasing F.
These properties are all well known, but the general impres-
sion seems to be that CD [e.g., in Fig. 1(b)] is unstable.>!°
This is not necessarily the case, as we shall see.
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B. Asymmetric solution

The parity invariance of the equation need not be shared
by the solution. Ignoring second and higher harmonics, we
may approximate the asymmetric solution as

x(t)=e+a coswt + b’ sin wi, (2.3)
which leads to

R[(2+ @*— SR} + Pw*) =3F?, 2.4

e =4(1-2R). (2.5)

The w? — R graphs are shown by the curves GH in Fig. 1.
First, the region R > } is unphysical on account of (2.5) and is
shown by dotted lines. Second, the even and odd solutions
intersect at R = 4, as is evident from (2.2) and (2.4).

iIl. STABILITY
A. Relation to Poincaré map
The main point of this present paper is to utilize the
recently gained understanding of iterated maps. Consider
the Poincaré map M:
M: v={x(nT)x(nT)}—v = {x(nT + T)x(nT+ T)} .
(3.1)
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A solution x(2) of the ODE with period T corresponds to a
fixed point v* of M. If x(¢) is perturbed to x(¢) + £(¢), then
correspondingly v = v* + Av,, where

Av, ={&(nD)E(nD)} . (3.2)
The fixed point v* can lose stability in one of three ways.

(i) A tangent bifurcation is characterized by an eigenval-
ue A =1+¢, 0<e«l, so that Av, ~(1 + €)"Av,, and thus
&E(nT)~&(0)(1 + €)”. In other words, £ (¢) is nearly periodic:

£it)=Yee™ +cc,

where the ¢, are slowly varying coefficients. We may further
divide £ into odd and even parts, with the following repre-
sentatives labeled as tangent odd (TO) and tangent even (TE):

TO: £(t) = ce™ + c*e ™, (3.3)
TE: é(t)=c. (3.4)
(ii) A period-doubling bifurcation (PD) is characterized
by an eigenvalue A= —(1+¢€), O<e«l, so that

Av, ~[ — (1 +€)]"Av, and &(nT)~(— 1)"(1 + €)"£(0). It
is seen that £ (¢) can be written as

£(t)= e e*t e,

with slowly varying c,. A simple representative is
PD: £(t) =ce™’? + c*e="'"2. (3.5)
(iii) A Hopf bifurcation (H) is characterized by a pair of
complex eigenvalues A = (1 + €Je+ %, 0 <€e«1, 8 #0, 7,... .
One of the eigenvalues will give

Av, ~(1 + €)"R(0)"Ayv,,
where R () is the rotation matrix of angle . Thus
E(nT) ~ (1 + €)"[cos (n)£(0) + sin (nQ1)E(0)],
where () = 6 /T #0,0/2,... . Thus we may put

i)=Y i+ pce,

with ¢, slowly varying, and a simple representative is

H: £(¢) = ce™ + c*e ™. (3.6)
The idea is to test the approximate solutions against the
perturbations (3.3)—(3.6). Instead of studying the growth of a
Sunction& (t ), we only have tostudy the growth of a numberc.

B. TO perturbation of symmetric solution

Change x—x + £ with £ as in (3.3). Put this into the
Duffing equation, keeping only the terms that are linearin &
and that have the same frequency as £ itself:

¢ + 2iw¢ — w*c = — ¢ — V(¢ + iwc)
+ 6(a® + b3c + 3(a — bi’c*,
(3.7)

with @, b given by (2.1) and (2.2). The growth rate @ = ¢/c
satisfies

(@+ya—ao*+1—2RP+ (¥ +2a)f0*=R?,

and the onset of instability occursata =0,
(1—w®—=2RP+7Vo*=R?2,

which coincides with the condition dR /dw”® = « obtained

(3.8)
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from (2.2). A little algebra shows that the three branches
(e.g., A, C, D) are, in increasing R, respectively stable, unsta-
ble, and stable.

In fact under the TO perturbation, the original solution
a cos wt + b sin wt remains of the same type, but with a, b
now slowly varying. Such adiabatic perturbations have al-
ways been considered in the literature' 1%, however, the
other perturbations described below have not been consid-
ered systematically.

C. TE perturbation of symmetric solution
Using £ in (3.4), we find
é+ye= —(1—2R)e,

so that

a=}{—y+[¥—41-2R)]"?}.
If R > 1, one of the roots is positive and the symmetric solu-
tion becomes unstable to TE perturbations. The important
dividing line R =} is shown in Fig. 1.

In fact, under a TE perturbation, the solution becomes
a cos wt + b sin wt + e, i.e., it loses parity invariance. Thus
it is no surprise that the TE instability occurs exactly at the
point where the asymmetric solution crosses the symmetric
solution.

(3.9)

D. H perturbation of symmetric solution
Use & as in (3.5) to get

¢+ 2006 — Q% = —c — Hé + ife) + 6(a® + be,
(3.10)

leading to
a2 +2a - P = —1—ya—iyQ +2R. (3.11)

Since «a is real (otherwise it amounts to a redefinition of ),
(3.11) gives

a?— 0= —1—ya+2R, (3.12a)
2000 = —yQ, (3.12b)
giving @ = — y/2, which means all H perturbations are
damped.
E. PD perturbation of symmetric solution
The linear equation satisfied by £ is
E+yE+E—12x%=0, (3.13)

and we assume £ to be given by (3.5). In the case of the sym-
metric solution, x> has only even harmonics, so the e */2
terms in £ are not coupled. (Contrast the case of the asymme-
tric solution below.) Then the equation for the growth rate o
is the same as (3.12), but with Q = w/2, so the symmetric
solution is stable against period-doubling.

F. TO/E perturbation of asymmetric solution

Since the asymmetric solution already contains both
even and odd harmonics, one would not expect the eigenvec-
tors £(¢) to be purely even or odd, so the TO and TE pertur-
bations should be combined. Such a perturbation in fact cor-
responds to (2.3) with e, a’, b’ allowed to vary slowly. An
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algebraic equation is obtained for the eigenvalue a(=é&/
e =a'/a’ = b'/b’) and the onset of instability (@ = 0) occurs
at the point where dR /dw® = «. It is easily shown that the
lower branch (G) is stable while the upper branch (H) is un-
stable.

G. H perturbation of asymmetric solution

In analogy to (3.12), we get & = — /2, so all such per-
turbations are damped.
H. PD perturbation of asymmetric solution

For the asymmetric solution, x? in (3.13) contains e * **
terms, which would couple the ¢ and c* terms in £, Thus in
this case the PD perturbation is not obtained just by setting
) = w/2 in the equations for Hopf bifurcation. Rather

2
é+iwe—24-c= —c—y(é+i%c)

+(3—4R)c + 12ela — bil*,  (3.14)

where the last term is the coupling discussed. Putting ¢ = ac
gives

602 2

+(y+2a)sz2=12R(l—2R)- (3.15)

We immediately see that for R = } there is no real solution,
so the asymmetric solution is stable. Suppose period-dou-
bling occurs (i.e., @ = 0) when R =} — ¢, then to O (e), we
find

€ = (0¥/48))? + 0*/4)=3X 1073,

if y = 0.4, @*=0.5. In other words, the asymmetric solution

1

3
R
—f— See Flrﬂ
0.8

0.2

(@

15 (2

s i
] ¢S5 1.0

is created at the intersection with the symmetric solution at
R = 1, and loses stability due to period-doubling a very short
distance away.

Once period-doubling has occurred, we should seek ap-
proximate solutions of the form®

x(t)=e+a'coswt+b’sinwt+g’cos%t+h’sin-(—;—t

(where the corresponding vector v would be a fixed point of
M ?) and test its stability with respect to further period-dou-
bling, say represented by the perturbation

E(t)=ce* +c.c.

However, the analogous situation in the case of maps has
been extensively studied and one knows that a period-dou-
bling cascade develops and ends in chaos along a route exhi-
biting a rich pattern of regularities.*!"

I. Global picture

Putting the above together yields the following picture
as Fincreases. For small F, only the lower branch AB of the
symmetric solution is stable [Fig. 1(a)]. As F increases, an
island of stability appears [Fig. 1(b}], consisting of a symmet-
ric solution (on curve D) which becomes asymmetric with
decreasing »” (on the curve G) and finally undergoes a peri-
od-doubling sequence to chaos. In the situation shown in
Fig. 1(b), it may be expected that as w? is decreased, the
chaotic attractor may intersect the unstable solution C, re-
sulting in a crisis'® that drives the solution to the lower
branch A. This state of affairs is confirmed by numerical
computation at F=0.110 using 100 predictor—corrector
steps per cycle (Fig. 2).

Upon further increase in F, the curve AB skews and
develops vertical tangents, with the middle portion of AB

0840 r

asymmetric

0820

®

w?

i

" L
0.228 0.238 0.235

FIG. 2. (a) Actual relation between R and »? obtained by numerical solution of ODE at F = 0.110. (b) The island of stability enlarged.
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FIG. 3. (a) Actual relation between R and »” obtained by numerical solution of ODE at F = 0.115. (b) The island of stability enlarged.

being unstable; the island of stability remains [Fig. 1(b)].In
this situation, the response curve should consist of three dis-
joint parts, as is confirmed by numerical computation at
F=0.115 (Fig. 3). The features in Fig. 2 and Fig. 3 would
have been difficult to foresee or locate without the approxi-
mate stability analysis. At even larger F, CD and AB touch
and rejoin. The high-frequency part of the symmetric solu-
tion (B) joins directly onto the asymmetric solution (G),
which period-doubles to chaos [Fig. 1(c)].°

As Fincreases further, AC recedes to the left [Fig. 1(d)].
Then the chaotic attractor born out of the period-doubling
sequence has no opportunity for a crisis going down to
branch A, rather a crisis may develop when the chaotic at-
tractor intersects the unstable solution D and becomes driv-
en to infinity. The branch AC eventually disappears.

All these features are confirmed by numerical simula-
tion, though the transitions do not necessarily occur at the
precise values predicted.

IV. DISCUSSION
The stability analysis reveals two general properties.
Consider in general

= —yx+F(x)+G(1) . (4.1)
When x(#) is perturbed to x(¢) + £(2),
b= —yE+F'(0)E. (4.2)

For a Hopf bifurcation, we use (3.6) for £ and retain only
terms of the type e £ “*in (4.2). Since Q) #0,0/2,..., only the
time-independent part of F'(x) will generate a term of the
right type, so that with the same notation as before,

a? 4 2ial — WV = —yla+ i)+ (F'ix)), (4.3)
whose imaginary part gives @ = — /2 <0. Thus Hopf bi-
furcations never occur in systems of this type.'*

For period-doubling bifurcations, (2 is replaced by /2.
Now if x has only odd harmonics and F (x) is odd in x, then
F'(x) does not contain the frequencies + w, so the ¢*/? and
e~ “*/2 terms are not coupled, and again (4.3) holds, giving
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a <0. So a symmetric solution must first lose parity invar-
iance before it can undergo period-doubling.'*'*

The essential idea of this paper may be summarized as
follows. The search for limit cycles using approximate solu-
tions of the form say a cos @t + b sin wt with constants a, b
is classic, and the study of their stability by allowing slow
variation of @, b is also well known. However, such perturba-
tions reveal only one of the possible ways to lose stability.
The Poincaré map provides simple test functions for the
study of other instabilities. The technique is shown to be
reasonably accurate in depicting the global features in the
case of the Duffing equation. Just as the approximation for
the solution can be improved by retaining more terms in say
(2.1), so the stability criterion can likewise be improved by
retaining more terms in say (3.3), leading to a finite-dimen-
sional eigenvalue problem for «, which is always soluble.
This method should be useful for analyzing other forced vi-
brating systems described by ODE’s (including coupled
ODE?s).
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The trajectory joining two points a, and a,, which minimizes the transit time for a particle,
initially at rest, to fall in a uniform gravitational field from a, to a,, is called the brachistochrone.
Johann Bernoulli was the first to find an analytical form for the brachistochrone; in 1696, he
discovered that the trajectory is a cycloid. In this paper the relativistic generalization of this
classic problem is presented. Four separate curves are actually identified: a particle falling in both
a uniform electric and uniform gravitational field is considered. The curves that minimize the
times of flight measured by an observer in a laboratory in which a, and a, are fixed and also the
curves that minimize the proper times of flight are found.

I. CLASSICAL BRACHISTOCHRONE

The brachistochrone problem is perhaps the most fam-
ous problem in the calculus of variations. It concerns a parti-
cle in a uniform gravitational field constrained to slide with-
out friction along a curve joining the points a, = {x,, y,) and
a, = (x,, y,). The problem is to find the curve that minimizes
the time of fall.

We begin this problem by setting up a line-integral rep-
resentation of the time of fall T:

(%2, Y1)
T=f g 1)
(

<) UIS)
where s is the path length and v(s) is the velocity of the parti-
cle. It is convenient to choose the coordinates so that (x,, y,)
is the origin and so that the force field points along the x axis,
as in Fig. 1. If we designate the path as y(x) then the expres-
sion for T becomes an ordinary integral

X3 Y /
T[y]=J' ae JLH 1
o

v

+ely0) ]+ 5[ y(x) —y,]. (2)

Here, € and § are Lagrange multipliers that impose the con-
straints that p(0) = 0 and that y(x,) = y,. Taking the func-
tional derivative of (2) with respect to y(w) gives

§T =J"" dx y'(d /7dx)b(x — w)
Syw)  Jo [1+ (71 ix)

+ €bw) + §b(w — x,) ,
3)

(x,,¥y) = (0,0)

(%5¥5)

FIG. 1. The configuration and choice of coordmate system for the brachis-
tochrone problem.
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where by conservation of energy we can make the crucial

assumption, also valid in the relativistic cases, that the parti-

cle velocity v is a function of x but is independent of y.
Integrating by parts we obtain

f o —w ’_ [ [1+ (yy>;1*’2v<x)]

Y'olx —w)
[+ (P17l

5y(w)

x =X

T+ ed(w) + £(w — x,) .

4)
To minimize T we require that the functional derivative (4)

vanish identically. From the interior of the interval
0 <x <x, we obtain the differential equation

2 =0, )
dx L[14(y)]"v(x)

and from the end points x =0 and x = x, we obtain the
values of the Lagrange multipliers

€ = lim — %)
=0 1+ [y'(x)]

The solution to (5) is

J' dx _ kx) 6)
=R

where k is an integration constant.

This derivation of (6) is general; it is valid for any v(x). In
the classical case we take the force field to be a uniform
gravitational field, and therefore, v = (2gx)'/%. The path y(x)
is then a cycloid of the form

—y'(x)

I+ [y E)]l?

vx), &= v(x2) -

x=a(l —cos§), y=al@—sinb),

where the parameter a is determined by the end point (x,, y,).

In this paper, we investigate the somewhat more diffi-
cult case of a particle falling under the influence of a uniform
force field, but we do not neglect relativistic effects. In Sec. IT
we discuss the simplest case in which the particle falls in a
vertical straight line. We discuss the physical differences
between a particle falling in uniform electric field and a par-
ticle falling in a uniform gravitational field. In Sec. III we
consider the general problem; we examine the curves that
minimize the time of fall in the lab frame and also in the
frame moving with the particle, for both a uniform electric
field and a uniform gravitational field.
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Il. VERTICALLY FALLING RELATIVISTIC PARTICLES

To convey some intuitive understanding of the motion
of a particle falling in a gravitational or an electric field we
begin by studying the motion of a vertically falling particle.
Since this is a study of realtivistic kinematics we will of
course ignore the effects of energy lost due to radiation. To
determine the motion of a relativistic particle falling in a
uniform field we use Newton’s Law:

ap _
dt
Consider a particle of charge ¢ and rest mass /. If this parti-

cle falls in a uniform electric field of magnitude E the equa-
tion of motion {7) becomes

_‘_1_ [_A] =FEq. (8a)
dt [ 1= [u[t)]%/c?

On the other hand, if this particle falls in a uniform gravita-
tional field g then Eq. (7) becomes

ii_[ mu(t) ]= mg . (8b)
dat [ JT—Te) 1/ T=Tue) 17/

Note that (8a) and (8b) are different because the gravitational
force is proportional to the relativistic (velocity dependent)
mass and not the rest mass. Thus, as the particle’s speed
increases the gravitational force becomes stronger. No such
effect occurs in (8a) because total electric charge is a relativis-
tic scalar.

It is easy to obtain analytical solutions to both differen-
tial equations (8). If the particle is at rest at = 0, we have

(7

Veeolt) = cEqt /\m?c* + E*q*t (9a)
Ugrav () = ¢ tanh( gt /c) . (9b)

In the nonrelativistic case, c— 0, Eq. (9) reduces to the usual
results vy, (¢) = Eqt /m and v,,, (t) = g¢. The results in (9)
could have been derived just as easily from a conservation of
energy argument. In fact, we will use the principle of conser-
vation of energy in Sec. III when we derive the equation for
the relativistic brachistochrone.

If we integrate (9) with respect to ¢ and assume that at
t =0, the particle is situated at x = 0, we get the position of
the particle as a function of :

Xeec(t) = (mc*/EQ)N1 + E*q°t*/(m*c*) — 1),  (10a)
Xgeav (1) = (¢°/8) log[cosh( gt /c)] . (10b)

To compare the results in Egs. (10) let us take the gravita-
tional and electrical forces to be equal for stationary parti-
cles: Eqg = mg. Eliminating Eq/m from (10a) and examining
the large ¢ behavior of x,, (£ ) — X, (¢ ) gives

Xeee ()] = (c*/g)(1 —1In2). (11)

lim [xgmv (¢)—

t— o0

The right side of (11) is positive because the gravitational
force gradually increases with time while the electric force
remains constant.

Hl. RELATIVISTIC BRACHISTOCHRONE

A. Uniform electric field

As wesaw in Sec. Il it is simplest to consider the case of a
velocity-independent force. Consider a particle of charge g
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and rest mass m falling under the influence of an electric field
of magnitude E. Energy conservation gives

mc? = mc? /1 — v*/c* — qEx .
Solving for v we get
v=cfl — [1/(1 +ax)]?, (12)
where a = gE /(mc?). Substituting (12) into (6) gives
kX1 4+ ax')? —k?

=| dx' s
Y J; \/(1-—k2)(1+ozx’)2+k2

where we have absorbed c¢ into the constant k. There are
three distinct regions of values of & %, where the function y(x)
has very different behaviors: 0< k%<1, k2= 1,and k2> 1.

(13)

1. Region 1: 0 < k?< 1

In this region we have
(+axP -1

r= gf (1+ax)2+§2

u —1
[ [
where

E2=k?/(1 - k?
is determined from the condition y{x,) = y,. Here, as x be-
comes large, the integrand approaches 1 and the graph of y
approaches a straight line of slope £. The solutions in this
region are very different from the classical case, since they
increase without bound, while the classical solutions are
bounded and cyclic.

2. Region 2: k2= 1

For this value of k2, y(x) reduces to
1+ax
y=2 [ a1,
a h

which can be expressed in terms of simple functions as
y === [(1 + ax) (T + axf — 1
2a
—log [(1 +ax)+ V1 +axF—1]]. (15)

For ax»1,

y=(1/2a)e’x*) =} ax?,
a parabola. This function is the boundary between the region
1 solutions, which increase without bound in the x direction,
and those in region 3, which turn around and return to the y
axis. Note that in the classical limit a—0, this boundary

approaches the x axis, which is the vertically falling case
described in Sec. II.

3. Reglon 3: k2> 1

In this region we have

1 +ax 2
u-—1
y=2{" au_[X=L, (16)
a ki E4—u
where
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Complex—u Plane
Im{u) P

path of integration

pd
! §I+ax2 E=l+ax g,

u2—1

PO

Relu)

branch cut of

FIG. 2. The complex-u plane showing the path of integration necessary to
compute the entire graph of the brachistochrone.

EX=kYk?*—1).

Since the integrand must be real, we have a lower bound on £
of 1 + ax,. We must be cautious with this solution, however,
because there is a singularity in the integrand at ¥ = £. No-
tice now that there is a branch cut in the complex-u plane
connecting ¥ = 1 and u =£. If we integrate around this
branch cut (see Fig. 2), we get a graph of y(x) that curves
back to the y axis, just as the cycloid does in the classical
solution.

Figure 3 shows the family of curves in all three regions
for a = 10. As we approach the nonrelativistic limit the
curve corresponding to region 2 moves toward the x axis,
region 3 expands, and region 1 shrinks in area. In the ex-
treme nonrelativistic limit (¢ = «, @ = 0), region 1 disap-
pears entirely, region 2 lies on the x axis, and the curves in
region 3 become the cycloids discovered by Bernoulli.

Figure 4 shows the solutions for a given end point (x,, y,)
and several values of a. For a small, the curve is indistin-
guishable from the classical cylcoid.

B. Proper-time electric-field brachistochrone

In relativistic mechanics it is possible to pose two differ-
ent brachistochrone problems. We can now ask what is the
curve that minimizes the elapsed proper time as measured by
an observer moving with the particle. For this we must back-
track slightly and look at our original expression for T or,
more precisely, the expression for d7, namely dT = ds/v.
The element of proper time, d7, is given by

dr=dTJ1 = /3,

T=f"=dx Ja+ O \/1_ z
0 v C

+e(0) + & [ y(x) —p,]. an
0 | 2 3 y
] \Roqion 2
X £s05 £:5.0 (§=m)

FIG. 3. Relativistic brachistochrones corresponding to @ = 10. Curves in
regions 1, 2, and 3 are shown.
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)=(1,5)

FIG. 4. The lab-time brachistochrones for the electric field with fixed end-
points and various values of a. The case @ = 0.01 is indistinguishable from
the cycloid.

This is the generalization of (2).
Performing the variations as before and solving for an
arbitrary v(x) we get

X k 2v2
= dx' .
v \/(1 — /) — ko
For the electric field, we have

v=c1—=[1/(1 +ax)]?

or

VI =v?/F =1/(1 + ax).

Substituting, we find
X 2 n2
o 1 —k%[(14+ax')*—1]

l+ex gy -1
=f1 _&_\/—gz—uz’ (18)

where
2= (k24 1)/k2.

This result is interesting because except for the missing
factor of the parameter £, this solution is identical in form to
that of region 3 in the lab-time case. We see then that we have
lost the phenomenon of unbounded solutions by considering
proper time!

Figure 5 shows the solutions for fixed {x,, y,) and var-
ious values of a.

C. Uniform gravitational field

The problem of determining the relativistic brachistoch-
rone in a uniform gravitational field is somewhat more com-

|
1Y

(%5,¥9)=(1,1)

FIG. 5. Proper-time brachistochrones for the electric field. Observe that the
lab-time brachistochrones become less concave as the field strength E in-
creases while the proper-time brachistochrones in this limit become more
concave.
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?ra -__mg__
grav 1—v&

X

FIG. 6. Relativistic force diagram for a particle on a relativistic brachis-
tochrone in a uniform gravitational field.

plicated than the same problem for a a uniform electric field.
The additional complexity occurs because, as discussed in
Sec. II, the gravitational force depends on the relativistic
mass of the particle, which is a function of velocity, while the
electric force is only dependent on the total charge, which is
invariant. Consequently, we must find the expression for the
velocity of the particle.
First, by conservation of energy, we have

mer =me /1 = v /P — &,
where we define & to be the energy gained by the particle
from the force field, given by

g:fF-ds.

Now, the force on the particle due to gravity and acting in
the direction of motion is (see Fig. 6)

= (mg/\1 —v*/c% ) cos 0,

where 6 is the angle between the direction of motion of the
particle and the x axis. But since y’ = tan 6 we must have

cos@=(1+tan®9) 2 =1+ (y)]~"2,
and since ds = \/dx* + dy* =1 + (')? dx we get
g=fdx’—————mg .
V1 —=v¥/¢?

Now we have two equations in & and v. Solving the energy
conservation equation for v and eliminating v, we get

& =f mg(l +—g—2)dx’.
mc
Differentiating with respect to x, we obtain a differential

equation for &,
&' =mg(l + &/mc?),

(6] | 2 3 4
f T T 1y
~§=2.0
Region 3
/§=12.I83
Region | AN

T oo €0 |
X ’ Region 2

(§ =)

FIG. 7. Several curves in the family of brachistochrones for the gravita-
tional field with a = 2.5.
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0 ! 2 3 4 5

Yy

(x5,¥,) =(1,5)

FIG. 8. The lab-time brachistochrones for the uniform gravitational field
with fixed endpoints and various values of a. The case a = 0.01 is indistin-
guishable from the cycloid.

whose exact solution with & (0) =0 is
& =mc2 (e —1).

Substituting this back into the energy conservation equation,
we finally have an expression for v(x):

v=cyl—e %,
where a = g/c*.

Putting this into our general expression for the brachis-
tochrone for lab time we get

x 2 ~Zax
J’=J dx’\/ k(1—e )
0

(19)

(1—k?) + k%2
Asin the uniform electric field case, the family of solutions is
divided into three regions: 0<k?<1,k*>=1,and k*> 1.

The boundary region k ? = 1 in this case gives a brachis-
tochrone whose analytical solution is

y=(1/a) [ =1 —sec™'e>], (20)

which behaves like an exponential for large x, in contrast to
the boundary region for the uniform electric field, which
behaves like a parabola. (See Figs. 7 and 8.)

D. Proper-time gravitational-field brachistochrone

By a slight modification of the procedure for solving the
uniform-electric-field proper-time brachistochrone we find
the expression for the uniform-gravitational-field proper-
time brachistochrone to be

de ’52_81

The behavior of this solution is unexpected. Let us exa-
mine this integral for large x. We have

y<f dx' —=

ax’

e
£ —u
[ . . 1]
= — |arcsin 1 — arcsin —
[¢4

1|«

=— ——arcsm— <———

al2

Since we must integrate along both sides of the branch cut,
the curve is bounded in the y direction by twice this quantity
or m/a. At first glance, this result appears absurd; it seems
that there are no brachistochrones that pass through points
where y,> 7/a. However, we do have brachistochrones to
points lying in the region y, > 77/a. We can see in Fig. 9 that
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FIG. 9. The family of proper-time gravitational-field brachistochrones for
a=10.

as £{— w0, the brachistochrones become deeper. The limit of
these curves is a path that falls vertically to infinity on the x
axis, moves to y = 7m/a while at x = o0, and then returns to
x = 0 along the line y = #/c. The proper time experienced
by the particle along this path is

511 J. Math. Phys., Vol. 27, No. 2, February 1986

‘r—2f dx—————l—_v/

2 1 i

ZJ‘d

2
ac uu® — 1 ac

which is finite. Because the particle is traveling at the speed
of light at x = oo it experiences zero proper time while mov-
ingin the ydirection, independent of the distance traveled in
that direction. Therefore, we can go to any point (x,, y,) for
which y,>7/a by going to infinity along the x axis and
coming back up along the line y = y,.

Similar solutions do not exist for the proper-time elec-
tric-field brachistochrones. The proper time for a particle to
fall to infinity in an electric field is infinite so all brachistoch-
rones in the electric field must have finite length.
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The front form and the point form of dynamics are studied in the framework of predictive
relativistic mechanics. The noninteraction theorem is proved when a Poincaré-invariant
Hamiltonian formulation with canonical position coordinates is required.

I. INTRODUCTION

Instantaneous relativistic dynamics of particles with di-
rect interaction was initiated in a celebrated paper by Dirac,’
entitled “Forms of relativistic dynamics.” The line of
thought set up there was further developed by Bakanjian,
Thomas, and Foldy,” in the framework that Dirac had called
“instant form.”

The subsequent development of the theory met the im-
portant drawback of the so-called ‘“no-interaction
theorem.” * In general terms, it states that, if the position
coordinates of the particles are to be canonical coordinates,
and the particle worldlines must be Poincaré invariant, then
the only systems that are compatible with both requirements
are those consisting of free particles.

One attempt to circumvent this problem was initiated
by Currie,* and later on it has generated a rather wide stream
of literature, which is known as predictive relativistic me-
chanics (and maybe, it should be called an instant form of
PRM). It consists, first, in giving up the Hamiltonian for-
malism, which was taken for granted in former approaches,
and starting from a more elementary level. The fundamental
assumptions in predictive relativistic mechanics are (i) the
equations of motion of the particles are Newton-like, that is,
the acceleration of each particle is a given function of posi-
tions and velocities of all particles; and (ii) Poincaré invar-
iance, which is understood to mean two things: the accelera-
tion functions must be formally the same in all inertial
reference frames, and particle worldlines must be Poincaré
invariant. These requirements imply that some condition
(the so-called Currie-Hill equations®) must be fulfilled by
the acceleration functions. In addition, they also ensure the
possibility of setting up a realization of the Poincaré algebra®
on the system’s tangent space (the one spanned by positions
and velocities). Now, the no-interaction result can be ob-
tained again’ if one seeks for a Hamiltonian formalism such
that the aforementioned realization of the Poincaré algebra
is canonical, and the position coordinates can be taken as
canonical.

As far as we know, all proofs of the no-interaction
theorem hitherto derived share a common feature, namely,
physical variables are assumed to be simultaneous in a given
inertial frame. This is a specific trait of the “instant form” of
relativistic dynamics. However, in the pioneering paper by
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Dirac,' two other possibilities were considered, namely, the
“front form” and the “point form” (in fact, a later paper by
Leutwyler and Stern’ increases that number by two more
“forms”).

One then wonders whether the no-interaction theorem,
or a related result, also holds in these two alternative forms
of relativistic dynamics. Although thisis, indeed, an interest-
ing point to be elucidated, it seems not to have been proven
yet. Indeed, in a relatively recent paper by Leutwyler and
Stern’ we can find the following sentence: “Although this no
go theorem has been established only for theories of class (i)
{i.e., the “instant form” of relativistic dynamics) it likely also
holds for the remaining four forms of Hamiltonian dynam-
ics.”

In the present paper we intend to give an answer to the
question that is more or less implicit in the quoted sentence,
and derive a no-interaction theorem in the front form as well
as in the point form. The master lines of our proof are the
same as those of the proof given by Hill® for the no-interac-
tion theorem in the “instant form.”

In a natural way, the paper is divided in two parts. The
first one (Secs. II and III) is devoted to the front form, and
the second one (Secs. IV and V) to the point form. Besides,
each part is organized in two sections: one devoted to deve-
lop what could be called the front (resp. point} form of pre-
dictive relativistic mechanics, and the other to prove the no-
interaction theorem.

Il. FRONT FORM OF PREDICTIVE RELATIVISTIC
MECHANICS

In the instant form of predictive relativistic mechanics®
(which has been its only formulation up to now), the ex-
tended configuration space of NV spinless particles is spanned
by the 3N + 1 variables: ¢, x}, b = 1,..., N, i = 1,2,3; where
the evolution parameter is the time coordinate as measured
in a given inertial frame, and the x} are the space coordinates
of the event determined by the intersection of the worldline
of particle b and the space hyperplane x * = .

The equations of motion are then required to be second-
order differential equations, that is,
dx o dx}

” = =aj (xi,vkt), dt" = . (2.1)
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Thus the space of initial data is spanried by the following
6N + 1 variables:

be=1,.,N, Lk=123.

If the space hyperplanes x * = characterize the instant
form, likewise the null hyperplanes x > + x * = A will play a
central role in the front form of relativistic dynamics (here ¢
and A are two real parameters). So, the extended configura-
tion space in the front form will be coordinated by the
3N + lvariables: A, x,,b = 1,..., N,i = 1,2,3; where A is the
evolution parameter and x} , i = 1,2,3, are the space coordi-
nates of the event where the worldline of particle » meets the
null hyperplane

i k
t, Xy, Vg,

x34xt=24, (2.2)
or, using the notation introduced in (AS),
xtT =24

(the same value of A for all particles).
For convenience, our configuration space coordinates
will be (see Appendix A)

xt, a=1.,N, A=12,—,

a?
rather than the Cartesian x%, i = 1,2,3.
We now require the motion to be governed by a second-
order differential system,

d ! dx4
d/lzb =a’;(xf,vf;/l), “2/1_=v‘;’

abec=1,.,N, ABD=1.2,— .

For every given solution of (2.3), we have a set of N
worldlines describing the history of the system. Indeed, if

o (x2vP 1), A,B.D =12, —, a,bc = 1,..,N, is the solu-
thll of (2.3) corresponding to the initial data

(2.3)

(xa e ,0) = x:
(2.4)
a¢7 b ( D
an e 0

then, according to (2.2) and (A5), the worldline x#(4 ) of par-
ticle b will be taken as

xX,A)=@ix2v2%A), i=1.2,

XA =472+, (X255 4), (2.5)
x)A)=A72 — @, (xJ5A),

which in the adapted coordinates (A4) reads
XA ) =@ixdviA), xS A)= (2.6)

Similarly to the instant form description, the principle

of relativity will be used at two different levels. First, the
“acceleration” functions af on the right of Eq. (2.3) must
have the same form in every inertial frame. And second, the
dynamic system must be worldline invariant. The latter re-
quirement means the same as in the instant form case, name-
ly, that if § and S’ are two inertial frames related to each
other by a Poincaré transformation (. % ,&P), 4.BD
= 1,2, —, + —see the Appendix— and x¥(1), b = 1,...,N,

A=1.2,—,+ are the worldlines of the particles in the
frame S, when the system starts from a given set of initial
data Z,=(x4,vP), ac=1,.,N, 4,D =12, —; then the
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Poincaré-transformed worldlines
xfA)= LE0EA)—47) (2.7)

must be obtained in the frame S’, when the system starts
from the transformed set of initial data z; =(x.*v.?).

Thus, as happens in the instant form, the mapping
z, — 2z}, defines the induced action of Poincaré transforma-
tion (. %,.;z/ 5) on the space of initial data.

In terms of the adapted coordinates, this mapping reads

xA= fAxE Pl e0),
(2.8)
= g(x2vPeE ),

where eI:,eF_G, EFG=12,—,+ denote the parameters
characterizing the specific Poincaré transformation—see
Eq. (A11).

The infinitesimal generators are then obtained in the
usual way:

af, g, ]
= = ,UDOO—— ———-xB,vDOO—,
Pz 9k {xp ) At +(9 (x5 )avf
(2.9)
. 24
Jez = 6_E_F(x,,, 3€EF — (x5VP, 00)5‘;

To obtain the speclﬁc expressions for these generators,
we shall work out the condition of worldline invariance
(2.7), together with the worldline equations (2.6). Intro-
ducing the latter into both sides of (2.7), we obtain

@iz Aa (2 D)) =TXL L[ @225 4) — L]
A+ [/1“&‘{-'_], A=12,— .
(2.10)

It should be noticed that, since the “acceleration” func-
tions have the same form in frame S and in S, the same
general solution @ 2 has been substituted into both sides of
Eq. (2.7). However, whereas in the right-hand side we take
the initial data z, = (x?,v?), which correspond to the frame
S, in the left-hand side we have to put the transformed initial
data z; = (x!*v;%) which correspond to the worldlines as
viewed from the frame S'’. Moreover, the value of the evolu-
tion parameter in the left-hand side of Eq. (2.10), which we
have written as A, (z,, A), will be presumed different from
the parameter A in the right-hand side. This is due to the fact
that the worldline invariance only ensures that each world-
line transforms into another one as a whole, no matter how
the respective parametrizations are related to each other.

In our case, the relation between parametrizations, i.e,
the function 4, (z,, A1), can be derived from the fact that the
evolution parameter corresponds to the space-time coordi-
nate x™; so that we have

Ao i) = LF(@2epd) —LB)+ L+ (A— ).
(2.11)

By taking derivatives in (2.10) and (2.11) with respect to
A we obtain the relation between velocities

P2 Aal2o A)) Aal2e A) = Lh @Bz A) + L4
(2.12)
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with
'ia(zo’/l)='=g1§+ "i’f(zmi)‘*“gi

which, after one further differentiation, yields the relation
between accelerations:

@ H2or Aalzor A 2(20, A) + @ 22gs Agl20 A My (200 A )

= L49 2en ) (2.13)
and

A )= L3 @Bz A).

Since @ ¢ is a solution of the differential system (2.3),
Egs. (2.13) can be written as

@B, Ay (20 A)); @ 220y Ay (20, A));
Ao (20, A)) - A2 (20 A) + @ 2203 Aa (200 A)) - A (20s A)
= L3N @20 A), @l(z A), 4), (2.14)
Aoz A) =L 3 @ (200 A)p F 20y A), A ).

Equations (2.10)~(2.14), which hold for every value of
A and for every Poincaré transformation (.£4,#7), actual-
ly determine the functions /4, g7 in (2.8). Although, apart
from a few trivial cases, it would be impossible to derive
explicit expressions for such functions, the above equations
permit us to obtain the infinitesimal generators in a rather
straightforward way.

Indeed, introducing the infinitesimal expression (A12)
for the Poincaré transformation (.¥%,#7) into Egs.
(2.10)-(2.12) and keeping first-order terms only, we ob-
tain, after some manipulation,

d a
P, = i -2 a"—] 2.15
N ; axt 0 g (2.132)
5 9 12 2.15
; a"x:," =12, (2.15b)
3 5+ x,
-3 [(x,,+ + x-S axA
~(v,,. & +x,,,a:+va,vt)av:], (2.16a)
N 3 J
Ji_=- a a
" a;[x*aa +v+¢9v,,_
3
+ i ] 2.16b
4=T3 - ( )
3 a3 3
J = = “ar - s 216
. a;[ * x; - au;] (2.16¢)
N 3 3
le=azl[—xaz a; al axﬁ
3 3
+ Vaz P 1 al E)?] s (216d)

where r = 1,2.

Notice that, as expected, there are seven kinematical
generators P, J,,, J,._,J,. _,A=12,—,r=1,2; and
three dynamicalones P, J _,, r = 1,2; or Hamiltonians.

Now, by introducing the same infinitesimal Poincaré
transformation (A12) into Egs. (2.14), we obtain the set of
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differential equations

P,a®=0, AB=12—,
J.al =ai87 —a)67,
J,_af= —a6% ,

J, _af= —(a;6° +za?),

B _
J+raa - _zvaraa _aarvf -

(2.17)

a, + 87 —x,(P.aj),

which play a similar role as the Currie-Hill conditions® in
the instant form of predictive relativistic mechanics.

Hi. NO-INTERACTION THEOREM IN THE FRONT FORM
OF DYNAMICS

Let us now assume that we have a symplectic structure
in the space of initial data, such that the “position variables”

x4, 4 = 1,2, —, are canonical, i.e., the symplectic form is
o=dx3 A dpy, (3.1)
wherep? = p4(x2.vP),a,b,c = 1,...,.N,A,B,D= 12, —,and

summation over repeated indices (4 as well as a) is under-
stood.

Let us furthermore assume that the realization of the
Poincaré group that we discussed in the previous section is
canonical relatively to o. This implies that o is Poincaré in-
variant or, equivalently,

L (Py)o=0, ZLIiz)o=0, (3.2)

where 4,B = 1,2, —, + and .¥ means “Lie derivative.”
As a consequence of Eq. (3.2), there exist ten generating
functions P4(x, p), J45(X, p) such that

i(Pylo= —dP; and i(Jgzlo= —d/gp,

or (3.3)
P;={PZ,—] and Jﬁ:-{.,ﬁ,—],

where i means “inner product” and { , } is the Poisson

bracket associated to o.
Now, using Eq. (3.3) and the expressions (2.15) and
(2.16) for the Poincaré generators, we arrive at

[xﬁ,PB} =63,
{(xdy _ ) =260
(x2, 74, =x, 6] +x,v5,

r=12 AB=12,— .

{xti'IIZ} = —JC§5'14 +x:16: ’
{x:,J - } =x,’,5A_ »

{(xe.Pr} = =07, (3.4)

By applying the commutation relation of the Poincaré alge-
bra and using the Jacobi identity and Egs. (3.4), we find, after
some calculations,

(o nlxgxd}} =8 {x. X0} +d{xixs} +x; {vix5)

—vp{xpxa} —x; {vgxal, (3.5)
{xavp} =[x} + (fxgxa )Py, (3.6)
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{xtad} ={vg vt} + ({3 X3P}, (3.7)
— ({xBve), 7, ) + ey wide? + {x i )87
+ {xpvahvp + {xZ.xi}x;
= {v; x5¥62 + v, {vix2} + vi{v, x5}
—a{x x3} — x {al X3},
— (2w}, 7., ) + {vy vi6E + {vy v bl
+ {fwitvy, — {x;vitag —{ag.vidx]
= {v; v5}8¢ + {v, w3 v
+ {v2 2, — {x} vf}a?

(3.8)

—{adf}x; . (3.9)

Since the coordinates x? are assumed to be canonical,
we have that {x4,x?} = 0, which, combined with (3.5) and
(3.6), implies

x g x2} —x {vyx3} =0, (3.10)
whence

{v{x8} =0, fora+#b. (3.11)
From (3.8), (3.10), and (3.11), we obtain

{ad,xf} =0, a#b, (3.12)
which, introduced into (3.7), yields

{48} =0, a#b. (3.13)

Now, using the Jacobi identity with v, v2, and P, , we
can write

{a2v8} = {ag i} + (P, {v}3}},
which, with the help of (3.13), leads to
{ad, 5} ={afvi}.
Upon substitution into (3.9), this finally yields

{afv2} =0, a#b. (3.14)
Now takmg into account the identity
{fe}= Z {nim;} S % (3.15)
Lj=1 a 3
where fand g depend on the vanables 7y = 1 only; we can
write
dal dap
{x:sa } {x::ach} 2 {x::,uf}—?',
’ OxP dv?
(3.16)
da} da?
{vd,af} = {vd, x2} — + {v, vP} —
31 ={vg, por + {vd, P} — P>
whence, by using Eqs. (3.10)~(3.14) there follows that
aa,, dap
=0, —=0, b. 3.17
auD oxP < G17)

That is, the acceleration a2, B = 1,2, —, of each particle b
does not depend on the positions and velocities of the re-
maining ones, but only on its own position x7 and velocity
vi. This conclusion would be enough to consider that the no-
interaction result is proven, since the motion of each particle
is not affected by the presence of the others. However, in the

515 J. Math. Phys., Vol. 27, No. 2, February 1986

case we are considering (i.e., front form) a little bit deeper
analysis reveals that the accelerations actually vanish.
Indeed, from (2.15b) and (3.17), we have

a B
% _o, (3.18)
x;
and using (2.16), (3.17), and (3.18), we arrive at
a=0, a=1..,N, A4=12,—, (3.19)

which completes the proof.

IV. POINT FORM OF PREDICTIVE RELATIVISTIC
MECHANICS

In the instant and front forms of dynamics, the con-
struction of the configuration space was somehow linked to
the choice of either the space hyperplanes x* = ¢ or the null
ones x> + x* = A, respectively. In the point form, the hyper-
boloids x* x,, = — A ? will be assigned a similar role.

Each point in the extended configuration space will be
characterized by 3N+ 1  coordinates (x.,4),
a=1,.,N,i=1,2,3, where A is taken as an evolution pa-
rameter and the x’, are the spacelike coordinates of the event
where the worldline of the ath particle intersects the hyper-
boloid

xx, = —A%. 4.1)
As in the earlier two cases, the equations of motion are
second-order differential equations

d’x, . dx’

% (x4, V5, 4), 7
wherea, b,c=1,.., N, i,j,k=1,2,3.

Now, let ¢/ (x}, vk, A5, A) be the general solution of
(4.2) determined by the initial conditions

¢7f1 (xll;s Uf, Ao Ao

i i k . - [
¢:z (xinvc»/lo,/lo)—”; ’

=0, (4.2)

)= (4.3)

where an overdot means a partial derivative with respect to
the parameter A. As in the former two cases, the worldline of
the ath particle is then defined by ¢ # (x}, v¥, A; 1), where

172
¢)a (xlb’vc!'q'O)'l)_{/{ +Z¢a (xfu”c’/lo,/i) ] .
i=1
(4.4)

And, as before, we shall require Poincaré invariance of
worldlines that reads as

PL 25, Aa Eo AN =LY [@7(2nd)—4"], (45)

where z, and 2}, are abbreviations of the initial data, (x}, v%,
Ao) and (x, v2*, A §), respectively. These initial data corre-
spond to two different inertial frames that are related to each
other by the given Poincaré transformation (L*,, 4°). The
mapping z,—z;, defines the induced transformation on the
extended configuration space.

The value of the parameter A,(z,, A ) on the left-hand
side of Eq. (4.5) can be easily derived. Indeed, taking (4.4)

into account, we have
Aiwi)= — @l (20 d)—4*] (@ 20 A)—4,].

(4.6)
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As is easily seen from this equation, and also from (4.4), the
correspondence between A and the time coordinate ¢ ¢ is not
one-to-one. In order to avoid the nondifferentiability in the
branch point A = 0, we shall take hereafter 1,and A positive.
Moreover, the translation parameters 4* will be assumed to
be small enough for A 2 (z,, A ) on the left-hand side of Eq.
(4.6) to remain positive.

By differentiating (4.5) with respect to A we obtain the
transformation formula for the velocities

LF, @2 (2o A) = @ (25, Aalzey A )) Aal2en A ),
where

Ao (20 A) = [Aa (2 ] 7' [@2(20A) — A" ] Pav (20, 4) .
(4.8)

And, differentiating again, we have the relationship
among accelerations

L=, ¢Z(Zo,/1 ) =¢l¢:(z(’):ia(zo"l ))ﬂﬁ(zo,,{)

(4.7)

+ @4 (251 Ao A) Aglze A ), (4.9)
where
.. A 2 1 }
A‘a = - /10 + Aa {(¢):(ZO’£’)_AV)¢¢W
+ @200 A) Par(20r )} - (4.10)

Now using (4.3) and (4.4), taking (4.6)and (4.8) into ac-
count, and setting A = A, Eqs. (4.5) and (4.7) yield a set of
6N implicit equations involving x, v}, x2%, v, Ao, L* ,, 47
Similarly to the front form case, it will be generally impossi-
ble to derive explicit expressions

xt’zi =f; (x,v,40; L, 4), v;i = gfz (x, v, Aoy L, A)

for the action induced by a finite Poincaré transformation
(L* ,, A7). However, by introducing the infinitesmial expres-
sions

L, =&, +€aﬁ(&‘a 771//9'_6”3 77va)+0(€2)’ Ar=¢
(4.11)

into Eqs. (4.5) and (4.7), we can easily derive the following
expressions from ten infinitesimal generators:

i

+ [ YT L
A24+x)0 2

lu +x? )”23,. 3
A  oxi

w0

+ 2| =i
A v,

X Vs o) 9

p= -3 |5 +e) 2

v:;x{,) a]
A o)’

3 A+x,v, 3
. 2 241/2 a‘Va U
J°f‘;[('1 +x) A, +(,12+x2)”2au;'}’

;a ; 0 ; d ; 0
J,; = X ——x ——t v — —v, —1}.
Y Z[ ax’ ax, e au;]

P,=F

a, i

A2+ x2
-~

(4.12)

1(. C
+—\x a; + v, v) —
A
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Finally, substituting the infinitesimal Poincaré transfor-
mation (4.11) into Eq. (4.9), and taking (4.10) and (4.12) into
account, we arrive at
Jja; =a, 8 —a, 8,

k

6 2
Jo: a:=—l (1+x‘2,+xa aa_—(/1+x,,x,,))’
m : A?4x2
I k
P,aﬁz%(xf,af+vf, v’;-—x"i—v")
1 (1 k !k 13‘1’;)
——\a, v; +2v, a; + x, , 4.13
A aA (4.13)
2 A%+x3)
P af:———(/l+xava - )a
T PRV
+—————l (v2 +x,8
AAZ+ x2S
_ Xg Vg _(j'+xava)
A A
20°4+x7)  A+xV) &
— va
A? A%+ x2)
(A2 +x3)'"? da;
A an’
where
; d ; d a
H= v, —+ta, —|+— 4.14
Z( ox’ av;,) EY) (4.14)

is the infinitesimal generator of A evolution.

Equations (4.13) play a similar role as Currie-Hill condi-
tions in the instant form of dynamics. It can be easily proven
that they are equivalent to the following requirements.

(i) The generators P,,, J,,, given by (4.12) generate a re-
alization of the Poincaré algebra on the space of initial data
(i.e., their commutation relations are the suitable ones).

(i) This realization is invariant under A evolution, that
is,

[H,P,]=[HJ, ]=0. (4.15)

V. THE NO-INTERACTION THEOREM IN THE POINT
FORM OF DYNAMICS

Let us now assume that by introducing some 3N mo-
menta p’ (x,,V.,4),a=1,.,N, i=1,2,3, the extended
configuration space can be mapped onto the extended phase
space, spanned by the 6N + 1 independent variables (x},
P, A). Let us further assume that the latter is endowed with
the canonical structure defined by the elementary Poisson
brackets

i, x,}=1pl, P} =0, {x,p,}=06.6" (5.1
and the Poincaré transformations as well as A evolution are
both canonical relative to this structure.

The latter condition implies the existence of 11 generat-
ing functions H, P,,, J,,,, 4, v=1,2,3,4, such that

H={H: }) P,‘ ={Pp9}9 Jyv = JFV’}’ (5-2)
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where H, P, and J,,, are given by (4.14) and (4.12), respec-
tively.
According to (4.12), (4.14), and (5.1), we have

(H,x,} =vg, (5.3a)
{Poxi} =[A2+x2)/2/A )0, (5.3b)
{Px} = —x, v,/A -8, (5.3¢)
(T X} =8 x5 — 8 (5.3d)
(Jop X} =A% +x2)/2 8. (5.3¢)

Now, writing down the Jocobi identity for P;, x5, x§,
taking (5.1) into account and using (5.2}, we arrive at

X, (x5, 5} =x} {xg, 05} . (54)

Applying the same treatment to the functions Py, x.,, x},, we
have

{x}, 02} =[x, 0f}, (5.5)
which, once introduced in (5.4), implies
(X, 0} =0, a#b. (5.6)

Then, starting from the Jacobi indentity for P, v}, x},
and using (5.2), (5.3), and (5.6) we obtain

xL {x’g,af,}=x’,',{vf,,v',§} ’ (5.7)
which, substituted in the Jacobi identity corresponding to
Py, v}, x), leads us to

{xk,al} =0, {v,vi]=0, a#b. (5.8)

Finally, using (5.8) in the Jacobi identity corresponding
to P;, v}, vs, we arrive at

{v},a}} =0, ab. (5.9)

Since the Poisson bracket has rank 6N and the mapping

(xi, v, A)—>(x., P4, A) is assumed to have rank 6N + 1,
there follows from (5.8) and (5.9) that

da, da,
— =0, -=0, a#b, 5.10
ox;, av, 7 (5.10
or, equivalently,
@, = d,(x}, v5, 4 ), (5.10")

which means that the acceleration of the b th particle does
not depend on the state of motion of the remaining one. We
can conclude that particles do not interact among them-
selves,

However, the no-interaction theorem we are intending
to prove goes further still. Indeed, not only does it state that
particles do not interact but also that their worldlines are
straight.

The specific form of the acceleration a} can be deter-
mined by introducing (5.10’) into (4.13). This leads us to

2

a;',=l[1+vi,—ﬁ—+—"ﬂ'ﬁ— o, (5.11)

A A4+ x2
which, since the acceleration is proportional to the velocity,
implies that motions are rectilinear. A suitable reparametri-
zation of trajectories will yield uniform motions, and there-
fore, the proof is complete.

In fact, the a priori knowledge that the above-mentioned
suitable parameter will be the “physical time” @ 2, and its
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relationship (4.4) to the “unphysical” scalar parameter A,
will allow us to derive the general solution of Eq. (5.11). In-
deed, we can easily prove that

c+b T4, Axcb) (5.12)
with
T =(1—b%)"{b-c — by — ((bc — 2,)°
+ A2 —A3)(1— b)) (5.13)
and
fo= (A3 — Y2

is the general solution of Eq. (5.11); the parameters b-¢ being

related to the initial data x,, v, according to
0 0

Iy

c=x, b=—-="9 .y, . (5.14)
Y ﬂ,o + Xp vb 0
[ ]
APPENDIX A

In this Appendix we present the most useful expressions
concerning the action of the Poincaré group on the Min-
kowski space M,, in terms of the set of coordinates and pa-
rameters which are most suitable for the null plane formal-
ism (or front form). Throughout this paper, we take ¢ =1
and7,, =(+ + + —)u,v=12734

Ifx#, u =1, 2, 3, 4, are the Cartesian coordinates of an
event in M,, then the Poincaré transformation (L* ,, 4*)
changes them into

x*=LF, (x¥ —A4%). (A1)
A proper orthochronous Poincaré transformation (L* ,,, 4”)
is characterized by ten parameters (€%, ),
A pu,v=1,2,3,4, p<v. In the standard parametrization,
and for infinitesimal values of these parameters, we have that

L =65 + € (6%, 0,5 — 8% N,5) + O(%),
(A2)

4% =€ 6%, .
Hence, in Cartesian coordinates, and in the standard para-

metrization, the infinitesimal generators are
d d J

P , v Yy — — X, —.
# ax* # ax* * oox”
In the front form, it is more convenient to use the new
adapted coordinates

(A3)

=M%, x, A4=12, +, —, (A4)
where
x+=x3+x4, x——___£(x3+x4)’ xl=x1, x2=x2,
(AS5)
that is,
1 O 0 0
= 0 1 0 0
M4, =
# 0 0 1 1
0 0 172 —1/2
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In these coordinates, the Minkowski metric is given by
=M M )5,

1 0 0 0
_ 01 0 0 (A6)
0 0 0 1)
0 0 1 0
From this expression it is obvious that
Mar=nz M?, % = (M ~')*5. (A7)

So, the lowering and raising of indices works as
M'=M, M*=M,, M*=M_, M~ =M,.
(A8)

Expressed in these new coordinates, the transformation
(Al) reads

er___fz—!E (xi_di)y Z1§=1;2’ +1 — (Ag)
where
FLAa=M*, ¥, (M~")'5 «P=MP, 4. (Al0)

According to these definitions, and performing the
change of parameters,

e=M4, ¢, fP=¢ M%, MP,,
the infinitesimal expressions (A2) transform into
L5 =56% + €P(8" 1ps — 8" 1ew) + O,

(A11)

A= . (A.12)
Hence, the corresponding generators are
a d a
4 = ——= J_=x—-—=——x—-—=. (A13)
S ™ R

The relationship between the two sets of generators (A3)
and (A13) can be easily derived from their definitions and
Eq. (A11); this relationship being

PZ = Mz» Py, Jﬁ =M§/‘ MT," J'uv . (Al4)

Notice that the coordinates x%, 4 = 1,2, +, —, are
specially suitable to work in the instant form approach, since
the null hyperplane equation x> = x* = 0 is written in the
new coordinates x* = 0. Moreover, the generators Pz and
Jz split in a natural way into kinematic ones (those pre-
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serving the null hyperplane)
PP PyJndi_,d, ., _
and dynamic ones
P, J,..J,..

APPENDIX B

In the future sheet of the light cone in Minkowski space
defined by

x*>0, x*x, <0, (B1)
we introduce the following coordinates:
yo=x', i=123, y=(-xx,)"2. (B2)

In terms of these coordinates, the generators of infinite-
simal Poincaré transformations are

P +Z 0P

T
y a
Pi=———,
»yat
J0i=((y4)2+2(yj)2)1/2“i.’ (B3)
i ay'
. d ; d
Jy=yl =y
'y T ey
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A generalization of the predictive relativistic mechanics is studied where the initial conditions are
taken on a general hypersurface of M *. The induced realizations of the Poincaré group are
obtained. The same procedure is used for the Galileo group. Noninteraction theorems are derived

for both groups.

I. INTRODUCTION

The generalization of the no-interaction theorem pre-
sented here is undertaken in the framework of predictive
relativistic mechanics (PRM),! that is, the same Newtonian
equations of motion remain valid for every inertial observer.
Relativistic invariance is then understood as referring to
worldlines, thus adopting the standpoint first stated by Min-
kowski? that “...physical laws might find their most perfect
expression as reciprocal relations between these worldlines.”

In the usual formulation of PRM, the configuration
space for an N-point particle system is spanned by the 3N
simultaneous position coordinates of the particles (simulta-
neity here presumes an inertial observer describing the dy-
namics of the system). In this respect, the usual PRM ap-
proach is similar to the instant form of Dirac® for
Hamiltonian relativistic dynamics.

Also, in most of the various derivations of the noninter-
action theorem, the instant form assumption plays a crucial
role: the simultaneous position of particles are assumed to be
either canonical coordinates in the Hamiltonian ap-
proaches* or the variables spanning the configuration space
in the Lagrangian formulations.’

Other derivations of the theorem, that will not be con-
sidered here, correspond to the covariant formalism of PRM
(see Ref. 6) or to the Hamiltonian relativistic systems with
constraints approach.” An interesting review on the subject
can be found in Ref. 8.

Dirac proposed? two other possible formulations of Ha-
miltonian relativistic dynamics besides the instant form:
namely, the front form and the point form. So the question
arose of whether the instant form assumption was essential
to the noninteraction result, or if a similar output could be
obtained in the framework of the other two Dirac forms.
This point has been studied in a recent work® and the answer
is yes.

At this point, why should we restrict ourselves to the
three Dirac forms of Hamiltonian relativistic dynamics?
From a historical point of view, it becomes apparent that
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Dirac proposed these three forms as different possible ways
of simplification for a wider problem: the derivation of Pois-
son realizations for the Poincaré algebra. Nevertheless,
Dirac himself proposed, and later developed, a technique—
relativistic Hamiltonian dynamics with constraints!®—
which permits us to obtain a much wider solution to this
problem, beyond the rigid restrictions of the above-men-
tioned three forms of dynamics.

So, as far as the noninteraction result is concerned, the
following question becomes legitimate: Does it hold beyond
the narrow framework of the three forms of Dirac?

A first answer to this question has been given partially’
in the framework of Hamiltonian relativistic systems with
constraints. Under some assumptions it has been proved by
an example that some mass-shell constraints and fixations
could be chosen such that, albeit positions of particles are
taken as canonical coordinates, the noninteraction implica-
tions are circumvented. However, that model has not any
interest beyond the mathematical one: not only is it unphysi-
cal, but also the procedure to reconstruct the particles’
worldlines from the phase space trajectories is rather sophis-
ticated, owing to the fact that the fixations are chosen not to
have a clear kinematical meaning, but to yield some wanted
specific Dirac brackets.

We are going to undertake another generalization of the
noninteraction theorem, now always keeping in mind the
kinematic aspects of the problem, that is, the way any given
inertial observer will have to recover the particles’ world-
lines from the configuration space trajectories. To this end,
let us analyze how it is done in the instant form approach.
For every given value A of a certain parameter, an inertial
observer takes the space coordinates x, (1), a = 1,...,N, of
each particle when

XN =xy=w=x5 =4, (1.1)

and the configuration space curve (x} (4 ),...,x% (1 )) describes
the evolution of the system. Conversely, the N worldlines are
recovered from a given configuration space trajectory
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(x4 (4 ),...r X'y (4 )), by merely taking (4,x5(4 ), a = 1,...,N.

Other requirements in PRM are (i) that the trajectories
of the system are the integrals of a second-order differential
system on the configuration space and (ii) the relativistic in-
variance in terms of worldlines. A further development of
the latter two conditions yields the so-called induced realiza-
tion of the Poincaré group on the cophase space and the
Currie-Hill equations.'

The front form (resp. point form) approach operates in a
quite similar way.® For every given value 4 of a certain pa-
rameter, an inertial observer takes the space coordinates
xi(1),a=1,..,N when

X4xi=4 (1.2)

(1.3)

The evolution of the system in the configuration space is
then given by (x} (4 ),...,x} (4 )). Conversely, for a certain con-
figuration space curve, the worldline of the ath particle is
given by

(resp. x> — x2 =47%).

A—x2A),x(A), a=1,..N, (1.4)
[resp. A2+ X2(A), xiA ) a=1,..N]. (1.5)

Similarly, the requirements of relativistic invariance and
that configuration space trajectories fulfill the second-order
differential system

d’x;

dA?
also lead to an induced realization of Poincaré group on the
extended cophase space and to some restrictions on the acce-
lerations that play the same role as the Currie-Hill condi-
tions do in the instant form approach.

In Sec. I1, we shall start from an analysis of the common
features of these three approaches, in order to generalize the
predictive relativistic mechanics framework. Then, in Sec.
III, we prove a generalization of the noninteraction theorem.
Finally, in Sec. IV, we extend the previous study to Newtoni-
an dynamics, analyzing the noninteraction theorem in this
case.

= afz (xb ’vc "{ )’

Il. THE GENERALIZED PREDICTIVE RELATIVISTIC
MECHANICS FRAMEWORK

The three approaches we commented on at the end of
last section (resp. instant, front, and point forms) share the
following common features.

(i) Newtonian equations of motion: The configuration
space of the N-point particle system is spanned by the 3N
position coordinates of the particles x.,, a = 1,..,N,
i=1,2,3, and the evolution is governed by a second-order
differential system

dx: . dv o
— =, —= =d(x},v5A),
di di osbed
whose functional form does not depend on the inertial ob-
server describing the dynamics.

(ii) A specific rule to construct the worldlines: For each
particular solution

xA) =@l gk Agl), a=1,.,N,

(2.1)

(2.2)
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of (2.1) with the initial condition

A R .
@ % vAodo) = ¥4, e 0694 0:40) = ¥as (2.3)
the worldline x#(A) for the ath particle is obtained by taking
the space coordinates (2.2) and finding the time coordinate

X3 ()=p o (¥} ¥k AoA) from
hixtA) =4, (2.4)

where / (x #)is a fixed function on space-time M,—the same
function for every inertial observer and every particle [re-
member Egs. (1.1), (1.2), and (1.3) for the three forms com-
mented on above].

Intuitively, this means that each inertial observer con-
structs his configuration space by taking the space coordi-
nates of all particles when their worldlines cross a previously
chosen parameterized set of space-time hypersurfaces:
hix#*)y=A.

In order that x(4 ) can be obtained from the implicit
equation (2.4), the partial derivative 3 /3x° must not vanish.

(iil) Relativistic invariance of worldlines: Let ¥ and .~
be two inertial observers connected by the Poincaré transfor-
mation

xH=L*# .(x"—A4"). (2.5)
Let us assume that the worldlines ¢ /(x,,v., A4 ) are ob-
tained by ¥ from some initial data (x,,v.,4,). Then, the
transformed space-time curves

L#, . [@axvdohd)—47] (2.6)
must be such that are obtained by .’ starting from another
set of initial data (x’,v;,4,). That is,

L#, - [@iXpVeldgd) —47] =@ Mx, ¥ AGA L), (2.7)

for every A. The parameter A /, of the right-hand side is deter-
mined by the condition

AL (x,,V, AL *,,4 " A)

=h(L*, - [@i(XVeshoA) —47]), (2.8)
which stems from requiring (2.4) to hold also for %"
It can be easily obtained from (2.4) that
A :z(xb ’ch*o;&fyoﬂ ) =A. (29)

The new /' initial data (x.,v;,A,) will depend on the
former . ones (x,,v.,4,) and on the Poincaré transforma-
tion, (L*,,4*) € &, which relates ¥’ to .%. That is,

x5 = folXpVeshoL ¥, .4 ¥),

(2.10)

Uy = &a(Xp, VAo ¥,y 4 4).

We are not going to derive explicit expressions for these
functions, f* and g/, which define the Poincaré transfor-
mation induced by the given (L #,,4 #)€ & on the ex-
tended cophase space I'(6N + 1), nor are we going to prove
by a direct manipulation that they form an actual group real-
ization. Instead, a close examination of commutation rela-
tions will ultimately prove this point."!

Note that induced Poincaré transformations act as

(XasVosAo)—>(x,¥5,40)
thus leaving invariant, by prescription, the sheets A = const,
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of T(6N + 1). In any parametrization (L *, (€;), 4 *(€;)),
IJ = 1,...,10, the infinitesimal generators for induced Poin-
caré transformations are given by

[ B 5 e
! a €1 /ey=0 ox,, 9€r/ (e =0 ((;v:il)

[summation over repeated space (Roman) or space-time
(Greek) indices will be hereafter understood].

The coefficients on the right-hand side of (2.11) can be
obtained by taking partial derivatives with respect to €; and
then making (€;) = (0) in the expression

4L (XN Age), 84 (X,VA0€r ) Ao

h(L?, - [@2(xVAgh) —4°]))

=L* -[@i(XpVAgd) — 47], (2.12)
which results from considering (2.7), (2.8), and (2.10) togeth-
. Since Eq. (2.12) holds for every value of A—at least in an
open neighborhood—it can be proved easily that any in-

duced Poincaré transformation commutes with dynamical
evolution. That is, the diagram

(X40:¥50540) induced Poincaré ——a (x.,0}0,40)
| (L*,4%
dynamical dynamical
evolution evolution
(X41,¥, 14 1)—— induced Poincaré ——— {x.,,0;,,4,)
(L*,,4¥%)

is commutative.
In terms of infinitesimal generators, this condition is
equivalent'’ to the vanishing of the Lie brackets

[A$,D] =0, (2.13)
where
) d . d ad
D=9 v .—-L tamvi) | + = 214
;[” o T alorAd au;] a, M

is the infinitesimal generator of dynamical evolution on
(6N + 1).

In order to find out the coefficients of the generators A¥,
we infer from (2.12) that

Atx, =Cio - @o +Clyx] —Ch—v - (AR )xp2),

(2.15)
where
oL * u
C’ff,E( v) , Cf= (aA ) , (2.16)
0¢; Jig=o € Jig=o
@ 9=@%(x,,A,) is the solution of
h(X,,92) = Aos (2.17)

and the meaning of (A, 4 ) is explained in detail in the Appen-
dix.
Second, from (2.13) and (2.14) we have that

Atv, = A}(Dx;) = D(A?x]),
and therefore
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AP, =Clo - (Dp2) + Cly vl — v, - D(AR)(x,,7;))
— @ (%,,¥.,A0) - (Ash )(Xou 2). (2.18)
Finally, by applying the commutator (2.13) to v}, we obtain
Atdl = DA,
=Cio - D9 + Cly - a) — (Da)) - (Ash)
—2D(Ah) -a. — v, - D*(Ah), (2.19)
which must be understood as necessary conditions on the
accelerations a’, (x,,v,,4 ) for the relativistic worldline invar-
iance (2.7) to be accomplished. These conditions will play the
same role as Currie-Hill equations' in the instant form of
PRM.
At this point, we can prove that the commutation rela-
tions among the generators A¥, I =1,...,10, are precisely

those of the Poincaré group. First, after a simple but rather
tedious calculation, we arrive at

[AfAY]x, = CK . Axxi. (2.20)
Second, taking (2.13) and (2.20) into account, we have

[ATAS ], =CT - Akvl, (2.21)
and, since A¥A, = 0, we finally obtain
[Ar.A2] =CF - A%, (2.22)

where CX,, IJ K = 1,..,,10, stand for the structure constants
of the Lie algebra of Poincaré. (See the Appendix.)

Jil. NONINTERACTION THEOREM

Let us now assume that there is a Poisson bracket struc-
ture'? of maximum rank on I'(6N + 1) such that we have
the following.

(i) The coordinate A, of I'(6N + 1) is neutral relative
to this Poisson bracket, i.e.,

Mo’f } =0,
for every function on I'(6NV + 1).

(ii) Induced Poincaré transformations are canonical.
That is, there exist ten generating functions A¥(x,v,4,),
I=1,..,10, such that

Arf ={ALSf), (3.1)
for every function f.

(iii) The 3N position coordinates x’; can be complement-
ed with 3N conjugated momenta p(x,v,4,) thereby obtain-
ing a set of canonical variables whose elementary Poisson
brackets are

{(xzx{} =0, (3.2)

{xapj} =82 -8, {ph P} =0. (3.3)
As is well known—the proof can be found in any treatise on
advanced analytical mechanics'>—Eq. (3.2) is the necessary
and sufficient condition for the differential system (3.3) to
have a solution.

Substituting f in Eq. (3.1) by either x/ or v}, and taking
(2.14)+2.16) into account, we have
[Afxe} =Cho-@a +Clyxl — Ci —v, - (Ash)x,,00),

(3.4)
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{Afwe) =Clo - (D@g)+ Clyv] —a - (Ash)x,.07)
— v, - D((AA)(x,.02)). (3-5)

Since A, is a neutral function relatively to the Poisson
bracket, taking (3.2) into account and using a known proper-
ty of Poisson brackets, we can write

o . daj

(xia} = (xi0k) 2, (3.6)
o . dai . daj
i S N b i 2k b

{va’aljr} - [va ’xc} axf + {va ’vc 8vf . (3'7)

Then, by applying the Jacobi identity and taking (3.2) into
account, we obtain

{xa (AT X1} + (x,[x2,A}) =0,
which, using (3.4), yields

[(Ah)x.92) — (Ash)x,@3)] - (X0} =0.  (3.8)
This finally implies
{x,,0L1 =0, Va#b. (3.9)

By repeating the same treatment with (3.9) instead of (3.2),
we obtain

{xi,a%} + (vavf) - (Arh)xp2) = 0.
Then, by considering together this expression and the
one that results from interchanging the indices b and a, and

by the same reasoning, that permitted us to pass from (3.8) to
(3.9), we can write

[xirabi} = {Ui,vg} =0, Va#b, (3.10)

unless (A7 )(X,,@2) = (Ah )X, » @ 3), forevery I = 1,...,10.
Again, by repeating exactly the same procedure to Eq.
(3.10), we obtain

{vi,af} =0, Va#b. (3.11)

Then, by substituting (3.9)(3.11) into (3.6) and (3.7) and tak-
ing into account the fact that (x%,v{,A,) is a complete set of
independent variables (4, being a neutral function), after
some manipulation we have that

daj daf

% o, 28 0, Vab

ox! v,
Therefore, the acceleration of a particle can only depend on
the variables of the particle itself,

a, = ab(xb’vb/{o): b=1,.,N,

and, consequently, there is no interaction between particles.
Moreover, these accelerations must be required to satisfy Eq.
(2.19)—analogous to the Currie—Hill equation—which will
imply further restrictions on them. Since the function A(x* )
is unspecified, it is rather cumbersome to analyze in detail
what these restrictions are like. However, once A(x*#) is
made explicit, the analysis is easier in the well-known three
forms of Dirac—instant form* (x®=A4), front form®
(xo + x> = 1), or point form® (1?> = — x#x , ). Introduc-
ing (3.12) into (2.19), we obtain that accelerations must be
parallel to velocity, that is, motions of particles are rectilin-
ear and uniform.

The clue of what has been proved hitherto lies in the fact
that for some generator of Poincaré group we have

(3.12)
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(Arh )Xo 2) # (AR )Xo p S), @b (3.13)
Indeed, let us assume that there is a function 4 (x # ) such that
(Arh) (X, 5 (x,,40)) = (Arh) (X005 (X4,40)),
vi=1,.,10,
or, according to Eq. (A2), that
hy(X02) - [Chxl +Cly 92 —CF]
=h,¢(xb’¢g) -[Ch Xj+Ch-ph — Ctl,

(3.14)
which, in the case of translations, yields
hy. (xa’¢’ 2) = hp(xb’¢ g)’
the most general solution of which is
hix*)=a,-x*+b. (3.15)

The requirement that (3.44) is to be fulfilled in case of rota-
tions, 7 = (i), restricts a little bit more the form of 4 (x), spe-
cifically

h{x*) = apx’ + b.
Finally, Eq. (31.4) specialized for boosts leads to

ay X, =ay-xi, a#b,

(3.16)

which implies that a, = 0.
We have arrive at & (x #) = b, constant, which contra-
dicts the previous assumption that

%(x #)£0.

Consequently, we have proved that is not possible in any
way to choose a hypersurface-defining function 4 (x #) such
that the noninteraction result can be avoided, provided that
a canonical realization of the Poincaré algebra and the ca-
nonical character of position coordinates are simultaneously
assumed.

IV. A “NONINTERACTION THEOREM” IN GALILEAN
DYNAMICS

The three forms of Dirac for relativistic dynamics coin-
cide when the Galilean limit (c— o ) is taken, thus leading to
the natural form used by physicists for centuries. In spite of
this, we shall devote this section to the seemingly academic
task of extending the results formally obtained to Galilean
dynamics. The outcome will be pleasantly surprising.

Since the results obtained in Secs. IT and III have been
derived in a rather generic way, similar results will hold for
any transformation group of space-time, e.g., the Galilei
group.

So, we can also speak of induced Galilean transforma-
tions on the extended cophase space and all that has been
presented in Sec. IT holds by changing “Poincaré” to “Gali-
leo”—this change affects the coefficients C f, and C } and
the structure constants C 5.

Also, as has been remarked at the end of Sec. III, in
order to avoid the no-interaction result, we must find a func-
tion A(x,?) on space-time fulfilling Eq. (3.14).

Aswedid in the last section, specializing (3.14) to space
rotations and space-time translations, we obtain that & must
be

h(x,t) =a-t+b, 4.1)
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if (3.14) is to be fulfilled.

And, since the generators of Galilean boosts in space-
time are — #(8/dx'), (3.14) is identically satisfied in this
case.

We have therefore arrived at the interesting result that,
even in Galilean dynamics, we could wind up with a nonin-
teraction result if we had not chosen the suitable form—i.e.,
thefunction 4 (x,7 ). However, contrary totherelativistic case,
Galilean dynamics permits only one way—instant form—to
escape from noninteraction, and this is precisely the one that
has been naively used from the beginning of Hamiltonian
classical mechanics.

V. CONCLUDING REMARKS

The starting point of the present paper has been that the
equations of motion for an N-point particle system are sec-
ond-order differential equations and that the configuration
space of each inertial observer is constructed by taking parti-
cle positions when their worldlines cross a given space-time
hypersurface A (x #) = const. Relativistic invariance then
has been imposed by requiring the equations of motion and
the space-time hypersurface to have the same functional
form for every inertial observer.

The outcome is a generalization of predictive relativistic
mechanics,’ which is recovered as a particular case of the
framework here developed, by taking 2 (x “) = x,. And in
this generalized framework we have obtained the conditions
that accelerations must fulfill if worldline relativistic invar-
iance is required. These conditions appear as the counterpart
of the well-known Currie-Hill equations of predictive rela-
tivistic mechanics.

We have proved then that the requirement of having a
canonical formulation for induced Poincaré transforma-
tions, where position coordinates can be taken as canonical
ones, unavoidably implies noninteraction.

As a consequence of the general manner as the problem
has been dealt with; the results obtained in the first part of
the paper for the Poincaré group can be easily translated to
the case of any other group of space-time transformations.
We thus have written them for the case of the Galilei group,
thus concluding, in Newtonian dynamics, the only way of
avoiding noninteraction theorems in the usual “instant
form,” which always has been used as the natural one in
classical Hamiltonian mechanics.
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APPENDIX

For a given function 4 (x # ) on the Minkowski space and
for the standard realization of Poincaré group, we have

(Arh )x)=(d,.h )x)[CLx"— C[]. (A1)
According to this, we define the shortened notation
(Alh )a E(Alh )(xa P 2 )
=(3,h)x,.02)[Chxi + Clops — Ct], (A2)

where ¢ %(x,.4,) is obtained by solving (2.17).
On the other hand, in the usual parametrization of the
Poincaré group

L*, =68*, + 0™t +0(), o®=—d,

(A3)
AF=erst,
AH*=¢€Pb B
we have that
Clow =0&Ms — 6N, Clh =0,
(A4)

Clapy =0, Cfp =6
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Generalized Holstein-Primakoff realizations deduced by Deenen, Quesne, and Papanicolaou are
obtained directly from the algebraic identities satisfied in collective subspaces by the infinitesimal

generators of the corresponding dynamical groups.

I. INTRODUCTION

During the last few years it was possible to observe an
increasing role played by dynamical groups in such fields of
physics as the theory of collective motion in nuclei’~'2 or the
study of 1/N expansions in quantum mechanics and field
theory.!>

In all these works, the construction of boson realizations
of the various irreducible representations of dynamical Lie
algebras proved to be very useful. Among all boson realiza-
tions, the Holstein-Primakoff realizations are the most in-
teresting, because they are Hermitian and minimal, i.e., they
utilize the minimum number of bosonic operators. Holstein—
Primakoff realizations have been obtained by Deenen and
Quesne® for the collective representations of the real-sym-
plectic Lie algebras sp(2d,R ) and by Papanicolaou' for the
orthogonal algebras so(2d;R ); for the Lie algebra sp(4;R ), the
Holstein—-Primakoff realization has been obtained by Mlo-
dinow and Papanicolaou.'?

It is the aim of the present paper to prove that Holstein—
Primakoff realizations can be derived in a purely algebraic
way. This fact had already been observed by Okubo,'* who
deduced a Holstein—Primakoff realization for the complete-
ly symmetric irreducible representations of the unitary Lie
algebras u(d ), utilizing the second-degree polynomial identi-
ties satisfied by their infinitesimal generators. In the present
paper, we point out a method by which this approach can be
extended to all dynamical Lie algebras and to all their finite-
or infinite-dimensional representations with maximal
weight vector, the generators of which satisfy second-degree
polynomial identities.

The classical analog of the Holstein—Primakoff realiza-
tion gives a method for an algebraic determination of the
canonical coordinates on the symplectic manifold in the dual
space of the dynamical Lie algebra, defined by the classical
polynomial identities, which correspond to the quantum
polynomial identities satisfied by the representations. This
problem has been considered by Mukunda.!®

In previous papers,'’?° we obtained a classification of
all second-degree polynomials on the dual space of a Lie
algebra (or in the universal enveloping algebra of a Lie alge-
bra), which can lead to identities in the classical case (in the
quantum case). Using this result, we identified the second-
degree polynomial identities among the generators of the
collective subrepresentations considered by Deenen and
Quesne® or by Papanicolaou.!* Taking these identities as our
starting point, we derived the fundamental equations ob-
tained in Refs. 3 and 14 in a purely algebraic way.
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Il. DEFINITIONS AND NOTATIONS

We shall treat both algebras—the symplectic and the
orthogonal—on an equal footing and study their boson real-
izations simultaneously. To do that, we shall use a unifying
notation, by introducing a parameter € defined by

e [ — 1, forsp(2d;R),

+ 1, forso(2d;R).

Thus, let F, be the Fock space for a system with Nd degrees
of freedom, on which representations of the canonical com-

mutation (€ = — 1) or anticommutation (¢ = + 1) relations
are defined

[b6by]e = [62:63] =0,

(2.1)

(2.2)
(b2 =8,8, 1 (i,j=1lyd; st =1,.,N).

On F_, reducible skew-adjoint representations of sp(2d;R )
and so(2d;R ) are generated by

N
A;= 3 brb, —elN/25, 1,
s=1
N
B,= Y bb},

s=1

N
C‘:’- = —€ 2 bisbjs‘

s=1

(2.3)

To simplify notations, we write b, 4, B, C;;, and I instead

ofbj, A5, By, Cy, and I % as a consequent use of conven-
tion (2.1) would require.
The structure relations for the two algebras will be writ-

ten in the unified form
[Aij’Akl ] -1 5jk A, — 6, Akj’
[A,»,-,Bk,]_l = ‘sjkBit - 511 B,,
(2.4}
[Aij’Ckl ]-1=€6; Cy — 5.’kcﬂ,
[Bij Cu ] -1= = 5jk Ay — 6y Ajk
+ €by Ay + €5, Ay

We shall use, for both algebras, the matrix notations
A=(4;), B=(By), C=(Cy)

(i,j=1,..d), , (2.5)

i.e., 4, B, and C ared X d matrices, the elements of which are
the operators (2.3). We shall denote by M ‘ the transpose of
M, and by M * the matrix, the elements of which are the
adjoints of the corresponding elements of M. With these no-
tations, we have
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B'= —¢B, C'= —¢€C, A'=A%,
(2.6)
B*=C, C*=3.

1il. THE RESULTS OF DEENEN, QUESNE, AND
PAPANICOLAOU

The representations (2.3) of sp(2d;R ) and so(2d;R ) are
reducible on F,. The Fock space F, can be decomposed into
subspaces in which the algebras act in an irreducible way.
Such an irreducible submodule F¢ has been considered in
Refs. 3, 13, and 14 (and called collective subspace in Ref. 3);
F¢ is spanned by vectors of the form

B; B, - B,v,, (3.1)
the vector v, € F, (called the vacuum state) being defined by
b, =0 (i=1,.d; r=1.,N) (3.2)

The irreducible representation on F ¢, labeled by the positive
integer N, is an infinite-dimensional representation [a spin-
orial representation with Dynkin indices (0,...,0,N)] of
sp(2d;R )[ofso(2d;R )], which belongs to the holomorphic dis-
crete series representations associated with the Siegel half-
plane.?!

In Refs. 2, 3, 13, and 14, a bosonic Fock space &, has
been introduced, on which the following representation of
the canonical commutation relations acts:

[ay 0] -1=[a}.at]_1=0,
(3.3)
[aij azl ] -1 = (6ik5jl - 66,-1 5jk }I,
wherea; = — €a;,a} = — ea} [i.e., wehaved (d — €)/2in-
dependent pairs of bosonic creation and annihilation opera-
tors]; the operators

N N
A; = —e(zlaga,j+76,.j),

N N
B,=3 X, =Y at¥,

s=1 s=1

(3.4)

N N
C;, = Z a, X, = Z Y.a,
s=1 s=1

(ij=1,.0d),

defined on &, generate a representation equivalent with

the action of (2.3) on the collective subspace F'¢; X, (Y,) are

u(d )-vector [u(d )-covariant vector] operators; the subalgebra

u(d ) being generated by 4;(i,j = 1,...,d). Their expression

results from the following Louck-Biedenharn theorem?%:

Any u(d )-vector or u(d )-covector operator is of the form
d-—1

X; =Y xi(Tr(a*a),...Tr{a*a)")a*a)}

ij?
k=0

o (3.5)
d—1
Yy = kz_:oyk (Tr(a*a)'...,Tr((a*a)’)")

X ((a*a)')y,
respectively, where x, () are functions having as argu-
ments the u(d )-invariants Tr(a*a)* [ Tr((@*a))* ] [cf. (2.5)].
Onanirreducible u(d )-submoduleof % _,, x, andy, are
scalar multiples of the unity operator. If we denote by x,. and
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¥\ the corresponding scalars, the following equations hold:

d—1
2 l:‘xk ="1‘+N‘—d—l,
k=0

on the irreducible u(d)-submodules labeled by the Young
indices ( fy..f3), Where [, = f; +d —i (i=1,...d). The
fundamental equations satisfied by the matrix
X=(X;),j= 1,...,d) hasbeen obtained in Ref. 3 asa con-
sequence of the explicit description summarized above; in
matrix notation this equation is

X?=g*a+(N—d— ).

(3.6)

(3.7)

IV. THE ALGEBRAIC DETERMINATION OF THE
HOLSTEIN-PRIMAKOFF REALIZATION

We shall first characterize the collective subspaces F ¢
by the algebraic relations satisfied, on these spaces, by the
generators of the representations of the algebras sp(2d;R )
and so(2d;R ). ,

Theorem 1: In the collective subspace F £, the generators
of the representation of the algebras sp(2d;R ) and so(2d;R )
satisfy the second-degree polynomial identities

AB —BA'= —e(AB— BA'), (4.1)
CA—A'C= —€lCA—A'C), (4.2)
A? 4 ((A4*)Y¥ —BC—(CBY)

=(1/d)Tr{d?* + (4 ')} — BC — (CB)')[

=N(N/2)+ed— 1)L (4.3)

Proof: Let us denote
9 =AB—BA' + €lAB — BA 'Y, (4.4)
& =CA—A'C+€lCA—A'CY, (4.5)
F =A4%+(A'f) - BC—(CB)

—(1/d)Tr{4% + ((4*)*)* — BC — (CB)'). (4.6)

We have to prove that & =0, & =0, and ¥ =0 on all
vectors (3.1).

Let us observe that the commutators between the gener-
ators B;; and the polynomials &4 ,;, &,,, and .% , are linear
combinations of the polynomials & ,,, & ,,, and ¥ ,;:

[f-@ij »Bkl]—1=or

(€, Bu]-1= —€6uF + €8, F 4
+6h"7kj —51:,'?1,-,

[y:_'i ’Bm]—1= jk'gil — ajlgik'

Hence, in order to prove that 4, = &, = ¥ ,, = Oon the
vectors (3.1) it is sufficient to prove that & v, = & v,
= Z v, = 0. This will be proved by direct computation.
We have

(4.7)

Ayo. = —€elN/2)6,v,, (4.8)
Cive =0, (4.9)
whence
(4B — BA ', = (d — €)Bv,, (4.10)
(CA —A'C)v, = (d — €)Cv,, (4.11)

(A% +((4°P) —BC — (CBYW, = ((N/2) + ed — 1)Iv,.
(4.12)
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The operator Tr(4 2 + ((4 *)})' —
operator; hence

Tr(d%+ (4 —BC —(CBY)=dN(N/2)+ ed — 1).

‘ (4.13)
It follows that Zv, = &v, = Fv, =0 and the proof is
complete.

Remark 1: For the algebra sp(2d;R ), another proof of
Theorem 1 can be given, using a concrete realization ob-
tained in Ref. 3 for the Hilbert subspace F as a space of
square integrable holomorphic functions of d (d + 1)/2 col-
lective variables w;, i, j = 1,...,d. In this concrete realization,

i
the operators 4;; , B;; , and C; are differential operators:

A=wD+(N/2)I, B=uw,
C=DwD+(N—d— 1)), (4.14)

wherew = (w;; ),D = (14 8; )@ /0wy ) (i,j = 1,....d ). By di-
rect computation we obtain

BC — (CBY')is the Casimir

AB—BA'=(d+1)B, CA—A'C=(d+1)C,
(4.15)
A?+(4'P) —BC—(CB)=N(N/2)—d—1),

whence the identities (4.1}+{4.3) follow immediately.

Remark 2: The equations between matrix elements ob-
tained from the matrix equations (4.1)—(4.3) provide the
polynomial identities associated with the subrepresentation
A, of (ad ® ad), of the algebra sp(2d;R) (see Ref. 20) and
to the subrepresentation (2A,) of (ad ® ad), of s0(2d;R).
(The A,’s denote fundamental weights.)

Our main result is that Eq. (3.7) and all properties of the
operators X and Y can be obtained directly by imposing on
the boson realization that the algebraic identities be satisfied
by the collective representation.

Theorem 2: The generators of the boson realizations
(3.4) satisfy the algebraic identities (4.1)—4.3), which charac-
terize collective representations, if and only if

X*=a*a+ (N+ed —1)],
and
Y2 = (a*a) + NI. (4.17)

Proof: From the relations (3.4), which impose a form on
the boson realization, and from

(4.16)

At = —elaa* + (N /2) + ed — 1)I), (4.18)
it follows that

Aag* — a*A’ = (d — €)a*, (4.19)

aAd — A'a ={d — €)a, {4.20)

X4 —-A4X =0, (4.21)

YA'—A'Y=0. (4.22)
Hence

AB — BA' = (d — €)B, (4.23)

CA—A'C={d—€C. (4.24)

FromB'= —¢B, C'= — €C, (4.23) and {4.24) we get (4.1)
and (4.2). Finally, from the identities (4.3) and the structure
relations (2.4) we obtain the equations (4.16) and (4.17). In-
deed, from the commutation relations for 4;; it follows that
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(AP =A2—dd + (TrA)], (4.25)

and from the commutation relations between B, and C;; it
follows that

(CBY=BC+(d—2ed + (TrA)l. {4.26)
From relations (3.4) we obtain
BC=Xa*aX = —X*YeAd + (N/2)]). 4.27)
The identities (4.3) are now equivalent to
(~€ed+((N/2)+ ed — 1) )ed + (N/2)])
= X?*ed + (N/2)I), {4.28)
whence
X?= —eA+((N/2)+ed - 1)]
=a*a+(N+ed~ 1) {4.29)
Similarly
Y= —ed'+ (N/2| = (a*a) + NI, {4.30)

and the proof is complete.

To obtain the Holstein-Primakoff realizations, we must
solve Egs. (4.16) and (4.17). The operators X, i,j = 1,....d
(Y, 6,j = 1,...,d ) form a u(d }-vector operator [a u{d )-covar-
iant vector operator]>?*; the theorem of Louck and Bieden-
harn®? therefore can be applied in a form due to Okubo'*:
The vector (covariant vector] operators I, a*a,
(@*a),...[a*a)* ~ ' [I, (a*a)', ((@*a)')*...{(a*a)' )~ '] are lin-
early independent and {a*a)® [((a*a)’)?] is the linear combi-
nation of these operators, given by

{a*a — I, I}a*a — IL,I} - {a*a— 1,]) =0,

[((a*a) —1I)((a*a)* — LI} - ((a*a) — 1,1} =0],
(4.32)
where, as  previously, I=fi+d—i {
= —f4_iy +d—10), and (fy, f5...f;) are Young in-
dices for irreducible representations of u(d). In fact, we
must consider that /,7,,...,/; are functions of the u(d)-invar-
iant operators Tr(a*a),...,Tr((a*a)?); in each irreducible
representation of u(d) these functions are scalar multiples of
the unity operators, the scalars being equal to /,,1,,...,/,, re-
spectively.
Assuming for the vector operator X an expression of the

(4.31)

type (3.5), we have
2(d - 1)
X%= Y u(Tr(a*a),Tr(a*a)?,..,Tr(a*a)?)(a*a)",
“=o

(4.33)
where u, =3, ;. _ X%, X, . But, from the Louck-Bieden-
harn theorem

d—1
(@*a)™ = Y cn,(Tr(a*a),.., Tr(a*a)?)(a*a),
qg=0

(4.34)
where
Caa_1 ™ ll + lz + e Ida
Cha—2=—(LL+ L+ +1;_,1),
(4.35)
o =(— DAL, Ii_ 11y,
and
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k=1,..d—1),
(4.36)

Cms1k =Cmd—1Cak + Cmi—1

Cm+1,0 =Cmd—1€d0-
if we use (4.35) in X 2, we obtain

d—1
X?= z g.(Tr(a*a),....,Tr(a*a)? )a*a)", 4.37)
k=0
where
d—1)
g =Ur+ O UnCpp k=01..d—1 (4.38)
m=d

Then, from Eq. (4.16) it follows that g, =0 for
k=23,.,d—1,g, =l,andg,=N+d— 1.

Theorem 3: Equations (4.16) and (4.17) admit the solu-
tions

X= di‘ x,(Tr(a*a),...,Tr(a*a)*)a*a)", (4.39)
k=0
Y= dil »(Trla*a)’..., Tr{(a*a)’ )’ )(a*a)' )", (4.40)

k=0
where, in each irreducible representation of u(d ), the scalars
Xi, Yi» kK = 1,...,d — 1 are the solutions of the equations

d— 1 2
( I,"xk) =L +N+ed—1, (4.41)
k=0
and
d—1_ 2
(2 I}‘yk) =1 +N, (4.42)
k=0
respectively.
Proof: We have
d—1 d—1 2d—-1) d—1
Slige=3 Fu+ Y 4y 3 Ifcms
k=0 k=0 m=d k=0
=l +N+ed—1, (4.43)
and we can prove by induction (for m>d ) that
d—1
Y Ifepe =17 (j=1,.4d) (4.44)
k=0

For m = d, relation (4.44) reduces to an evident algebraic
identity. Let us assume relation (4.44} valid for m = n. We
have

d—1 x d—1 N d—1 k
S ik =Cna_1 X o+ Y 1cpu_y
Ko K=o K=

(4.45)
Taking into account the identity [ (4.44); m = d] we obtain
from (4.45) the relation (4.44) form = n + 1. Then

d—1 X 2(d—-1) N
Z Iig. = 2 I7u
k=0 k=0

d— 1 2
=(z Ij"xk) =L +N+ed—1.
k=0

The proof of relation (4.42) is analogous.

(4.46)
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APPENDIX: ELEMENTARY TENSORS OF SECOND
DEGREE

The elementary tensors form irreducible subspaces un-
der the action of the adjoint representation on the enveloping
algebra. The spectral analysis of this extended adjoint repre-
sentation has been obtained in an abstract setting by Kos-
tant.?* Partial concrete results have been obtained in Refs.
15, 22, 25, and 26.

A systematic description for elementary tensors of sec-
ond degree has been given in Ref. 19, using a simple method,
which exploits the equivalence between the adjoint represen-
tation on the enveloping algebra and the adjoint representa-
tion on the space of all polynomials on the dual of the Lie
algebra. This equivalence allows a commutative calculus of
the elementary tensors in this last representation. Using a
projection technique (followed by a symmetrization, in the
quantum case) the elementary tensors in the enveloping alge-
bra have been obtained.

For the Lie algebras of type D,, to which the present
paper refers, the calculation has been performed in the basis
M;, ij=1,.,N=2n, with M; = — M, the generators
M satisfying the structure equations

MMy ] =6,My + 6, My — 6, M —5;M,.

(A1)
In the space of second-degree polynomials in the enveloping
algebra there are four invariant subspaces on which the ad-
joint representation acts by irreducible subrepresentations of
types (0), (Ag), (2A,), and (2A,), where A,,...,A,, denote the
maximal weights of the fundamental representations.

The elementary tensors of second degree corresponding
to all these representations have been deduced in Ref. 19.
That corresponding to the subrepresentation (2A,) is given
by the polynomials

N
T.=Y MM,

i=1

1
- F 6ps C! (A2)
where C = ZY,_, M; M, is the Casimir invariant.
These expressions can be transformed to a Cartan—Weyl
basis by means of the formulas

MZi,Zj—l = (V - 1/2)(3.7 + Cij “Aij "Aﬁ)»

M2i— 1,2 & (V - 1/2)(Bij + Cij +Aij +Aji)’
(A3)
Mzi_ L—1 = i(Bq - ij ‘“Aij +Aji)’

My, =3By — Cy + 4; — 4;).

By performing the transformation (A3), we obtain from the
polynomials (A2), after symmetrization, the matrix equa-
tions (4.1)—(4.3) with € = 1, if this tensor vanishes in a given
representation.

A similar calculation gives the tensor with respect to C,
algebras, which corresponds to the subrepresentation (A,)
and from which the matrix equations (4.1)-{4.3) with
€ = — 1 follow, when the tensor vanishes in a given repre-
sentation.
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Analysis of the Moyal product in a flat space
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This paper studies the mathematical properties of Moyal product defined in the space R*". They
correspond to the properties of quantum mechanics and permit us to consider classical mechanics
as a limit of quantum mechanics when Planck’s constant vanishes. A table of formulas and two
algebras give in particular the necessary results for the approximation of the Moyal product and

for the spectral resolution.

1. INTRODUCTION

First let us remind the reader of the motivations of the
definition of the Moyal product and state the considered
quantum problem before showing the obtained results and
the plan of this paper. For a long time, the Schrédinger pic-
ture of quantum mechanics has looked extraneous to classi-
cal mechanics. “The usual probabilistic interpretation of
quantum mechanics contrasts with the deterministic charac-
ter of classical mechanics.!” On the other hand, the Heisen-
berg picture brings to light a correspondence between the
operators, the quantum observables, and the measurable
quantities. This principle of correspondence is not satisfac-
tory.” In fact, the algebra of operators is not commutative;
on the contrary, the set N of functions defined on the phase
space R?" has a structure of commutative algebra defined by
the usual product.

Let us consider a dynamic system with constraints inde-
pendent of time and n degrees of freedom. The quantization
suggested by the authors of the paper’ consists of deforming
the algebra N by means of a star-product or Moyal product
*_, where v (ii/2) is the parameter of deformation, such as
(*,,N) is a noncommutative algebra and N is a Lie algebra
with respect to the Moyal bracket:

[up] = (2v) ~'(us, v — v2 u).

Thus the observables ¢ — u(¢) are functions of R* into R?*,
such that

du
dt

where H is the Hamiltonian function. This relation is similar
to the equation of classical dynamics?; it corresponds to the
fundamental equation of quantum mechanics in the Heisen-
berg picture by the Weyl map.*

The aim of this paper is the mathematical analysis of
Moyal product in the space R?”, in order to prove the hoped
results: the relation (1) generally admits stationary solutions
because of the spectral resolution of the real elements (see
Sec. VI); thus there is really quantization. Classical mechan-
ics appears as a limit of quantum mechanics, when the pa-
rameter v vanishes; for in some cases the Moyal product is an
analytic function of v at 0 (Sec. II D), or more generally a
Taylor’s formula is verified (Sec. III B). For example, in the
case of the harmonic oscillator, the limit of the stationary
solutions’ is the classical solution.

=[u(®),H], u(0)=u, (LD
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The Moyal product is defined here with the twisted con-
volution® and studied by a “kernels composition law.” This
method gives a table of formulas for the functions belonging
to the spaces L %(R*") and .¥(R?") (Sec. II C). The inhomo-
geneous symplectic group leaves the Moyal product invar-
iant."® The extension of the Moyal product to the Fourier
transforms of distributions with compact support (in parti-
cular the polynomials) gives the well-known formal defini-
tion' (Sec. II D).

The spaces .#(R*") and L %(R") are algebras; this prop-
erty is important for the following: the above formulas are
verified by the pairs of tempered distributions, at least one of
which belongs to the space £}, of star-multiplication opera-
tors in #(R*"). The study of this space proves, under suitable
assumptions, that the formal definition gives a pth approxi-
mation of the Moyal product ( p € N) (Sec. III B).

Some of these formulas are applicable to the distribu-
tions belonging to the space # * of the star-multiplication
operators in L (R?") (Sec. IV). The projections and the reso-
lutions of identity belong to this normed linear space
equipped with an order relation (Sec. IV C).

The necessary results are collected to define resolvent,
spectrum, eigenvalue, and eigenelement and to show in par-
ticular the existence of a greater eigenelement (Sec. V).
Thus, it is easy to prove the spectral resolution of the real or
unitary elements of % * and of the real elements of £}, (Sec.
vI).

Il. THE STAR-PRODUCT

Notations: The greek letter v indicates a complex num-
ber (v = — v#£0); 7 an integer. If x is in R?", & in N*",let us
set x = (x,,X,), @ = (a,,a,). Besides the ordingry symbols, £,
7./, and f,, let us set f'(x)=f(—x), f(x)=s(x2%)),

o~ —_——

S = flxaxy), fi: > fix,,u).

A.The operators .7, .7 *
If £ is a function of R?” in C, let us set

T fx) = 202 f(x; + ivxy,x, — ivx,),
2.1)
T3 x)= 29| =" flxs + x2)/2, (x, — x5)/2iv).

If f is a tempered distribution, .7", f and .77* f are defined
by the relations
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Vé e S (R™),
(TL1.8)=(f,T %), (TEfd)=(f.T.¢). (22)

The maps .7, and .7 ¥ are continuous and inverse each oth-
er of #(R?) [resp. #’'(R*")] into itself. They are unitary
operators of L (R?") into itself.”

The operators ¥ |, 5 ,, & ,and F: Let fe ' (R*"). We
denote by F# | f (resp..# , f) the image of the tempered dis-

tribution f, (resp.f;) by the Fourier transform
[ fis /o€ 5 (R™)]. Let us write
F =57, F=F 7% F*=F*7, (23

Many relations exist between these operators; an example is
FrT , =F,7 _, T*F¥r=9* %, (2.4)

Theimage of thereal B, = |[4mv| ~™*under themap .7 *.%,
is the distribution 6, :

Voe F(R™), (55,6 =J & (u,u) du. (2.5)
R'l

B. The laws of composition o, # , and *,

Let fe L >(R*"). Let us denote by f© g the kernel of the
integral operator, product of the operators the kernels of
which are fand g:

VxeR™, foglx)= j Fles) )

Let f, g € L ((R*); f*, g is the twisted convolution of these
functions:

(2.6)

VxeR™, f& gix)= Jznf(t)g(x — t)exp(vt A x)adt,
2.7)

t A x=1tx,—t,x,. The star-product f*, g of two func-
tions f; g that belong to % (L '(R*")) is the function®?

f*, g=Q2n)"F*F f+ Fg). (2.8)
Let £, g € /(R*"). We have the relations
[, g=\n/V|"PFXT (TEF fo T *F,8)
2.9)

fr, g=4mv| "2 FLT (T IF 2 f0 T IF 2 8).

C. The algebras . (R?"), L2(R?")

Products o, ., and *,, give a structure of algebra to the
spaces ¥ (R*") and L *(R*") (see Refs. 9-11); these alge-
bras are isomorphic to each other [(2.9)]. Each of these
laws is a linear continuous map of . (R*") X . (R*") into
& (R**) and of L 2(R?") X L 2(R*") into L *(R>"). The star-
product has the properties

(a) Vf,ge L*(R*™),
(S8 =fT*8" 7.(f* 8 = (1.)%.(7,8),
f*v g(x)eiax =f(x1 it ivaz, X2 + i’Val)

X*,(g(x)e™), aeR™, (2.10)
FX(f*, i =f T4, (F§),, = (F?),-/vtv g
S 8= (fa*: 8 )vas a>0;
f* 8=8%/ (2.11)
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Feg=Fxg FrE=rr8 (2.12)
Vée L (R™), (fg+¢)={f* gd), (2.13)
(b) V £, g€ S (R™),
DUfr g =3 —2 _DAre D5
(f*, 8) ,s;zﬂ!(a—ﬁ)! f 4
“(fe _ alvl!
XS g = S 214)

X(— 1)%'DE f(x)s, (x* ~ Fg(x));
(c)V £, g€ FL(R>),

e g =2m) " (F s F %), (2.15)

D. First properties

Let Sp(n,R) be the group of linear maps s to R*" into
itself, such as Vx, y e R*", s(x) A s(y) =x A y(seeRef. 12).
For all f, g € L (R"), for all s such as ‘s € Sp(n,R), we have"*

(2.16)

Then, the star-product of two functions, which have the
spherical symmetry, has this spherical symmetry. It is easy
to extend the twisted convolution to two distributions, at
least one of which has a compact support.® In particular,
F &' (R™) is a =, -algebra. We have V f, g€ F &'(R*") or
feClX]", g ' (R*),

Vx e R*™, fx, glsx)=f(sx)*, g(sx).

= o
fr =8+ EP"(j:g), in &' (R™);
=1 4:
! (2.17)
Pi(f,8) = Ailjl"'A‘qjqai;.; [t ajl..-j., 8>

AV=11if j=i+n, —1ifi=j+n, 0in the other
cases. This relation has been defined for a long time.'* Let
fe F &' (R*); themap ¢ — f*, ¢ is continuous of . (R*")
into itself. For example,

Vp, 1<p<n, x,%,g=x,8+v3,,.,8&
lll. ALGEBRA OF STAR-MULTIPLICATION
OPERATORS

Let g € (R?"); the map ¢ — g *, ¢ of #(R*") into itself
is continuous. The image of a tempered distribution f under
the transpose of this map is the distribution f*, g such that
the relation (2.13) holds. An example is

8%, B(x) = |2mv2| = "(F $)lix/v). (3.1)
Likewise it is easy to define fo¢ and f*,¢; then, V[
€ L'(R*), Vge S(R*), the relations (2.9), (2.10), (2.14),
and (2.15) hold.

Proposition: Let S € #'(R*"); the following properties
are equivalent:
(i) §=0, (ii)Vde SR>, S*¢=0. (3.2)

It is natural to consider the set &}, of distributions S
such as the map ¢ — S *,¢ is continuous of ¥ (R*") into
itself. This set is different from the space & ,, (R*") of multi-
plication operators'*'*; in fact, the sets (R?"),
F(€'(R*™)), &' (R*"), and the dual of & ,, (R>") are subsets
of 7}, (see Ref. 16); but the function x — exp(x,x,/v) does
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not belong to #},. Likewise it is easy to define 4 (resp.
7Y) as the set of distributions S such that the map
¢ — S © ¢ (resp. S+, ¢) is continuous of & (R*") into itself.®
These spaces are isomorphic to each other (2.9). In particu-
lar, the linear one-to-one map J, of 4 onto &7}, is defined
by
T—B '\ F27,T, B,cR (Sec.IIA).  (3.3)
Let fe #'(R*"), g€ &},; only one distribution f*, g
is defined by the relation (2.13). The relations (2.9), (2.10),
(2.14), (2.15) hold in the same conditions. The linear space
O3, is a » -algebra; the space ' (R?") is a right-module on
&%,. This algebra is nondegenerated®:
if Sedy, S=0&85+5=0.
Finally, let £ bein & ;; ¥ and gin £},; therelation (2.11)
holds. Thus, let f bein & ,;*and g be a tempered distribu-
tion. Let us define f*, g by this relation (2.11). Therefore,
the space #'(R?") is a left-module on & ,". The relations
(2.12) prove that the maps f+—> F3 f are 1somorph1sms of
&%, onto & ,;¥; these relations hold when f belongsto & 5,
and gto S'(R*").

(3.4)

A. The linear space 7},

Let us consider the family of seminorms on the space
O

PaslT)

where a € R?, B is a bounded set of (R*"), and T € &},.

Proposition: The set &}, is a complete HausdorfF topo-
logical vector space. It is isomorphic to the space L, (. (R"))
(see Ref. 14 for notation)."’

Proof: The space &, is isomorphic to the space A7,
which is a complete Hausdorff TVS by a family of suitable
seminorms. The restriction to .#° of the map T+ uy of
F'(R*) into L (£ (R"), '(R"), defined by

Vg, e LR, (urlghy) =(T¢ ® ¢), (3.6)

is an isomorphism of .#° onto L,(.#(R"). The map (f, g
—fx, g of F'(R¥™)X Oy (resp. Oy X %) into F'(R?)
(resp. &},) is separately continuous. The maps

T T, T, 7,T, €T, D°T, x*T, (FT),,,

are continuous of ¢}, into itself. It is easy to obtain a charac-
teristic property of the distributions that belong to this
space; for example, 1 ® f; § ® S, and their symmetrical
when fe & 4, (R™), S€ F (R?).

Let us denote by ./ the space ¥ (R") ® %' (R");itisa
subset of .4 and its topology is the topology induced by .#°
as a subset of .#°. The map (4,5) — ¢S of ¥ (R*")
X #’(R™) into ./ is separately continuous; because of the
map J (resp. F*J) (3.3), the application (4,S) — ¢S
(resp. #*,S) of #(R*) X' (R*™) into F 27,4 (resp.
FtT,A") is separately continuous. Finally, let &,
P = 1,2,..., be a regularizing sequence'*; this sequence con-
verges to § in £2. Consequently the space &}, is
FLrT7 (F (R & £ (R").

= Sup Sup |(D°T)*,¢(x)|, (3.5)
$cB xeRr*"
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B. Taylor's formula

Since there is no associative local noncommutative alge-
bra,'® it is not surprising that the support of f*, g is differ-
ent from the support of - g. For example, if f, g have com-
pact supports, the support of f*, g is R*". In this case, the
map v f *, g is not an analytic function of the variable v.
Generally there is a Taylor formula."’

Proposition: Let f be a tempered distribution such that
(i) vy, Yve]0,,), fe€ Fy; and (ii) Va € N*, VB bound-
ed set of ¥ (R?"),

3C,  Sup p.s(f)<C.

ve]O,vol
We have
felfy(R™), ¥Se ' (R*™), VYpeN, 3hZ(f.S),
(3.7)
p—1
FrS=F5+'3 ﬁPq(fS) +—h"(f,S),
q——l

If f and S are fixed, the remainder h 2 ( f,S) lies in a bound-
ed set of %’ (R*"), when v belongs to ]0, v,].
For an example, let f be a tempered distribution:

Sfx)+, expliax) = exp(iax) - f (x; + ivazx, —
a e R™,

Proof: Let ¢ and ¥ be some functions belonging to
Z(R*), x an element of R*"; the map of /R into C,

Vi jz:- ot )lx — t) exp(vt A x)dt,

is infinitely differentiable. Let p be a natural number, the
Taylor formula gives the pth approximation of this function
in a neighborhood of 0. Then the twisted convolution of ¢
and ¢ is the sum of a polynomial in the variable v whose
degreeis p — 1 and of a remainder that lies in a bounded set
of .#(R*") when v belongs to ], v,] and ¢ and 1 are in bound-
ed sets of #(R?"). Obviously an analogous result holds for
the Moyal product of the functions ¢ and . Then it is easy to
prove the above proposition by means of the duality between
F(R*") and &'(R*").

iva,),

IV. THE SPACES #~ AND IT¥

Definition: Let us denote by %" the set of the distribu-
tions f such that the map ¢ — f *_ ¢ is continuous of #(R*")
equipped with the topology induced by L%R*"), into
L 3R*"). The natural norm is

[ £1IZ =Sup{[|f+, 8|l |4 € S(R™), ||| =1} 4.1)

It is quite obvious, because of the relations (2.10) and
(2.12), that the maps

fft e foraf, “F(f) f (resp.f, F),

are isometries of # * into itself (resp. # — ).

A. Characterization of #*

It is well known'* that the completion of the space
L*R") ® L*R"), equipped with the norm |-[|,,, ||-{l, [l is,
respectively, the space I1, L (R**), or E; the space B, is the
subset of distributions that is isomorphic, by the relation
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(3.6), to the set of the bilinear continuous mappings on
L?(R™). Let us remember that the space II is isomorphic to
the dual of £ and B, to the dual of I1. The usual bracket (-,-)
will indicate, by extension, this duality.

It is easy to show that the linear space L %(R") ® L *R")
is a o-algebra; because of the continuity of this map o, the
spaces Il and E are o-algebras, respectively, isomorphic to
space of nuclear and of compact operators. According to a
classical result,"®

IT = L*R*) o L3R*). (4.2)

This product © is a continuous map of I1 X E into II, of
E X L*R*) into L }(R*"); we have

Vf,g€E, Vhell, (fogh)=(Ff,goh). (43)

Let fe B,, g € I1. Since B, is isomorphic to the dual of
I, fo g is the distribution defined by the relation (4.3}); it
follows that the Banach space B, is also a C *-algebra,”® iso-
morphic to the space L (L %(R")) by the relation (3.6).

Proposition: (& *, ,) is a C *-algebra.”!

Proof: The following properties are equivalent:

FYrT  feB"feB, & dr—fodeL(LR)
Consequently the sets #Z * and # ~" are equal; the sets

L*(R*), & L'(R*™), {1} ® L =(R"), {8} ® LY(R"),
and &'°(R?") are subsets of % *.

B. The topology of % *

Let us denote by I1*, E ¥ the image spaces of Il and E by
themapJ, by ||-||%, [|]|" ||-||Z the image norms of the norms of
the spaces I1, L >(R>"), E. Since II” is the image of II, we
have a more precise property than the relation (4.2) (see
Ref. 19):

J
y(RZn) y Hv [ LZ(RZn)
J1 0 !

n IS L 2 ( RZn )
set of ) )
t {nuclear} {Hilbert— }
operators a) Schmidt

C. An order relation in # *
Let us denote by & ” the subset of 11"
P ={h|hell’, dkeL*(R™): h=k=*k}.

Let us not define an order relation on 4 *, compatible with
the linear structure. Let , g€ % 7,

f<goVReZ>, (fih)<(gh)" (4.8)

The elements of Z %, 1, f+, f (fe#*),J(p & p)
[ p€L?(R")], are “positive.” The well-known properties
of the self-adjoint operators hold again; in particular, these
are the theorems on the bounded increasing sequences and
the following result.

Proposition: Let f be areal element of # *; there are two
reals m and M such that

532 J. Math. Phys., Vol. 27, No. 2, February 1986

Yhell’, 3k, k,eL*R>),

h=ksk, and |k |I"=|lk]" = (A ]2
(4.4)
The map ( f; g) — f*, gis continuous of I[I" X & * into
IT” and of Z *XL*(R*) into L*(R*"). The space # " is
isomorphic to the dual of II*; let us denote by (.,-)” the
bracket of this duality. It corresponds to element volume
1~7 = (27%) —". 7 (see Refs. 3 and 10):

Vfe#", Yhell
(foh)Y =BT F LT+ Fth), (4.5)
<f,¢>v=ﬁ,2,(f,¢), (klyl_cz) =Bi(k1|k2),

(4.6)

I £11€ = Sup({L kY INRNT) =Bull T3F 21 |-

Because of the relation (4.4), the elements belonging to
IT” are continuous, bounded functions. This relation allows
us to prove the following results.

Proposition: Let G be a linear bounded map of L R*")
into itself; then the following two properties are equivalent:

(i) 3ge B*, VkeL¥R™, G(k)=gsk,
(4.7)

(ii) Yk, ko € LAR™), G (ky*, ko) = G (ky)s ks

The Weyl map” % %% Let us call  the compose of the
mapJ ~!of #Z “onto B, (3.3) and of the canonical map of B,
onto L (L?*(R")) (3.6); this map is an isometry. Let f,,
p = 1,2,..., be a sequence in & *; the convergence of the se-
quence of the operators ( f,) to Q(f) is strong (resp.
weak) iff the sequence (f, —f)*,(f, —f) (resp.f, — f)
converges weakly on 0. We present a summary statement:

> E* = A ) 0
0 0
ind E — B,
$ 4
{compact} {bounded}
|
m < f<M, |f|i="Sup(|m|.M). (4.9)

The reals m and M are the lower and upper bounds of the set
of the reals ( f,h )", in which the element % belongs to the
unit sphere of I1".

An example—the projections: A projection is a real ele-
ment 7 of & ” such as 7+, 7 is equal to 7. The four classical
properties are always true; in particular the result on the
inequalities between projections. A total sequence of projec-
tions is a sequence of projections such that

Vp,geN, p#gq,
T, 7, =0, Z 7, =1, in &~ weakly.
=1
We have
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YfeBY, f=3 fom, inB”weakly,
p=1

Vke LR, (kI = 3 (keI

Resolution of the identity: A family of projections
[t e(t)is a map of R into # *]is called a resolution of the
identity iff

Vi t'eR, 1<t', elt)selt’)=elt);
VieR, e(t+0)=elt), in #* weakly;

lim e(t)=0, lim e(t)=1, in % *weakly.
t-— — o t—

Here, m(a) =e(a) —e(a—0) is a projection; for any
hell”, t— {e(t),h )" is a function of bounded variation.
Let us call the spectrum of the resolution of the identity
t— e(t) the subset o(e) of the reals at which the family of
projections is strictly increasing. Let us denote by e(a,b],
e(b) —e(a),a<b.

V. RESOLVENT AND SPECTRUM
A. A preliminary result

Let us denote by & “theset 73, n & 5~

Definition: Let f€ & 5 ¥ and let us denote by O, and D,
the operator and its domain, defined by the relations

D,={klkeL?*R*) and fs* keL*R*™)},

(5.1)

O, (k) =f* k.
The subset D, of L *(R?") is a right ideal; a similar property
exists in the algebra % *. The operator O; is closed.

Proposition: Let fe & *. There is only one element b in
4 * such that

(L+Fs, frb=bs,(1+f* f)=1 (5.2)

Proof: The domain D, is dense in L*(R*). It is well
known that the operator 7 + O }O, admits a continuous in-
verse B, whose domain is L 2(R?") (see Ref. 23). The opera-
tor O7 is an extension of the operator O }; the operator B has
the property (4.7) (i). Therefore thereis a bin % *such that
the relation (5.2) holds.

Corollary: Let fe O *. The adjoint operator O } is O7.

B. Eigenvalue; Eigenelement

Let fe % ¥ u ¢ *; the complex number a is an eigenval-
ue of f iff there is an element g {#0), belonging to & *, such
that

fr.g=g+* f=ag (5-3)
The corresponding element g is an eigenelement; obviously,
it is not the only eigenelement.

Proposition: Let us consider a normal element f
€ B*u O (f+, f=f+, f)and suppose that the complex a
is an eigenvalue; then there is a greater projection 7 which is
an eigenelement belonging to this eigenvalue a. For all eigen-
elements g (belonging to a),

T, E=8% T=g. (5.4)

Proof: If the complex a is an eigenvalue of the operator
O; the projection operator on the corresponding eigenspace

533 J. Math. Phys., Vol. 27, No. 2, February 1986

is defined by a projection p (Sec. IV B); it is the same for the
operator k — k *_ f. Let g be the associated projection; it
remains to show the identity between p and q. For example,
the duality between E ¥ and I1” allows us to show that if fisa
real element belonging to E ¥, one of the reals m and M
[(4.9)], which has the largest absolute value, is an eigenvalue
of f.

Resolvent and spectrum: Let fe v & *. A complex
number z belongs to the resolvent set p( f) iff there is an
element Az) in % ¥ such that

sz ~fl=k—firnz)=1 (5.5)
The spectrum o f) of f is the complement of the resolvent
set. Among the classical properties, we have, if f is a real
element,

p(f) D C\R, VzeC\R, |rAz)|<|Imz~" (5.6)

VI. SPECTRAL RESOLUTION OF REAL OR UNITARY
ELEMENTS

First, let us define the set C %e). Let ¢ —> ¢(t ) be a resolu-
tion of identity; C %e) is the set of the continuous functions
from some neighborhood € of ale) into C.

A. Elements of # * defined by a resolution of identity

Proposition: Let t — e(t) be a resolution of identity and
a € C°%(e) be a bounded function on o(e). There is only one
element f in % * such that

Vhell”, (f,h )"=J a(t)d {e(t)h ). {6.1)
R
We have the following properties:
171 = Sup late)l, Vo frer)=ellef; (62

VkeL *(R™), (||ftvk||”)2=J' ()2 d (e(1)k », K )"
R

(6.3)
letge % ¥such that V¢, e(t)* g=g* e(t),
then f+.g =g+ f; (6.4)
and
if ma)#0, then a is an eigenvalue. (6.5)

This comes about mainly because of the duality between
A ¥ and 1", If the element f (resp. g) is defined by the func-
tion a (resp. ), f *, gis defined by the function « - 5; there-
fore f is normal. In particular, if the modulus of a(t ) is the
unity, f is unitary. If the function « is real (resp. positive), f
is real (resp. “positive,” see Sec. IV C). If @ is the map 7 — ¢,
the reals m and M [(4.9)] are the lower and upper bounds of
ale).

B. Elements of 7 ¥ defined by a resolution of identity

Fundamental result: Let t — e(t ) be a resolution of iden-
tity: @ € C°e), k € L 2(R?"). The two following properties are
equivalent:

n f lale )2 d (et bk #, % ) < oo
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and (ii) there is a real C such that for all k¥’ € L R*"), the
integral

f T e d(et)r k')

isconvergent and has asmaller modulus than C ||k ||”. Let us
denote by D, (a) the set of functions for which the assertion
(i) is true. This set D,(a) is a linear dense subset of
L2(R*™).

Proposition: Let t+— e(t) be a resolution of identity;
a € C°(e). Let us suppose that an element f, belonging to
g% issuchthat Vke D, (a), Vk'e S (R*),

(ftvk,k')”=fw a(t)y d etk k).  (66)

We have the following properties.

VkeD,(a), f*,keL?*(R*). Therefore, for all k'
€ L 2(R?"), the property (6.6) is true. The relation (6.3) is
applicable to the elements belonging to D, (a).

Z (R*) C D,(a).Only one element belonging to & *,
satisfies the relation (6.6).

Va, beR, fx,eabl=celabl+, fec %",
D;=D,(a)

For all ge %7, such that f*, g and g+, f belong to
% * and such that

Vi,eft)s, g =elt)*, g, thenfe, g=g» f.
Let £’ be an element of & *, defined by the relation (6.1)
with the function a’. We have f«, f' =f'+ f For each

element k belonging to D, (a), f*,(f'*, k)is defined by the
relation (6.6) with the functiona - o’

C. Spectral resolution of the real or unitary elements of
BVO”

Proposition: Let f areal (resp. unitary) element of Z *;
there is only one resolution of identity such that the relation
(6.1) is true for the function a: ¢+ ¢ [resp. ¢ +— explit)].%!

Proof: The method used by Riescz and Nagy?* for the
spectral resolution of the self-adjoint operators applies here.
This method is based on the order relation that we have in
the space % °.

Corollary: Let f a real (resp. unitary) element of % *;
then we have the following.

The converse properties of (6.4) and (6.5) are true; or to
be more precise, if a [resp. exp(ia)] is an eigenvalue, mr(a) is the
greatest eigenelement.

Iff is unitary, ofe) C [0,27].

Proposition: Let f be areal element of & . There is only
one resolution of identity ¢ — e{t ) such that the relation (6.6)
is true; the function a¢ is 1 — ¢.

Proof: Let us use the Cayley transform.?* The element
1 + 2i r{ — i) is unitary and does not admit the eigenvalue 1;
therefore, its spectral resolution 8 +— €(@) is continuous at
27. The spectral resolution of f is the map

t—elt)=€@), t= —cot(6/2)
Then, it is easy to prove the relation (6.6).
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Corollary: Let f be a real element of £ *. The converse
property of (6.4) is true. The real a is an eigenvalue iff
m(a) #0; m(a) is the greatest projection eigenelement of f.

Spectrum: Let f be a real element belonging to
% ¥ u O then the sets o(e) and o( f) are equal.

Proof: If the real a € p(e), the function t+— 1/(a —t)
belongs to the set C°(e) and is bounded on o(e); therefore
r(a) exists. Then o(f) C o(e). Conversely, if a € a(e),
there is a sequence of projections p;,j = 1,2,..., such that

VjieN, |pilli=1, lim (f—a)+, p;=0, inZ&"
j— >

Therefore, this real a belongs to o( f).

These results on the eigenvalues and the eigenprojec-
tions have earlier been foreseen using the star-exponen-
tials;' the calculations have been made in the case of the
harmonic oscillator and in the case of any element belonging
to the inhomogeneous symplectic Lie algebra,?®

VHi. CONCLUSIONS

Therefore it is possible to characterize the star-algebras
of functions or distributions and real elements admitting a
spectral resolution. The two algebras & }, and & * have dif-
ferent properties towards, respectively, the spaces *(R*")
and L *(R?"). One of these spaces is nuclear, the other is not.
The duality between & * and I1” has a physical meaning: the
states are, up to a factor, projections belonging to II* (see
Refs. 3 and 10). The observables are in % ¥ or more generally
in & },. It is easy to prove the uncertainty relation of Heisen-
berg.
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Propagation coefficients for fixed-isospin (7,7_) average and related

spectroscopic sum rules
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The reduction relation for the fixed-isospin (7,7,) average of a general operator in the model
space of many fermions is described in two forms with and without recourse to factorization of
isospin z components. Algebraic treatment is developed to deduce various types of expressions for
each propagation coefficient that plays the role of the Green’s function in each form of the
reduction relation. Propagation coeflicients are described also in relation to sum rules as to fixed-
isospin spectroscopic factors. These results lead to novel identities among n- symbols and

factorials.

I. INTRODUCTION

A many-fermion system is often described by the model
space generated from several interacting particles being dis-
tributed over a definite number of single-particle orbits or
lattice sites.!~® Typical cases are seen in the study of atomic
and nuclear structures'~® and statistical mechanical treat-
ment of various phenomena.’ A striking feature of the model
space is the existence of the reduction relation for the opera-
tor average,'® implying that a type of operator average in a
many-body space could be expressed in terms of the same
average in a few-body space. It, called propagation of opera-
tor average, underlies the statistical treatment of nuclear
spectroscopy.'™®

The present work is devoted to the operator average in
the model space with the total isospin 7 and its z component
Tz being fixed, i.e., free from the average. The system of
isospin-} fermions is treated. The discussion can be extended
to the average with intrinsic spin being fixed, if the terms
(T,T,) are only replaced by (S,S, ), respectively. The orbit
or the site in the model space need not be specified explicitly.
We can keep in mind the Fermi-gas model, or the spherical
or deformed shell model with the Pauli principle being rigor-
ously taken into account.

The fixed-isospin average of a general k-body operator
O(k) in the n-body space is defined by

(O(k))nT‘T,E 2p<nnz#|0(k)|nTTz ,u) , (1)

d(nTT),)
where the index u stands for a set of quantum numbers that
specify, together with T and T, the complete orthonorma-
lized states of the n-body space. The dimensionality of the #-
body states with a given T and T, is denoted as d(nT7T,), a
number independent of T,. The propagation of the average
(1) is expressed as'"®

(0U))"™ = 3 Z(nTT, ktt,){O(k))"*", 2)

where Z stands for the proportional coefficient, called the
propagation coefficient.!”” The k-body state is specified by
|kt ) as the n-body stateisby |nTT, 11). Some other types
of averages, such as the fixed-seniority average,'** lead to
the same type of reduction relations. The propagation coeffi-
cient Z fulfills an analog of the Chapman-Kolmogorov
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equation and plays the role akin to the Green’s function.® It
is possible to express Z as

Z(nTT, k1t,) =Y S'(nTT, ktt, + k't't]), (3)

withk'=n—k,t;=t,—T,,and
S'(nTT, ktt, + k't't])

= (Z)(tt'tzt; ITT,)? Y (kto + k't'a’|nTu)*  (4)

=(tt't,t)|TT,)>S(nTkt +k't"), (5)

where the symbol { + | ) stands for the coefficient of frac-
tional parentage (cfp).'® The quantity S’ or S, in which the z
components of isospins are reduced, represents the sum of
spectroscopic factors with all the isospins being fixed.

Previous works>*® concerned, in place of (2), the alter-
native form

2, (nTul|0 " (k)||nTu)
d(nTT)

_ < R(nTxar) 3, (kto]|0 7 (k) ||ktw)
B Z d(ktt) ’

(6)

where the double-barred matrix element is reduced with re-
spect to isospins, and O (" (k) is the k-body irreducible iso-
tensor of rank r. The coefficient R relies on 7, while Z in (2)
relies on T, and ¢,. The relations (2) and (6) are associated
with each other by virtue of the Wigner-Eckart theorem.'°

French? deduced the explicit form of R. Another for-
malism* led to the same result. However, the result cited
later [see Eq. (57) ], is much involved and hardly manifests
inherent properties.

The purpose of the present work is to deduce various
types of expressions separately for Z and R that characterize
(2) and (6), respectively. Each of the new expressions mani-
fests itself in a transparent form and has the practical advan-
tage of ease of manipulation. The quantity S, defined by (5),
is shown to be expressed in terms of dimensionality of repre-
sentations described by the same Young tableau,'' which
gives a sum rule as to fixed-isospin spectroscopic factors.
Another spectroscopic sum rule is given to the sum of Z’s.
Apparently different expressions for the same quantity
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Z(R), as well as the sum rules, lead to types of novel identi-
ties among n-j symbols and factorials.

The search for the possibly simplest form of Z is intend-
ed for the use of (2) to the average of a product of several
operators. Using (2) in place of (6), we can escape from
complexity to decompose the operator product as a sum of
irreducible isotensors.

Weinterpret Z and S (or S') as spectroscopic factors for
the nuclear fragmentation in the high energy nuclear reac-
tion. Simple expressions of Z and S will promote analyses of
mass and charge distributions of the target or projectile resi-
dues.

A survey on quantities S, Z, and R is givenin Sec. Il asa
preparation for later discussions. In particular, these quanti-
ties are shown to be equivalent to each other. Sections III,
IV, and V are devoted to getting new expressions for S, Z,
and R, respectively. In Sec. III, a recurrence relation for S is
presented. Solving it, we get the compact expression of .S so
that Z and R can be expressed in terms of a Clebsch—Gordan
(CG) coefficient squared and a Racah coefficient, respective-
ly. In Sec. IV, we deduce a remarkably simple form of Z in
the case of |T,| =T or |t,| =¢, the most familiar case in
nuclear physics. In Sec. V, this result is translated into an
expression of R that involves a single CG coefficient. Subse-
quently, another form of R is deduced, which is particularly
suitable in the case where the isotensor rank of the operator
is small. The result is elucidated in terms of information
propagation that obeys the difference equation for R. Section
VI concerns the prescription to deal with the average of a
product of several operators. In Sec. VII, the quantities Z
and S are described as spectroscopic factors for the target (or
projectile) fragmentation.

New expressions for Z are given in (36) and (50). Those
for R are in (37), (55), and (59), each of which is to be algebrai-
cally identical to the previous result (57). Spectroscopic sum
rules are presented in (34) and (69).

il. ASURVEY ON PROPAGATION COEFFICIENTS
A general k-body operator O (k) is written in the form

O(k) =X (ky|O(k)iky')4 *(ky)d (ky), (7)
&

where ¥ = (tf,w), i.e., all the quantum numbers specifying
the k-body state. The symbol 4 *(ky) indicates the state op-
erator'%!? that creates the state |ky) in case it acts on vacu-
um. The conjugate of 4 *{ky)is denoted as 4 {ky). It is pos-
tulated that A (X =0)= 1. For the tensor analysis in the
isospin space, it is convenient to define the operator A4 by

Aktt,o)=(—1)""A(kt(—t,)0). (8)
The expression (2) in the case of O (k) = 4 * 4 reduces to

> (niu| 4 *(kvo) A (kv'e’) nAu) ,

, , d(nd)
= &(v,v @'V Z (nAkv) ————, 9
(v,V')8(w,0")Z (nd kv) a(kv) (%)
where A = (TT,) and v = (¢2,). An inherent feature of (9) is @
independence of Z. The dimensionality d (ktt,) is given by*
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d(nTT,) = 2T+ 1)N /2 + 1)

( N/2+1 )(N/2+l

n/2+T+1)\ns2 — T) A —1xD),

(10)

where N indicates the number of the single-particle states
and

Al@)=1, ifa>0, and O otherwise. (11)

In the fermion system, there exists a particle~hole sym-
metry of the matrix element!

(nAu| A *kvo) A (k'Vo')|n'Ad'u")
=(N—n'A'u|Ak'vVa')A " (kvo)|N —niu) .

(12)
By virtue of (9) and (12) we get
Z(n,i,kv)=Z(N—kv,N—n,1)g((k7")). (13)
The expression (9) is rewritten by virtue of (12) as
<n/l,u Y A4 " (kvw) A (kvo) | nA ',u’)
= 8(4, 2 )8( . )Z (nA k) (14)

The matrix element of the state operator is proportional

to cfp as'>"?
(nAu| A * (kvo)|n'A'p') = (Z) (kvo + n'A'p'|nAu) ,
(15)

where k + n' = n. The relation (12) with X = O reduces toa
particle-hole symmetry of cfp:

(Z) (kve + n'A'p'|nAp)

= (N;n)(kva)+(N—n)/i,ul(N—n’)/{',u’).

(16)

Expressing the left-hand side (lhs) (14) in terms of cfp
yields

(Z) z (kvo + k Vo' |lnAp) (kvo + k've'|nd 'p')
oo’V
=64, 1 )8( #, W)Z (nA,kv), (17)

which leads to (3) followed by (4). The factorization of cfp'*
gives
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(Z) Y (kvo + k'Vo'|nAp) (kvo + k'V'o'|nAu’)

= &( 4, p#') X a term independent of u
=8, p)S ' (nd kv + k'v'), (18)
where (4) is used in the last step. We see that the quantity S’

and, therefore, S are independent of u. Substituting
OY(k)=[A4*A4]"into (6) yields

2, (trt,0)tt,) (TrT,0|TT,) (2r + 1)R(nT,kt,r)

S (nTul|[ 4 *(ktw) 4 (kt ‘")) "} T

= 8(t,t Slw.') — 1'V2r + TR (nT kt, 1) d;;gtT) g

(19)

Applying the Wigner—Eckart theorem to the lhs of (9) to link
(9) with (19), we get

Z(nTT, ktt,) = (20)
Jt+1DQT+ 1D
r
The inverse is given by with
2, (tre,0tt,YZ(nTTktt,) SnT(n— '
R(nTkt,r) = QT +1) 2 | ( . (T — 1T+ 1)
(2t+1) (TrTO|TT) 2T 41 [n/2+T+1, for T'=T-},
21 T 2T+1 n/2—T, for T'=T+},
Combining (21) with (20) yields (28)
Z(nTT,ktt,) where in (27) we have used (3) and (5), and in (28) the fixed-
isospin sum rule on one-particle cfp’s.* Substituting the ex-
=Y (2r+ 1) (ert,0|1t,) (TrT,0|TT,) plicit form of Z (nA,n — 1 A ') into (26), we get the recurrence
T relation,® i.e., the difference equation for Z to be solved un-
> (trt 0|1t ) Z(nTT,ktt ) 1) der the condition

(2t + 1)(TrTO|TT)
It indicates that the set {Z(nTT,,ktt,); T, = T} is sufficient
to determine all the set of Z’s. Expanding the lhs of (19) in
terms of cfp’s, we get

RnTktr) = 2T+ 1) z W(Trt't;T)S(nT,kt + k't’),
o

(23)
which is inverted as
S(nTkt+k't')=2t'+1)
v 2, Q2r+ )W (TITrt't;Tt)R(nT,kt,r)
2r+1)

(24)

We see from (20)—(24) that the quantities S, R, and Z with
T, = T are transformed into each other.

The propagation coefficient Z fulfills®
k
k
a relation akin to the Chapman—K olmogorov equation. The

arguments n and A play the roles of time and space, respec-
tively. The relation (25) with ' = n — 1 reads

ra s t1 — n—
;Z(n/l,nzl \Z (n'A " ev) = (n,_ )Z(n/l,kv), (25)

; Z(nAn —12Z(n— 14" kv)=(n— k)Z (nd k).

(26)
The quantity Z (nAd,n — 1 A ’) here is written as
ZnAd,n—14")
=(T'1/2T ¢t |TT,’S (nT,(n — )T’ + 1), 27)
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Z (kv,kv') = 8(v,v), (29)

a property of Z seen from (9). The difference equation for Z is
translated into that for R as

(n—k)2T + 1) R (nT)kt,r)
=n/2+T+ INRT —1)2T +r + 1)
XR(n— 1T —Lktr)
+n/2=TWNRT —r+1)2T+r+2)
XR (n— 1T+ Lkt,r). (30)

lil. THE SUM OF FIXED-ISOSPIN SPECTROSCOPIC
FACTORS

Here we express S, defined by (5), in a compact form that
leads to a new expression for each of Z and R.
Let us show the recurrence relation for §

S(nTkt +(n—k)t')
=S(n—k)t'in—k—1)t" + l)_‘;(Zt’+ 1)

XQ2T' + )W (Tt "1/2;t'T'Y
XS (nT,(n—1)T' +1)

XS(n=1)T"kt+{n—k—1)2"). (31)
Proof: We start from the identity
(i|C, A (ket,)| j) = (— 1) (i| 4 (ket,w) C, | j),  (32)

where (i| =((n —k — 1)t"tw”| and | j } = |[nTT,u). Ex-
pressing both sides of {32) in terms of cfp’s, we factorize iso-
spin z components in cfp’s. Then, we get
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z(ktw + (n—k)t'e' |nTp){(n —k — )t"0" + lag|(n — k)t'w’)

=Y (=D + DET + DWET "3t 'T”)
&

XY (kto + (n—k—1t"0'|(n — DT 'p){(n — DTy + lwg|nTy) . (33)
<

Let us square the expression on each side and subsequently
impose the sum over w, ®”", and w, on each side. After carry-
ing out the sum by virtue of (18), we obtain (31).

The recurrence relation (31) leads to

S (nTkt+ k't ')E(Z) S (kto + k't'o’ |nTu)?

n\ feFKRN) oy,

=, |l AT,
(k) f(nD D
with

(34)
1
rmri=er+n( ) e, 33)

where A’ is the triangle condition among 7, ¢, and ¢ '.

Proof: We use induction on n with &, 1, and » being fixed.
The expression (34) in the case of n = k properly reduces to
unity. In the case of n = k + 1, it agrees with (28). Suppos-
ing (34) for n = p, let us deduce it for n = p + 1. We substi-
tute (34) for n = p into the right-hand side (rhs) of (31) for
n =p + 1. After applying the orthogonality for the Racah
coefficient to the sum over 7’ in (31), we obtain (34) for
n=p+1

The quantity f(n,T’) is just the dimensionality of the re-
presentations described by the same Young tableau'’ [4,,4,],
where 4, — h, = 2T and A, + h, = n. In the branching dia-
gram,* it is illustrated as the number of allowed paths
between (1,7') and (1,}). We can elucidate (34) by the branch-
ing rule of the Young tableau.

The relation (34) is viewed as the sum rule on spectro-
scopic factors with the involving isospin quantum numbers
being fixed. Rewriting it in terms of intrinsic spins in place of
isospins, we get the fixed-intrinsic-spin sum rule, which gives
much fine information in comparison with the sum rule dis-
cussed in Ref. 15.

The relation (34) incorporated into (3) and (23), respec-
tively, yields

Z (nTT, kit,) =Y ('t} TT,)Z(:) flkt)fik'st')

S(nT)
(36)
and
R (nT,kt,r)
=T+ )3 W(Tr 5Tt )(Z) ﬂ‘%—‘—) (37)

We see from (34), (36), and (37) that all of S, Z, and R are
independent of N, the number of the single-particle states.
The relation (36) shows that the quantity

Z(nTT, ktt,) f(n,TV{2T + 1) f (k.1 )} (38)
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r

is symmetric with respect to the simultaneous interchanges
of Tand tand of T, and ¢, . The similar symmetry property of
R is found from (37). The expression of R given by (37)
should be a solution of (30), though it is far from obvious.

IV. THE PROPAGATION COEFFICIENT Z

In this section, the propagation coefficient Z is shown to
be a very simple form in the case of |T,| = 7, regardless of
the magnitude of T relative to n.

In order to deduce another type of expression (equa-
tion) for Z other than (36) [(26)], we utilize the p-n for-
malism that deals with protons and neutrons separately. The
state operator of creating k, neutrons and k, protons is writ-
ten as

A7 (kikyo@)) =A™ (ki) A (kyw,), (39)

where w, stands for all the quantum numbers specifying the
k,-body state with isospin ¢, =¢,, = k,/2, and w, for the
quantum numbers specifying the k,-body state with
t,= —t,, = k,/2. The operator defined by (39) produces
the state |k,k,0,0,) of k; neutrons and k, protons. Notice
that this state does not have a definite isospin.

The operator specified in the framework of isospin for-
malism is expanded as
A* (ktt,w) A (kt't o)

= EA T (kikow,@)) A (k 1 k0] 07)
X (kikw ;| AT (ktt,0) A (kt't o)k [k s 003 ),
(40)

where
ki+k,=k and (k,—k,)/2=1, (41)

and the same condition is applied to k | and k ;. The sum on
the rhs of (40) is taken over w,, @,, ®}, and w}.
There exists the completeness relation

N InTT,u){nTT,u|

uT

= Z|”1”2#1#2)(”1"2#1#2|, (42)

Mgty
where T on the Ihs runs over |T,|, |T,| + 1, ..., and n/2.
The condition (41) is applied to #, and n,. By virtue of (42),
the transformation coefficient on the rhs of (40) fulfills
2 (kikaw,0,| A~ (ktt,0) 4 (kt't ') Kk ky0,100,)
@y
= 8(y,7), (43)
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where ¥ = (t,w), etc.
By virtue of (40) and (42), the T,-fixed trace in the
framework of the isospin formalism is transformed as

NAnTT,u| A ™ (ktt,w) A (kt't ;&')|nTT,p)
uT

= z<"1”2l-‘1.u2| AT (kkyw,w,)

X 4 (k{kéw;winnl”z#lﬂz)
X (kkyw,w,| A (kit,w) A (kt't [o)|k |k joiw3) ,
(44)

where the sum on the rhs is taken over i, it,, ,, @,, @}, and
j. The sum over 4, ( i) is done by virtue of

N/2—k

S uT| 4+ (k) A )Ty = 817
r

the well-known relation' that describes the propagation of
the operator average with all the quantum numbers being
summed. The subsequent sum over @, and @, on the rhs of
(44) is done by virtue of (43). Then, we get

DnTT,u|A™ (ktt,w) 4 (kt't ;0)|nTT,p)
unT

_ 5(%7,)(N/2 - kl) (N/Z - kz).

46
n,—k, n, —k, (46)

Applying (9) to the 1hs and using (41) to rewrite the rhs in the
framework of the isospin formalism, we get the basic equa-
tion for Z, in a form different from (26),

NZ(nTT, ktt,)d (nTT,)
T

i ( (N—k)2—1t, )
=kt k2T -,

( N—Fk)2+1,

n—k)2—T, + t,)EF ).

(47)
The isospin 7" in any of (44), (46), and (47) runs over |T,|,
|T,|+1,...,and ¢+ (n — k)/2.

It is a little too involved to solve (47) in a direct way. A
device to circumvent the difficulty is to substitute
N = n + 2T, into (47), where T, is a parameter fulfilling

IT,|[<Ty<t+(n—k)/2,

and

Ty + n/2 = an integer. (48)

This device yields

zz(nTTz’kttz)d(nTTz)N=n+2To = F(n +2T)), (49)
T
where T runs only over |T,|, |T,| + 1...., and T Deriva-
tion of (49) relies first on N independence of Z, and second on
vanishing of d(nTT,) with N=n + 2T, in the case of
T, < T: These are distinctive features seen in (36) and (10,
respectively.

Letus put T, = 7, (5>0) in (49) so that T can be fixed
uniquely to 7. Then, it follows that
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Z (nTT,k1t,)

(n~k)/2+T+t,) (n/2+T+1)
=2t +1
(2 + )( 2T k/2+t+1

n/2+T+l)[ (n/2+T+1)}-'
X( kr2—e NPFTHI0 57

XAt — |t,]). (50)
The simple form on the rhs is worth notice. The rhs should
be identical to that of (36) with T, = T, though apparently
very different. Combining (36) and (50} yields a novel identity
involving a CG coefficient squared. The rhs of (50) with
k =1 reduces to n/2 + T for t, = £ }, respectively, as is
expected from the numbers of neutrons and protons of the
state with 7, = 7. Using (13) and (50), we get

Z(nTT, ktt) = ((” —h2+1+ T‘) (”/2 - Q

2t k/2—
(n/2+T+l) (k/2+t+1)"
k72—t 2t+ 1
XA(T—|T.]). (51)

In this derivation, the N independence of the rhs is associat-
ed with the property that the rhs of (13), comprised of N-
dependent factors, does not depend on N. The symmetry
property of the quantity (38) can be checked from (50) and
(51).

The expression (50) together with the symmetry

Z(nT(— T,)kt(—t,) = Z (nTT, ktt,), (52)

seen from (3) or (36), will facilitate the statistical treatment
of nuclear spectroscopy, since low-lying states in the nucleus
are characterized by T = |T,, |, i.e., the lowest isospin.

The propagation coefficient Z(nTT,,ktt,) in case T, is
close to T is easily deduced from (50) being incorporated
with the recurrence

(T+ TT — T, + )Z (nT(T, — 1),kzt,)
=2{T(T+1)— T2 —t(t+ 1) + 12} Z (nTT, k1t,)
—(T—-T)T+T, + )Z(nT(T, + 1),kut,)
+{t =Nt +t, + WZ(nTT, ke (2, + 1))

+{e+ )t —t, + )Z(nTT, ke (t, — 1)), (53)
which results from the n-body average of the identity
T, A AT_
=T T, A A—T_A* AT,  + A AT T_
—[T_[T, A" ]4A -4 "[T_[T,,A]]
— [T, A" NT_,4]1-[T_,47][T,, 4] (54)

V. THE PROPAGATION COEFFICIENT R

In this section, types of expressions for R are shown,
which are apparently different from (37).
Substituting (50) into (21) yields
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R(nT ktr)
=J@2t+ 1)QT - Q2T +r+ 1)

(3l ere )

n/2+ T+ l)
X(k/2+t+l %(trtzopt,)

n—k)2+T+ tz)
s 55
x(" O (55)
where the CG coefficient is explicitly written as'®
]

R(nT)kt,r) =

(2rt,0)2t.)
=2t + {2t — M2t +r+ 112

Jr+u)2e—up (t—1t.
xg(—l)———————( ) )A(z+z,). (56)

ur — u)!

The explicit form of (TrT0| TT ) is used to get (55). We notice
that the CG coefficient of the form (56) appears also in the
Gram expansion of the finite rotation operator.'’

French? got the following result [(7.40) of Ref. 2 being

multiplied by V27 +1]:

(2t —n12T +r+ 1)!

(n—KWk/2 =) (k/2+t+ 1)}

Q2+ 1) (n2=DI(n/2+T+ D! \/

Qr—n'2t+r+ 1!

XZ (= D?Qt—p)Y(n+2t—r—k—2p)!
P2 —r=2p)((n=k)Y/24+t—T—-p)((n—-k)2+T+1t+1 -—p)!'

Comparing (55) with (57), we find that the involved sum in
the latter is rewritten in the former as the sum of products
comprised of a CG coefficient and a binomial coefficient.

Let us carry out the sum over £, on the rhs of (55). We
discuss first the case when the value of 7 is only a few. Ex-
panding the CG coefficient as a polynomial in ¢,, we make
use of the identity

E00-0000-C) o

etc. to sum over ¢, . The result for <2 is summarized as

R (nT kt,r)

(2t — 2T —
2t +r+ )2T+ 7+ 1)t

=(2t+ 12T + 1)

XR'(nT,kt,r), (59a)
R'(nTkt,r)
_[(n/2+T+1)(n/2—T)B
TWNkR24e+ 1V \k2—)T
n/24+T+1 n/2-T
‘( k/;—t )(k/2+t+1)B'}(2T+l)—l’
1, for r=0, (59%)
B, ={—(n—k+ 1)+ @2+ 1)2T+1), for r=1,
3 —k+ 1PF3n—k+ )2+ )27+ 1)
+16¢(t+ )T(T+1), for r=2. (59%)

The expression for the case of r = 0 is particularly sim-
ple. It was deduced previously in Ref. 4 as the propagation
coefficient for the average with 7" (but not T,) being fixed.
We see from (59c) that the coefficient B_ is related to B, by

B—=(B+)T—>~T—l . (60)

From this we find that two terms in the bracket on the rhs of
{59b) are interchanged under the replacement of T by
— T —1 and that the quantity R’ is a polynomial in
T(T+1)
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(57)

Next, let us extend (59c) to a general r, retaining (59a)
and (59b) as they are. In order to get the form of B, we
consider the case of (n — k)/2<T <+ ¢, under which the term
containing B_ vanishes. Substituting {56) into (55), let us
sum over £, as

5 (t—uk) ((n - k)/22T+ T+ t,) At
()

valid only for (n — k)/2<T + ¢ because of existence of
A(t + ¢t,) on the 1hs. We then get

c u (2t"u)'(r+u)'
B, = -1
* uZO( ) (2t—-r)!

><((n —-k)/2—-T+ t) (2T+r+ l)
" .

u r— (62)

We easily deduce the expression of B_, applying (60) to (62).

The implication of {59a)—-{59c) as well as (57) is elucidat-
ed in terms of solutions of the difference equation (30). As
discussed in Ref. 4, every term with the definite p on the rhs
of (57) fulfills (30). The linear combination of terms with
various p’s is to reproduce the condition (29). Each term with
the definite p describes information propagation between the
points (n,T') and (k + 7 — 2¢ 4 2p,r/2) in the branching dia-
gram.

The expressions (59a)-(59¢) are split into two parts, one
containing only B, and the other containing B_. We find
that each part fulfills (30). The part containing B, can be
interpreted as information propagation between the points
{(n,T)and (k,t) in the branching diagram, as is seen from the
vanishing of the expression in the case of n = k and T #1¢.
Similarly, the part containing B_ describes the connection
between (#,7) and (k, —¢—1). Notice that the point
(k, — t — 1)is unphysical, since the isospin is negative. Itisa
mirror image of (k,t ) with respect to the isospin = — } axis.
The mirror image takes the place of the condition that prop-
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agation should be confined to the region of isospin» /2. The
symmetry (60) implies that the propagation between (n,T')
and (k, — ¢t — 1)is the same as that between (n, — T — 1) and
(k.t).

New expressions (37), (55), and (59) as well as the
previous result (57), which are given to the same quantity R,
are to be algebraically identical to each other, though we
hardly see it except in the case of » = 0, the isoscalar opera-
tor. Combining two of them leads to a novel identity among
n+f symbols and factorials. From the first two, for example,
we get, for any integer p,

z 2t'+ V)W (Trt't;T)
T (p—t)M(p+rt'+ 1)

Y 1
_ QT —rN'QRT+r+ 1) z (rt,0)1t,)
(P+TH+t+ DN p+T-0) 7
P+ T+ tz) _
2t4+1)"Y2,
( T (2t 4+1)
arelation somewhat akin to the novel identity (1) of Ref. 18.

(63)

VI. THE FIXED-ISOSPIN AVERAGE OF THE OPERATOR
PRODUCT

The operator subject to the average is often a power of
an operator or a product of several operators so that the
direct use of (2) would not be available. Here, we present a
prescription to deal with the n-body average of the operator

O=A"(ny,) A(n] ;) A7 (nyy,)A(n; y;) , (64)

wherey, = T'\T,, u, , etc. and any of n,, n,, etc. can be zero.
Usually, it is easy to express a given operator as asum of O ’s.

Averaging the operator O in the n-body space requires
three steps. First, the extended Wick’s theorem'? is applied
to O to rewrite it as a sum of normal products. The resultant
expression is summarized in (38) of Ref. 13. The normal
product that is relevant to the operator average is of the form
(7) being subdivided as

O(k)=0,(k)O_{k) (65)
with

O, (k)=A" (k) A" (ka,)A4" (kra;) (66a)
and

O_(k)=A(k| aj) A(k; a;)-A(k;ap), (66b)

wherea, = t,t,,®, , etc. The sum of k,, k-, and k; is equal
to k, thesum of k {, k 5,--, and k ; . Next, the reduction rela-
tion (2) is applied to the n-body average of O(k) so as to
express it as a sum of k-body averages. The last step concerns
modification of the resultant k-body average, which is rear-
ranged as

(O(k)) " = (0|O_(k)P(1,)0 ,(k)[0)/d (kez,),  (67)
where P(1t,) stands for projection operator onto the
isospin-#¢, space. Operating P(1t,) to the right, we state it in
terms of CG coefficients so that Wick’s theorem can be ap-
plied to the antinormal ordering form O_O__ in the matrix
element. The n-body average of O is finally given as a sum of
vacuum expectation values.
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Notice that rearranging any operator as a sum of iso-
tensors is not required in the first two steps. This advantage
becomes remarkable when the number of 4 *’sand 4 ’s con-
sisting of O increases.

VH. USE OF Z AND S AS SPECTROSCOPIC FACTORS
FOR NUCLEAR FRAGMENTATION

Here, we point out that it is available to use Z and S’ as
formation factors of target (or projectile) residues in high
energy nuclear reaction.

Let us consider the case when the mass-n target nucleus
in any state with isospin (7,7, ) is fragmented into two pieces
(residues), one being a cluster of k nucleons coupled to iso-
spin (#,t,} and the other a cluster of ¥’ ( = n — k) nucleons
coupled to (¢, 1 ;) . We assume that specification of the tar-
get residue by angular momentum, etc. other than isospin is
not a matter of concern, which will be meaningful in analyses
of mass and charge distributions of target (projectile) resi-
dues.'®

We set up three types of spectroscopic factors for the
fragmentation. The first, used in the prevalent treatment,'®
is of the hypergeometric expression

() () o

The condition (41) is applied to n,, k,, etc. That is, the argu-
ment n, (n,) implies the number of neutrons (protons) of the
target nucleus and &, (k,) the number of neutrons (protons) of
one of residues. The second and the third types of spectro-
scopic factors are Z(n1T,, ktt,) and S'(nTT,, ktt,
+ kt’ t}]). These are to be used for inclusive and exclusive
analyses, respectively, regarding isospin ¢.

None of the isospins 7 and ¢’ are taken into account in
(68) contrary to Z or.S ’. From this, we infer the spectroscopic
sum rule

S ZTT, kit = (1’:) (1’:). (69)

To prove it, we have only to substitute (13) into the 1hs of (47)
after replacing » and k in (47) by N — n and N — k, respec-
tively. The relation (69) linked with {36) leads to a novel iden-
tity containing a CG coefficient squared.

It has little been discussed how the fragmentation pro-
cess is influenced by the magnitude of ¢ relative to that of ¢, .
It is, however, known that the nucleus with ¢ > |z, | has fairly
large excitation energy and is unstable as to particle decays.
Considering this, we present an extreme model that target
residues are formed mainly under the condition |z, | = ¢. The
relevant spectroscopic factor is expressed as

Z(nTTkt |t,| =1)

“Eroe ey ™

where k' (k ") indicates the larger (smaller) number between
k, and k,. The relation (50) is used to get (70). Comparing (70)
with (68), we find that the former leads to a slight enhance-
ment of production of S-unstable nuclei. Existing experi-
mental data is not sufficient to support further discussion on
this point.
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It is easy to extend (34) so as to get spectroscopic factors
for a nucleus being fragmented into several clusters. We
present here only the expression

S(nTT, kytity + kototy + -+ kjt1(—11])
+kyti(—t3)+--2)
= (1t't —t'|TT,)?
nlf(ky,t)f (ko) ++ - flk 1,8 1) flR385) - -
Ktk -+ k4t f(n,T)

where ¢ (¢') stands for the sum of #,, #,, - - - (£ 1, 25, -+ ).

» (71)
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The known general formula for the Clebsch—Gordan coefficients of the three-dimensional
rotation group involves one summation that results in explicit summation-free expressions for the
coefficients where either one of the angular momenta is the sum of the other two or the magnetic
quantum number corresponding to one of the angular momenta takes its maximum value in
magnitude. By using very different techniques, explicit expressions for the coefficients { j,, 0; j,,
0]/, 0), {j1, 442> — 3| j, O) are also obtained where the integral or half-integral nature of the /s is
indicated by the magnetic quantum number involved. Here the expressions depend upon whether
J1+ J2+ jis an even or an odd integer. For these coefficients, the magnetic quantum numbers
involved take their minimum value in magnitude. By using the recursion relation for the
coefficients of the form ( j,, m, j,, — m, | j, 0), these coefficients can be calculated in terms of the
above known ones provided the explicit value of the coefficient { j,, 1; j,, — 1|, 0) is known,
where j, + j, + jis an odd integer. (The recursion relation for these coefficients in terms of ( j,,
0; j,, — 1|, 0) becomes a triviality since { j,, 0; j,, 0| j, 0) vanishes when j, + j, + jis an odd
integer.) The main purpose of this paper is to give an explicit expression for the coefficients ( j,, 1;
J» — 1]/, 0), where j, + j, + jis an odd integer. This expression is obtained by using a
complicated transformation between hypergeometric functions, which seems to have been
neglected so far. For the coeflicients where the magnetic quantum numbers have their minimum
value in magnitude, this transformed expression becomes summation-free and the explicit values
of the three already known coefficients and the fourth so far unknown are obtained. Further study
of this transformation may be useful on its own because it provides a link between very different
types of expressions. For completeness, explicit expressions for the coefficient (j,, 1; j,, — 1|J,
0), where j, + j, + jis an even integer, and of (j,, 1; j,, 1|/, 2) and (j,, §; j,, — 3| j, O), where

J1+ j» + jis an even or an odd integer, are given.

I. INTRODUCTION

Many equivalent expressions for the general Clebsch—
Gordan (CG) coefficient {j,, my; j,, m,| j, m) of the three-
dimensional rotation group are known.'* All of these in-
volve a single summation which degenerates in special cases
of types I and II, which are exemplified by j = | j, + j,| and
J = |m)|, respectively, as is clear from the Van der Waerden*
form for these coefficients. Van der Waerden* shows that
there are nine quantities that appear in the form of a symmet-
ric 3X 3 array (the Regge array)’ and the coefficient is given
in a closed form whenever any of the elements of this 3 X3
array vanishes. In the special CG coefficients of type I, one of
the angular momenta takes its extreme value (maximum or
minimum), which is simultaneously an extreme value of its
magnitude since the value of any angular momentum is al-
ways non-negative. However, for the CG coefficients of type
II, the magnetic quantum number corresponding to one of
the angular momenta involved takes its maximum value only
in magnitude. A question naturally arises whether we can
have summation-free explicit expressions for at least those
CG coefficients where the magnetic quantum numbers of the
angular momenta involved take their minimum possible val-
ues in magnitude. Such an expression for the coefficients ( j;,
0; j,, 0|, 0) is already known.® This is obtained by using
very different techniques than those used for obtaining the
general expression. These coefficients are nonzero only
when j; + j, + j = aneveninteger, as follows easily from a
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known symmetry of the CG coefficients. In addition, explicit
expressions for the CG coefficients {jy, §; j,, — 4|/, 0) for
the two cases when j, + j, + jis an even or an odd integer
are also known.”® In this paper, we give such an expression
for the CG coefficients (j,, 1; j,, —1|j, 0), where
Ji1+Jj>+ jisanodd integer, which are then the nonzero CG
coefficients with least value in magnitude of the three mag-
netic quantum numbers. The three already-known coeffi-
cients and the fourth one given in this paper are needed as
starting coefficients in a recursion scheme for the coefficients
(ji» m; j,, —m]j, 0). For these coefficients, we arrive at
explicit expressions (for different cases) involving one sum-
mation only, which is of a very different type than the known
general expression using a transformation of hypergeome-
tric functions. It seems that this transformation has not been
applied in the past. Since, in the expressions for {j,, m; j,,
— m| j, 0) obtained in this paper, the range of the single
summation is restricted by m (m — }) for a positive integral
(half-integral) value of m, for the coefficients for which m is
small in magnitude, these formulas might be computational-
ly easier to operate with even when the ;s are larger.

For completeness, we also have given closed form ex-
pressions for the coefficient {j,, 1; j,, — 1|/, 0), where
j1+ j» + jisan even integer and for the coefficients { j,, 1;
J» 1], 2) and iy, §; jr, 4] j, 1), where j, + j, + jiseitheran
odd or an even integer. The last two cases are obtained from
simple recursion relations in terms of (j,, 1; j,, — 1]/, 0)
and (j,, §; j» — 1|J, 0), respectively.
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The special coefficients (j,, 0; ja, 0|4, 0), (ji, 1; Jja»
— 1{,0),and {j, & j» — 4|/, 0), and the ones that can be
obtained from these using the various symmetries, are useful
from the point of view of the theoretical discussion of the
physical problem of angular correlations. Indeed, the above
three coefficients occur in the study of angular correlations
of spinless particles, of photons, and of conversion electrons,
respectively. For unpolarized correlation measurements, we
require these coefficients for j, + j, + j= an even integer

J

Il. RESULTS
(a)

only. (The coefficient { j,, 0; j,, 0| j, 0) vanishes otherwise as
follows from its symmetries, but the other two do not.) For
polarized correlation measurements, we require, in addition,
the latter two coefficients for j, + j, + j = an odd integer
and also the coefficients {jy, 1; j», 1|/, 2) and (ji, § j» 4| Js
1), where j, + j, + j is an even or an odd integer.® This
paper is organized as follows. In Sec. II, we present the re-
sults, whereas in Sec. III, the derivation of the results is sum-
marized.

() (0 ja00j0) = (= DD 4= \/(m D Uit ja= DW= Ja+ DU =i+ Ja+ )

(i+L+i+1

% GG+ 2+ H (0
GG+ Ja— DM — o+ DMC— S+ Fa+ DI
if j, + j, + jis an even integer, or = Oif j, + j, + jis an odd integer. In the above, all three ;s are integral.®
@) Cpliw— 1130y = (= Do virs=s=n [QIF DU DU = Lt N Tt ot J)
: (h+ 2+ J+ DU+ D ARG+ 1)
. 2001+ 2+ 7+ D) 2)
GG+ o= = DM — o+ J = DM = i+ o+ T = D)
In the above, the three ;s are integral and j, + j, + jis an odd integer. This result seems to be new.
.oy . . .1 1j(j+ D) —jih+D)— L+, A
(lll) <]1’1;]2’ - ll_],O) = <] y l’] ,lljao) = 1 ! 2 2 ( )0; ,0 90), 3
1 2 ) A DAGTED J1:0; /2,01 j 3
where the three j’s are integral, j, + j, + j is an even integer, (see Ref. 10) and the coefficient { j,, O; j,, 0] j, 0) is given in
(a) ().
(b)

() ko —370) = (— 1)(1/2)(jl+jz—j)\/(2j+ D+ h=»MNu—=—nh+N(=i+ i+ )

i+ B+ 7+DWGL+D (L+D

GG+ 2+ DN

X .
G+ =N — 2+ i—DM(— i+ 2+ 7—D)

(4)

In the above, jis integral whereas j,, j, are both half-integral, j, + j, + jis an even integer, and + j, + j, + jis an odd

positive integer.

i) Gogiw —3170) = (— 1)/ (,~,+,-2_,_n\/(2j+ D Gt Ja= D — Jat DN = i+ o+ )

(h+ L+ i+DWALH+ED (L+D

GG+ 2+ j+ D)

X »
B+ 2= J— DML — o+ DNMBC—Jy + J2+ D)

(3)

where jisintegral whereas j,, j, are both half-integral and j, + j, & jisanoddintegerbut + j, F j, + jisaneven positive

integer.

All the above results are invariant under the interchange of j, and j, as follows from the known symmetries of the CG

coefficients.”:®

(c)
(i) (jni;jz’ﬂj,l) = [(jl + L2+ DG+ ](J'lai;jz: - i|j,0)s if j, + j, + jis an even integer, (6)
= [ = IINFGF D 1k jos — 417:0),  if jy + j, + jis an odd integer. €
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. . » . I » _ . - . - - 2

(i) (jl,l;jz’llj’»=](J.+1)[.11(../1+1).+12(Jz.+.1)] [Gi— /) Gh+ o+ 1)] G
VG=DjG+D G+ G+ D — G+ D) = j(ja+ D]

if j, + j, & jis an even integer, (8)

= ({1—]2? (.J‘+'12+ D (vl jo — 11,0), if j, + j, + jis an odd integer.!! 9)
VU-DJjG+D (j+2)

1;j2! - 1|j10>9

. SUMMARY OF THE DERIVATION OF THE RESULTS IN SEC. Ii

From the general expression for the CG coefficient, we have

(jpm'j2 _mIJ,O) — ( _ l)jl+jz_.j (2j+ 1) (jl + j2 — j)!(jl +m)!(j2 — m)!
(i + 2+ 7+ DW= Jo+ D= ji+ Ja+ DG —m)t(je + m)!

C N i , . |
s shy+m——ji+j—m+ i+ jo— j—9)
=(__1)jl+j2—j (2j+1) (—j1+jz+j)!(j2—m)!
i+ 2+ 7+ D+ o — NG = Ja+ DG+ m) G — m)I( + m)!
A2 —h+tih+ti+l —h=J+) —h—m
l"(——'+'—m+1)3F2 ;1 (11)
hr ~2jy, —hti-m+1

Using the transformation'

2a, 2b, —n _(c—a+§),,(c—-b+§),, a,b, —c—n, —n

3 = ) ( 1 b) 443 ;1
2, J+a+b—c—n (c+Dalc+i—a—b), cj+a—c—n, L+b—c—n
(12)
and the duplication formula'?
I'(2x) = [T )T (x + PH7T]2>~! (13)
for the gamma functions, we arrive at
o i —j ] NN i, — m)!
(G —m|j0y = (=it | QIF Dt at N mm) :
(I + 2+ 7+ DWWy + Jo — NGy — o+ DG+ m) Gy — m)(f, + m)!
o 1yhem 28 DU DI+ 4G + Jo & DI+ Ja =+ D +mDG —m)
Jr FA+4(— i1+ 2+ D —mUl(—ji+ p+j+ 1)
1A —ji+ i+ 0, (= h— 0+ —h—m, —-m
X4F3 ;1 o
— Jo l+i(—h+th+D—m (—ji—jpp+))—m
(14)

Casel: j, + j, + jisaneven integer. We first assume that m is a non-negative integer. The hypergeometric function ,F; in
Eq. (14) is well defined and is a terminating Saalchiitzian, for which we have the transformation

X, ¥, 2z, —n U — X, u—y, z, —n
4F>( ;1): w—2),w—2), 4F,( ;1). (15)
u, v, w @), (w), u, l—v+z—-n 1—w4+z—n

We use the above transformation for the ,F; in Eq. (14), taking

x=(1—=ji+p+N/2 y=—j—m z=(—ji—jp+ )2 n=m,
u=l+(_j1+j2+j)/2_m’ v=_j17 w=(l_j1_j2+j)/2“m)
to arrive at
<jlsm;j2’ - m|1’0>
= (= )VD Gt b= D Qj+ D) i+ =D U= da+ D= ji+ o+ DNy —m)(j, —m)!
(fr+ o+ 74+ DWG+m(y, + m)!
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x @h+ i+ NN
GGy = 2+ ) —ml§(— i+ o+ D —mMGr + = DI
1+4(ihi+ 2+ 1) —=h— 0+ i—-m, —m
X 4F: ;1) (16)
1+ (—ji++D—m 1+4H1—h+))—m, i

The advantage of the above form is that it applies equally when m is a non-negative integer or a non-negative half-integer,
although, in the above derivation, we assumed, to start with, that m is a non-negative integer. In fact, had we started with the
transformation'*

2a, 2b, —n
3F ;1
2, i+a+b—c—n
a+1i, b, }—c—n, —n
(c—a+4),(c—0b),

= 4+ 3
(©),(c+}—a—b), ¢+ i+a—c—n 1+b—c—n

and followed the steps identical to the ones mentioned above, we would have gotten exactly the expression in Eq. (16) under
the assumption that m is a non-negative half-integer.
Finally expanding the hypergeometric function ,F; in Eq. (16), we can write
(jbm;jz’ - m|_],0)
(= 1)U+ h=D 27+ 1) Gi= 22+ D= i+ o+ D + Jo — DGy —m)(, — m)!
(h+ L+ i+ WG +Hm,+m)!
GG+ 2+ ) +3)

@M =290+ Jo— D =M= Ji+ Jo+ D) —m+ WGy — o+ ) —m+ )
(18)

X (2m)IY (—1)*

which obviously satisfies the symmetry

(G1sm; o — M| j,0) = { josm; ji, — m| j,0), (19)
since in the above, j, + j, + jis an even integer.

CaselIl: j, + J, + jisanodd integer. In this case, the ratio of the ,F; appearingin Eq. (14) toT'(( — j, + j, — j+ 1)/2)
is a finite quantity that shows, after a careful analysis, that (assuming that m is a non-negative integer)
(jl:m;jb - ml]’0>
(pyhrhsem 2 mL (4 — m)T(1 + 40y +Ja + DTGB + o + fo+ )

B J7r DU — ji 4+ o+ DIDBC— j1— Jo+ DTGB+ ji— fa+ J) —m)
P+ — L+ TR+ ji— 2+ J))\/ Qj+1) (= i+ o+ NG = m) (o —m)!(jy + m)!

L+ 2DTR+40G+ 2+ ) —m) v+ 12+ 7+ DWW + o — DW= J2 + DN+ m)!

1@+ A+ i+ D) 1+3Gh— 2+ J) ht1l—m, l—m
X4Fs i1 (20)
Lh+2 2+4(h+h+DN—m B8+ jh—Lh+t))—m
We now follow the same procedure as for case I to arrive at

(jl’m;jv _m|j’0>
(- l,um(f.+,-2_,~_n(2m)\/(21'+ D Grt = D' = Tt D= s+ Jat DI = mIfy— )

(i + i+ 4+ DI+ mj,+ m)!

< GG+ L+ Jj+ D)
Bh— s+ i+ D) —mld(— i+ L+ i+ D) —mMGi+ o — J— D)

X4F3 ;1 > (21)
3+ih—R+DN—m CB—ih+ L+ —m 3
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which can be expanded in the form

(Jm; jo — mlj,(»

(i + o+ 7+ DI, + m)(j, + m)!

= (-1 <f-+fz—f—n\f21'+ D) G+ Ja— DGs— Jo+ DW= Jr + Jo + DGy — My — m)!

X 2m)I3 (— 1)°

Wi+ i+Jj+1)+s)

X )
2+ 1)2m -2 —WY(ji + o= J =D=M — L+ i+ ) —m+(—ji+ o+ j+ 1) —m+s)!

where j, + j, + jis an odd integer. Note that as for case I,
the expressionsin Egs. (21) and (22) apply when m is anon-
negative integer or a non-negative half-integer.
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In this paper, simple analytic expressions for the radial functions r/, (£ (r)) and G|\, (f (7)),
which appear in the expressions for Z7(V) £, (r) Y () and VZ"?,’/':' (V) f, (N Y *(f) when
expressed as linear combinations of Y7'(f), where 27"(V) is obtained from the solid harmonic
@7(r) =rhY(#), are derived by replacing x, y, and z in its representation as a polynomial of
degree I, by 3 /dx, 3 /3y, and 3 /dz, respectively. Writing ;. (f (r)) = rl,0(r) f (r) and

G (f (1) =Glo(r) f(r), the expression for r/, o (r)(G [ (r)) is found to be
(2/r)"((2/r)" * ") times a product of commuting factors containing the single operator ir(d /dr)
and not two noncommuting operators r and (1/r) (d /dr) in the many equivalent previously
obtained results which are thus synthesized in this approach. Also, expressions for these operators
manifest the symmetries in the problem. In addition, a simple connection G 7o (r) =7/ | 3.0 ()
between these two operators and the corresponding radial functions G ", ( f (r)) and r/, (£ (1)) is
found.

I. INTRODUCTION

Because of its usefulness in many problems of theoreti-
cal physics,'~®> many authors have calculated®®’ the effect of
applying the spherical tensor gradient % ["(V) of rank /, on a
spherical tensor F *(r) of rank /,. Here % "(V) is obtained by

where (/;,m,|],,m,|l,m) is the Gaunt coefficient given by
{lmy|lyma|lmy + my)

=25 + 1)2L, + 1)/4m(2] + 1)
X (lvml;IZ’mZ{l’m> (11’0;12’011!0) (3)

replacing x, y, and z in the polynomial of degree /, in x, y, and
z for the solid harmonic ¥ 7(r) = r"Y [(#) by 3 /dx, 3 /3y,
and d /dz, respectively. Thus & *(V), like the solid harmonic
% "(r), is a spherical tensor of rank /,. Also

F7oe) = f,(NY T+(f). (1)

Indeed, from angular momentum considerations, we
can write

in terms of the Clebsch-Gordan coefficients as given in Eq.
(2.5) in Ref. 6.

In Eq. (2), the radial function »/, ( f (r))is independent
of the magnetic quantum numbers m, and m, and the sum-
mation variable [  takes the values [, + 1/,
L+ -2, -1 Thus i+5L-D and
}(I; — I, + 1) are both non-negative integers.

Bayman® derived an explicit analytic expression for
rl, (f(r)), wherein he factored out only the Clebsch-Gordan

i (VIF () = 21: (Lo |Lym|lm) coefficient (/;,m;l,,m,|l,m) in Eq. (2). Weniger and Stein-
born have recently obtained an equivalent but somewhat
Xl (S, ()Y 7 (), (2)  simpler expression®
)
h+b-t2 L+ LIV, +5L+1+3 a1 AN Tf(r
rlI,l,(f(r)) = G( 1 2 )) (i( 1 2 + )) 29 LW+, —2q ( ) f(,) (4)
=0 Q@ +L-1)—qTRh +L+1+3)—q) r dr re
I
by factoring out the Gaunt coefficient as shown in Eq. (2). . ,( 1d )(" kb2 i
. ! . . =r\——-— r
The above expression for 7, ( f (7)) contains a single summa- r dr
tion over g. By utilizing Fourier transform techniques, they 1 d\th+L—1n2
were able to arrive at many equivalent expressions for the X( r dr) r* i ). (6)

same radial function that do not involve any summation.
These could be exemplified by’

i+ L—-0Dr2
r[,[,(f(r))— I+l(1 dd) r11+12+1+1
7
1 d (l.—I,+l)/2fI (r)
x(+4) /A
r dar ’-Iz (5)
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In addition, the same technique gave them similar but
more complicated expressions for the radial function, which
appears in the equation '°

VY (V)F7a(r) = ; (lymy|Lymy |l m)
G (f, (MY (). (1)
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We note that in Egs. (4)-(6) above, r/, (f (7)) is ex-
pressed in terms of products of fwo noncommuting operators
rand (1/r) (d /dr) operatingon f (7). Inthis paper, we have
expressed 7/, (f (7)) as (2/r)" times a product of commut-
ing factors involving the operator ir(d /dr) only from Eq.
(4) directly and without application of Fourier transform
techniques. This operator ir(d /dr) has the additional ad-
vantage that it does not change the degree of any term in
f (r). Thus each term in the expansion of f () is acted upon
independently. Exactly the same remarks apply to our
expression for G 1% (f (r)). If we write

’tlzz(f(")) = "1’1,0(")f(’)’ (8)
Itz(f("))—Gu,o(")f("), 9)

our expression for the radial operators r}, o (r) and G o (r)
manifestly exhibit their symmetries, unlike the expressions
of Bayman and Weniger and Steinborn. Also, we find the
relationship

(&) o=

J

1df 1

2
= 2 (lri__l_lz

Fai\2  dr 2 )zf(r)’

where we have used the Pochhammer symbol defined by
(@), =T(a+n)/T(a).
The above procedure results in the generalization

() Gere)
=72j—2;(% 5_—12_k+ 1) )

In the above, we take k =/,
294+ L2940 arrive at

1 dY—71
dr) ;Zf()

(2)G-3
={=) |—r——-1,—
r 2 dr

— g and multiply the result by

2qu +I;—2q(

lz+q+1) S,

I, —

(11)
Thus Eq. (4) becomes
’1’,1,(f("))
2Vef1 d 1
-(3) (z’d“‘"l“”‘)(,,_,,+,,,2
1 d
X(Frgtgih +’+3’)(,,+,2_,,,2f""
(12)

In deriving the above result, we have performed the for-
mal finite summation in g in Eq. (4) by using a special case of
Vandermonde’s summation theorem for the terminating hy-
pergeometric function ,F, in the form!

Fil — nase;1) = (e — a), /() (13)
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rarle PG el -

’1':0 (") - r:, + 2nl,0 (r)) (10)

which is not evident in the expressions derived by Weniger
and Steinborn.

This paper is organized as follows. In Sec. I1, we present
the derivation of our results for r/, (f ()) and G ", (f (r)).
From our results, the symmetries of the corresponding oper-
ators 7/, (r) and G ', () are evident. In Sec. III we sum-
marize our conclusions.

Il. DERIVATION OF THE ANALYTIC EXPRESSION FOR
rin(£(r)) AND G5 (£()

From

T .

we note that the operator (1/7)(d /dr) replaces 1/r" by
1/r*2and f(r)by 2(in(d /dr) — i1,) f (r). Repeating the op-
eration of (1/r)(d /dr) then gives

(ke

|
Note that in Eq. (12) both the Pochhammer symbols contain-
ing ird/dr) are well defined since i/, +/,—1) and
1(/; — I, + 1) are integers and each symbol can be expressed
as a product of factors containing the operator ir(d /dr). Nat-
urally all these factors commute and we can place them in
any order, which results in many different equivalent expres-
sions of the type given in Egs. (5) and (6). In our single equa-
tion (12), we have synthesized all the different equivalent
expressions obtained by Weniger and Steinborn® for
ri, (£(7).

To exemplify the usefulness of our result, we rederive
Hobson’s result by specifying'?

Fr) = 1/r,

ie, L=my,=0, f (r)= folr) = 1/r. Consequently /=1,
and we obtain
r/o(l/r) =(- 1)’(21 _ 1)!!/rl+ 1,

which finally results in
VIR = (— 1) [(2] - /e Y ). (14)
Next we derive an analytic expression for G 1", (f (r)),

which appears in Eq. (7) above. For this purpose, we note
that

v[(2) rnrrel
ey rn(z g
x(%rdi+—(—ll+l+1)— )f(r). (15)

We apply the above result repeatedly on both sides in
Eq. (2), and utilizing Eq. (12) we finally arrive at
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1 d

ohr=(2)"" (3re -2 +1)—n+1)m+1 Wm(i P Ll 1Y

2 d

In Egs. (8) and (9) above, we defined the radial opera-
tors 7/, (r) and G [, (r), which are just the right-hand
sides of Egs. (12) and (16) without the f (r). Evidently,
these operators satisfy the symmetries

’ll.lzo(’)="11_1,(1)_l(")=’11,—1,—1o(r), (17)
and the relationship
1,120(") —"l,+2nl,o (), (18)

from which the symmetries given in Eq. (17) are also evi-
dent for G 17, (7).

We can now obtain expressions similar to those given in
Egs. (5) and (6) for G}" (f () by just replacing /, by
1, + 2n. These expressions are to be compared with the more
complicated ones given in Eqs. (4.28) and (4.29) in Wen-
iger and Steinborn® and in Egs. (3)-(6) in Niukkanen,’
which give an expression obtained from the one given in Eq.
(4) above with the replacements of v/, f(r), f(r)/r% 1,
and q by rlf+2nl,(f(r))’ f(r)! ll +2n9 and
1(1; + 1, — I) — g, respectively. Note that while considering
powers of ( — Jr22) in the expansion of the Laguerre po-
lynomial L#+'2( —1r29) in Eq. (3) of Niukkanen,” we
assume that r?> and & = (1/r)(d/dr) commute, i.e.,
(—r2D)e=(—r¥/2)*a*

Ill. DISCUSSION

The main results of this paper are contained in Egs. (12)
and (16), which express the radial functions r,, (f (r)) and
G1".(f(r)) in terms of the repeated operations of factors
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fin

)(I|+Iz-1)/2+n

2 dr
(16)

r
containing }r(d /dr) on f (r). Since no other operator exists
between these factors, the factors can be permuted at will.
This results in a synthesis of many expressions derived by
Weniger and Steinborn using Fourier transform techniques.
Also our expressions for the radial operators /., (r) and
G [0 (r) exhibit the symmetries present in the problem, i.e.,
these operators are manifestly invariant under the transfor-
mations / « —/—1,and [, «&» — I, — 1. We have also ob-
tained a relationship between r/,,(r) and G, 10 (r) that
shows that the second operator can be obtained from the first
by replacing /, by /;, + 2n. We have not been able to find any
physical reason for the existence of this relationship.

Since our results are expressed in terms of the operator
ir(d /dr), operation on any function that can be expressed asa
power series in 7 becomes trivial—each term of the power
series being operated upon independently. We have exhibit-
ed the usefulness of our approach by rederiving the classical
Hobson result.
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The possibility of confining a quantum particle in an optical potential, the imaginary part of
which would be related to the existence of inelastic reaction channels coupled to the elastic one, is
considered. Pure imaginary potentials of various (constant, linear, and parabolic) radial shapes
are studied. The numerical dependence of the energies and mean-lives of the confined states is
explicitly shown. Analytical expressions for such dependence are also given in some cases.

I. INTRODUCTION

Since the discovery of the J /¢ (3095) and its interpreta-
tion as a charmed quark-antiquark bound state, there has
been a considerable interest, increased by the subsequent de-
tection of more and more members of the charmonium and
bottomonium families, in confinement mechanisms. Efforts
to understand the nonobservability of free quarks have given
rise to two kinds of models: bag and potential models (for
recent reviews, see Refs. 1 and 2, respectively). In the first
kind of model, confinement is imposed via boundary condi-
tions on the surface of the bag; in the second, confinement is
produced by the tail of the potential, which goes to infinity as
rincreases. Both confinement mechanisms are rather ad hoc,
although they can be made plausible in terms of color flux
bubbles or strings.

The physical idea behind those models of confinement is
very simple: Free quarks cannot be observed, for instance, by
breaking the quark-antiquark pair in a meson because new
quark-antiquark pairs are created as the original quark and
antiquark are pulled out. In other words, reaction channels
are opened as the quark and antiquark in the elastic channel
are separated. In nuclear physics, the presence of coupled
reaction channels is commonly represented in the elastic one
by means of an optical (complex) potential, the imaginary
part of which is related to the channel coupling.

Motivated by those considerations, we forward the pos-
sibility of producing ¢g confinement by adding to the quan-
tum chromodynamics (QCD)-supported Coulombian poten-
tial an imaginary part acting only at distances larger than the
“radius” of the meson. Such an imaginary part would in-
crease with the distance, so as to represent the fact that more
and more inelastic channels are opened.

Before trying to fit the masses of the hadrons by assum-
ing a complex phenomenological ¢g potential, it has seemed
to us worthwhile to explore some specific examples in order
to understand how those optical potentials, of various
shapes, would work to produce confinement. Moreover, we
have taken purely imaginary potentials to avoid the effect of
the imaginary part of the potential being masked or distorted
by that of the real part.

In the examples discussed in Secs. II-VI, spherical sym-

*'On leave of absence from Universidad de Zaragoza.
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metry is assumed. To facilitate the solution of the Schro-
dinger equation, we have considered only constant, linear, or
quadratic dependence on the radius. The information so ob-
tained allows us to draw some conclusions in Sec. VII.

Il. PARABOLIC SHAPE

Let us start by considering an analytically solvable case,
namely, an imaginary potential with quadratic dependence
on the radius,

Vir)=imo*?, Argw’= —a/2. (2.1)
This is a very simple example, the solutions of which are the
same as for the harmonic oscillator, with the only difference
being that the frequency w is now complex. The physically
acceptable solutions for the /~-wave radial function are writ-

ten, in terms of the dimensionless variable z = Pmw/4#, in
the form?

Ynalr) =272~ \F\( — il 4 32),
nl=0,1,,.., (2.2)
where ,F, denotes the confluent hypergeometric function.*
The corresponding values of the energy are given by
E,, =2n+ 1+ . 2.3)

The energy spectrum is, therefore, trivially related to the real
harmonic oscillator one: it can be obtained from this one by a
rotation of angle

ArgE,, = Argo = — /4

in the complex-energy plane.

The potential given by Eq. (2.1) produces, therefore, an
infinite number of quasibound states, of equally spaced ener-
gies, whose mean-lives are inversely proportional to their
energies.

(2.4)

Iti. LINEAR SHAPE

As a second example, let us consider an imaginary po-
tential of the form

(3.1)

Real potentials with a linear dependence on the radial vari-
able have been widely used to explain the quark-antiquark
bound states, mainly due to the fact that such a dependence
is supported by (nonrigorous) QCD calculations on a lattice.

Vih=ar, Arga= —7/2.
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The Schrédinger equation for such a radial dependence can
be solved® exactly for angular momentum / = 0 and approxi-
mately for / 0. The resulting eigenenergies E,, ; are propor-
tional to @*/3, with coefficients of proportionality depending
on the label # and on the angular momentum /. The treat-
ment made for real a can be immediately extended to com-
plex a. We can conclude in this way that

ArgE, , = — /3, {3.2)

which shows that the infinity of quasibound states originated
by the imaginary linear potential are even shorter lived than
those due to a parabolic one.

IV. STEP SHAPE
The potential to be considered now is of the form
Vin=0{r—»>b)V, ArgV= —a/2. (4.1)

The solutions of the resulting Schrodinger equation can be
expressed in terms of Bessel functions in both inner (r<b)
and outer (r > b ) regions. If we denote by k =(2mE )"/*/#iand
k' =[2m(E — V')]"/?/#, respectively, the wave numbers in
these two regions, then the radial wave function for angular
momentum / can be written as

Pir) <y (kr),

Yr)eh ik 'n),

The continuity at » = b of the reduced logarithmic derivative
of the wave function requires

r<b,
(4.2)
r>b.

ajile)/jila)=a'h{"a')/h M), (4.3)
with

a=kb, a' =k'b. (4.4)
An equivalent form of writing Eq. (4.3) is

aJ i)/, (a) = HY (@')/H ) a'), (4.5)
with

A=l+1 (4.6)

Obviously, the values of a satisfying Eq. (4.5) correspond to
the poles, in the complex wave number plane, of the $ matrix
for the potential given in Eq. (4.1). Plots of the reduced loga-
rithmic derivatives of the cylindrical Bessel and Hankel
functions®’ are of great help in obtaining approximate solu-
tions of Eq. (4.5). It can be seen that an infinity of complex
values of a, lying below the real axis, satisfy that equation.
We are interested only in solutions corresponding to decay-
ing states (Im E <0), that is, those with Re a > 0.
Approximate solutions of Eq. (4.5) can be obtained ana-
lytically in the limiting cases of extremely weak or very
strong potential. In the first case, | V | <#*/2mb ?, itis evident
that the values of a satisfying Eq. (4.5} must go to infinity as
V—0, in view of the Wronskian relation for the Bessel and
Hankel functions. Therefore, asymptotic expansions® for
these functions and their derivatives can be used to obtain

tan{a — (| + 1)7/2} =~ — i(1 — mVb*/#a?), (4.7)
from which it follows that

Re acnm + (I + 1)/2 — JArg(mVb */2#a?), (4.8a)
Im a~ilog|mVb */2#a?|. (4.8b)
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These equations show that, as ¥—0, the solutions go to infin-
ity in the lower half of the a plane along the asymptotes

Rea=({n+1/2+ . (4.9)

In the case of very strong potential, | V' |»#*/2mb ?, the right-
hand side of Eq. (4.5) can be expanded’ in the form

H(l)l a' ; 2_
o2i ( )=,-a,__1__L4'1.__1_)+0(a"2),
H{(a") 2 8a’ {4.10)

which clearly shows that it tends to infinity as |a'|—> .
Therefore, the solutions of Eq. (4.5) tend to that of

Jla)=0 (4.11)

as |V |- oo . That is, the imaginary potential acts in the limit
asarigid box. Let us denoteby a , thesolutions of Eq. (4.11).
It is not difficult to obtain, in the case of strong potential, an
approximate expression for the difference

b=a—a_ 4.12)

between a solution of Eq. (4.5) and its limit position
for| V' |— 0. The left-hand side of Eq. (4.5) can be written in
the form

al i@/ (@)~a(l —8/a )/6(1—6/2a,)  (4.13)

by introducing Taylor expansions for J; and J ; around the
point @, and making use of the Bessel differential equation
and of Eq. (4.11). If only lowest-order terms are retained in
the right-hand sides of Egs. (4.10) and (4.13), it turns out that

S~ —a_#/b2mV)". (4.14)

Of course, more accurate expressions of § can be obtained by
retaining higher-order terms.

We have solved Eq. (4.5) numerically for intermediate
values of the intensity of the potential. The results, for angu-
lar momenta 0 and 1, are shown in Figs. 1 and 2, respective-
ly. For the reduced logarithmic derivative of the Bessel func-
tion we have used its continued fraction expansion®

al @)/ ;@) =4 —aJ; ;. ()i e)

1? Re kb

Im kb AN

FIG. 1. Trajectories followed by the S-wave eigenvalues of the Schrodinger
equation for a pure imaginary step-shaped potential as the intensity of the
potential varies. Only the three lowest of an infinity of eigenvalues are
shown. The numbers beside the trajectories indicate the intensity of the po-
tential in units #*/2mb 2. Eigenvalues above the bisector (dashed straight
line) could be interpreted as resonances. The dashed hyperbola corresponds
to an intensity of the potential equal to 10. For this intensity only one eigen-
value lies above the hyperbola and corresponds, therefore, to a confined
quasistable state.
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IIO Re kb

Im kb

FIG. 2. Trajectories followed by the P-wave eigenvalues of the Schrédinger
equation for a pure imaginary step-shaped potential as the intensity of the
potential varies. All comments in caption for Fig. 1 apply also here.

% 2
=4+ K(—“—) (4.15)
n=1 2(/1 + n)
The reduced logarithmic derivative of the Hankel function,
in the case under consideration of physical values of the an-
gular momentum, can be expressed as a quotient of polyno-
mials
o'H (11-1- 172 (a')/H(Il)+ 12(a’)
Ly ZThl N ) 2y
2 3, _oll+41—p)—2ia')?
(4.16)

with the usual notation®
(I + L) =(I + n)l/ni( I — n).

Those solutions located below the bisector of the fourth
quadrant of the « plane do not admit a clear physical inter-
pretation, since the real part of the corresponding energy lies
below the threshold, Re E < 0. Solutions above that bisector
are commonly'® interpreted as resonances. Some of these
solutions, namely those above the hyperbola Re(kd)
XIm(kb) = — mb |V |/#*,doinfactcorrespondtoconfined
states. Actually, for these solutions it becomes Im &k ' > 0 and
the external wave function, 4 {"(k '7), decays exponentially
with r.

Let us now prove that only a finite number of solutions
can represent confined states. For large values of ||, the
approximate version, Eq. (4.7), of Eq. (4.5) is applicable. We
then immediately obtain

Re ac~nm + (I + 1)7/2 + } Arg2#a*/mVb*? — 1),
(4.17a)

Im a~ — } log|2#a*/mVb* — 1. (4.17b)

These relations show that for the intensity of the potential
being fixed, solutions corresponding to increasing values of
the integer n are successively more distant from the real axis
and, for n larger than a certain integer, they must lie below
the hyperbola corresponding to V. Obviously, increasing the
intensity of the potential makes the solutions approach the
real axis and the hyperbola move downwards, the two effects
contributing to increasing the number of confined states. But
this number remains, nevertheless, finite except in the limit
[V ]—c.
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V. PARABOLIC TAIL

Let us now consider a potential given by

Vi=0(r—bimo* (¥ —b?, Arge®= —1u/2,
(5.1)

that is, an imaginary potential quadratic in the distance and
effective only outside a spherical surface of radius b. The
radial wave function, for angular momentum / in the inner
region is given by

Wr) oy (kr), (5.2a)
k being the wave number k =(2mE )!/2/#, whereas in the

outer region it can be written in terms of the Whittaker func-
tion,*

r<bh,

Y <p™> W, . (p), r>b, (5.2b)
with the notation

p =rmaw/#, k =(k*fi/mo + b*mw/#%)/4, 53)

=+ 1)72. :

The continuity of the logarithmic derivative of the wave
function at r = b requires

Jivi2la) _ W;,p(z) _1, (5.4)
Jiv1n2la) W,.(2
with
a =kb, z=b’mw/h. (5.5)

Equation (5.4) has an infinity of solutions, some of which
have been obtained numerically, in the cases of angular mo-
mentum O and 1, and are shown in Figs. 3 and 4, respectively,
for varying intensity |w?| of the potential. The reduced loga-
rithmic derivative of the Bessel function has been evaluated
by means of Eq. (4.15). For the Whittaker function we have
used two different algorithms, according to the magnitude of
the variable z. The reduced logarithmic derivative, written as

el _z L Perrnld) (5.6)

Weulz) 2 Weul2)

can be expressed in terms of Kummer’s functions, whose
series expansions converge rapidly for small |z|. In the case
of large |z| we have preferred to use the asymptotic expan-

sion*!!

Wx,u(z) =™ ZFO('% +u _K’% — K K= 1/2),
(5.7)

s0 as to obtain

IP Re kb

Im kb

FIG. 3. S-wave eigenvalues of the Schrédinger equation for a pure imagi-
nary parabolic tail. The first three of the infinite set of trajectories followed
by the eigenvalues, as the intensity of the tail varies, are shown. All eigenval-
ues correspond to confined quasistable states.
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Im kb

FIG. 4. P-wave eigenvalues of the Schrodinger equation for a pure imagi-
nary parabolic tail. The comments in caption to Fig. 3 extend to this figure.

Wei,ul2)
W, .2
=zzFo(—£+#-K, —i—p—x;—1/2)
Kol —4+p—xi—p—x;—1/2)
Kol ~p—w, — 4 +p— x5~ 1/2)
Kol —p—rwy+p—x;;—1/2)

The quotients of confluent hypergeometric functions can
then be replaced by their continued fraction expansions'?

{5.8)

F4

Wer sl W)= =~ =1 == -
where € is defined by
k=n+tp+ite (5.15)

Equation (5.4) is fulfilled if € = O (|w|* * "), the eigenvalues
of the energy being then given by

E, ~(2n +1+ v — mo*b?/2, n=012,., (5.16)

which shows that the solutions tend to those of the parabolic
potential, discussed in Sec. II, as || — 0.

All solutions of Eq. (5.4) correspond to confined states.
This is evident from Eq. (5.2b) and the asymptotic expansion
Eq. (5.7). At large distances the radial wave function turns
out to be

W) ~ e~ 41+ 0(p™Y)

and, as far as Re w >0, it decreases exponentially as 7 in-
creases. As shown in Eq. (5.16), those confined states are
very “broad” for small |w|, since Arg ExxArgw = — /4.
It can be seen in Figs. 3 and 4 that the real part of the energy
of the confined states increases, for increasing |w|, whereas
the relative width Im E /Re E decreases, going to zero as
|@| — oo. In the limit || — o, the confined states have the
(real) energies corresponding to a rigid box of radius b.

We have shown in Figs. 5 and 6 the radial wave func-
tions of the three lowest confined states with angular mo-
mentum / = 0 and / = 1, respectively, for an intensity of the
potential w* = 2/in units ##m ~2b ~*. The approximate ener-
gies of these states are, for / =0,

Eyo = 1.2998 — 0.7261 4,

E,o = 3.4082 — 2.7357 i,

(5.17)
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2F0(ayb;; — 1/2) (an /Z)
=1+ K ) 5.9
oKola,d + 1;; — 1/2) n=1\ 1 (59)
with
@,y =a+m—1, a,, =b+m, m an integer.

(5.10)

Analytic approximate solutions of Eq. {5.4) can be ob-
tained in the limit of weak potential, |w| — 0. It can be
checked that Eq. (5.4) is satisfied, for || — 0, if @ — 0 in
such a way that x — n + u + 1, n being a non-negative in-
teger. In that case,

li_‘g aJ i ipl@ipla)=1+14 {5.11)
’I%mo Weiru@/W, @)= —p—x—1. (5.12)
Going to the next order of approximation we obtain
aJi ip @l nla) =1+ —a?/2(1+3), {5.13)
oy T(2) ( 1 ) € )
ynl —+—"T| —p—k~—}—}, 5.14
) = 24) B e (5.14)

E,, = 5.4904 — 4.6606 i,
and, for/ =1,

— b¥2ReV(r)
= b¥2mYIr)

-1

2 3

A}

b

FIG. 5. Radial wave functions of the three lowest states of angular momen-
tum / = 0 confined by an imaginary parabolic tail. Each wave function has
been properly normalized and its phase arbitrarily chosen so as to make the
wave function real at the origin.
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S L 41

0 1 2 3 g

FIG. 6. Normalized radial wave functions of the three lowest states of angu-
lar momentum / = 1 confined by an imaginary parabolic tail. The arbitrary
phase has been chosen to be that of j,(kr) for r < b.

E,, =2.3897 — 15238,
E,, = 4.3604 — 3.5976 /,
E,, = 6.3985 — 5.6499 /,

in units #’m ~'b ~2. The radial density of probability for the
same states is shown in Figs. 7 and 8.

VI. LINEAR TAIL
As alast example, let us consider an imaginary potential

14 =0
r2ip(r) b
O.
}.
[o8
1-
0-/—_/\
L ; - .
0 1 2 3 rb“

FIG. 7. Radial density of probability for the three lowest S-wave confined
states in a parabolic tail.
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r2i¥ir)i2b

i) H 2 3 R
: o p

FIG. 8. Radial density of probability for the three lowest P-wave confined
states in a parabolic tail,

Vir)=0(r—b)#*/2m)ab ~r—b), Arga= —7/2,

(6.1)
the intensity of which increases linearly with the distance,
starting from a given radius b. Once again, the inner radial
wave function for angular momentum / is given by

Ylr) o< jylkr), (6.2)
with k =(2mE)"/?/#. In the outer region the radial wave
equation
d*y(r) " 2 ayn)

dr r dr

(e =20 s =0, (63

when written in terms of the dimensionless variable x=r/b,
becomes
dgx) | 2 ddx)
dx? x dx
+ (kzbz —L(L-—tﬂ—-ax + a)«;s(x] =0,
x

with @{x) = ¢(r).

In the case of zero angular momentum, the solution of
Eq. (6.4) behaving regularly at infinity can be expressed in
terms of the Airy function.’ In fact,

dlx) =x"" Aifa"?x — 1 — k?b?/a)}, (6.5)
as has already been reported by several authors.>!* The con-
tinuity of the reduced logarithmic derivative of the wave
function at r = b would then require the fulfiliment of the
equation

bfé(kb ) =g/ Ai'(— k2%b%/a*?)
Jolkb) Ai( — k2b3%/a*?)
where the primes indicate derivatives with respect to the cor-

responding variable.
In the case of [ 0 the solutions of Eq. {6.4) have to be

r<b,

(6.4)

-1, (6.6)
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obtained numerically. Of course, the solution regular at in-
finity is to be selected. Approximate expressions of such a
solution, valid in the vicinity of the irregular singular point
at infinity, can be obtained by standard methods."* A useful
asymptotic expansion turns out to be

Blx)~x~%% exp{B,x*'? + Bpx'/? + Byx '

+Bx™ +Bx [T+ O], (6.7)
with
B, = —2a"%/3, (6.8a)
B, = (kb2 +a)/a'?, (6.8b)
ﬁ3 _ (kzb 2 + a)2/4aB/2, (6.80)
B. = (k?b?% + a)/4a, (6.8d)

Bs=[IU+1)—4— (k> + a)*/8a%]/3a'?, (6.8¢)

which can be checked by substitution in Eq. (6.4). Alternati-
vely, we can try to relate the solutions of this equation to
those of the Bessel differential equation in the region of large
values of x. Changes of both variable and function,

p=alx—1—k?/a), &(p)=xdlx),
in Eq. (6.4) allow us to obtain

£ (o I i

(6.9)

(6.10)

2
New changes of variable and function,
t= ei1r/2%p3/2’ W(t) =p—1/2§(p)’
give finally
dw(t) | dwit)
t +t
dt? dt

Ao i) oo

(6.11)

(6.12)
which can be written in the form
dw(t) , , dw(t) ( ) (21+1)2
t t PRI i
dt? + dt + . 3
a(l+1) 1+k%?%a
+ .
9 X

% (2 _ W))w(t) —0.

Asymptotically, in the region where the term |(1 + & 26 */a)/
x| is much smaller than 1, this equation tends to the Bessel
one.® Obviously, the solution we are looking for tends as-
ymptotically to the Hankel function

(6.13)

w(t)~H ), 3(t), (6.14)
provided the ambiguity in the definition of ¢, as given by Eq.
(6.11), has been removed by selecting the value for which
Im ¢ > 0. For / = 0 there is no need to neglect terms in Eq.
(6.13) and the relation Eq. (6.14) is exact: we reencounter
in this way the solution given by Eq. (6.5).

By imposing continuity at » = b of the logarithmic deri-
vative of the wave function, we obtain the equation

kbji(kb)/j,(kb) = ¢'(1)/4(1), (6.15)
which determines the energies of the confined states. As ex-

557 J. Math. Phys., Vol. 27, No. 2, February 1986

Re kb
L

-24

Im kb

FIG. 9. Quasistable states of angular momentum / = 0 confined by a pure
imaginary linear tail. The first two trajectories of the eigenvalues of the
Schrédinger equation, for varying intensity of the tail, are shown.

pected, an infinity of such states results for each angular
momentum. In Figs. 9 and 10 we have represented the first
values of kb satisfying Eq. (6.15) for / = 0 and / = 1, respec-
tively. In the case of / = 0, the right-hand side of Eq. (6.15)
becomes that of Eq. (6.6) and can be easily calculated by
using ascending series or asymptotic expansions for the Airy
functions.® For/ = 1 we have evaluated the logarithmic deri-
vative of ¢(x) at x = 1 by means of numerical integration of
Eq. (6.4) starting at large values of x, for which the expansion
Eq. (6.7) is applicable.

Approximate solutions of Eq. (6.6), corresponding to
I =0, can be obtained in the cases of weak (|a| — 0) or very
strong (|a| — o) potentials. In the first case we may assume
that, as suggested by the numerical treatment, the quotient
k2b2/a*'* tends to a constant as |a| — 0. This implies that
kb — 0 and, therefore, the left-hand side of Eq. (6.6) can be
approximated by — k 26 2/3. Itis now clear that the assump-
tion of k 2b 2/a*’> tending to a constant is correct if the right-
hand side of Eq. (6.6) vanishes for such constant value. Obvi-
ously, there are an infinite number of solutions
corresponding to

k*%a** > —a,, as |a|—0, (6.16)

where we have denoted by a,, the zeros of the Airy function.’
By retaining the dominant terms in the two sides of Eq. (6.6),
we obtain immediately

k%~ —a,d**—a, |a|<l, (6.17)
for the energies, in units #/2mb %, of the S-wave confined
states. In the case of very strong potentials, it is easy to check
that the solutions kb of Eq. (6.6) tend to the zeros of j,(kb }, as

la] — «. Following a procedure similar to that used in Sec.
V, we obtain

kb~k b [1+ a~'? Ai(0)/Ai'(0)],
where k_ b takes values such that j;(k_b) =0, i.e.,

(6.18)

Imkb

lRekb

FIG. 10. Quasistable states of angular momentum / = 1 confined by a pure
imaginary linear tail. The first two trajectories of the eigenvalues of the
Schrodinger equation, for varying intensity of the tail, are shown. The
dashed portions of the trajectories are conjectured, as the numerical proce-
dure for obtaining the eigenvalues gets us into trouble for extremely large or
very small values of the intensity parameter.
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n=123,... (6.19)

Numerical analysis suggests that for / #0, similar to
what happens for / = 0, the solutions kb of Eq. (6.15) tend to
the origin along the line Arg kb = — 7/6 as |[a| — 0 and to
the zeros of j,(kb ) as |a| — oo . However, in the absence of an
analytical expression for the wave function #(x) when / #0,
we have not found explicit expressions giving the behavior of
the solutions kb in the two limits.

k b=nm,

VIl. CONCLUSIONS

It is clear from the preceding examples that purely
imaginary potentials are able to produce confined states. The
number of these is infinite when the imaginary part of the
potential goes to infinity, and finite when it tends to a con-
stant as the distance increases. The resulting confined states
are quasistable and, as it was to be expected, they turn out
longer lived when the potential presents a real core besides
the imaginary tail.

In what concerns the radial dependence of the potential,
the results obtained in the different examples suggest that a
steeper increase of the tail with the distance implies more
stable confined states. As a general feature, a rapidly increas-
ing imaginary tail has an effect similar to that of an impen-
etrable wall.

The purely imaginary potentials considered in this pa-
per are, obviously, unrealistic since any potential aiming to
represent the quark—antiquark interaction should contain a
nonvanishing real part. The addition of an attractive real
term to the potentials considered above would lead to more
observable confined states, as their reduced width would be-
come smaller. But, importantly enough, the real part of the
potential does not need to be of long range, in order to pro-
duce confinement, provided an imaginary tail is present.

As a by-product of our study, we have obtained, in Sec.
VI, asymptotic expansions for the wave function in a linear
potential. Although in our discussion the intensity param-
eter g was assumed to be pure imaginary, the quoted expres-
sions are equally valid for complex a and, in particular, for
real a.
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Penrose diagrams for the Einstein, Eddington-Lemaitre, Eddington-
Lemaitre-Bondi, and anti-de Sitter universes
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Penrose diagrams including the ¢ boundary at infinity and the singularities for the Einstein,
Eddington-Lemaitre, Eddington—Lemaitre-Bondi, and anti-de Sitter universes are constructed.
Penrose diagrams for the Einstein, Eddington-Lemaitre, and anti-de Sitter universes have been
published before, but these diagrams are incomplete in that the published diagrams do not contain
the c-boundary points of the universes they are supposed to represent.

I. INTRODUCTION

The most widely used method of representing the global
structure of a space-time is the Penrose diagram. Although
the technique for constructing such diagrams was intro-
duced by Penrose over twenty years ago,’ no new diagrams
of standard cosmologies have been given since Penrose’s
original paper,’ as can be seen by comparing the examples in
his original paper with the list he gave in his most recent
paper, which discusses the global structure of exact solu-
tions.? In this most recent list are found 11 diagrams, and of
the nine figures representing cosmological solutions, three
are incomplete. The Penrose diagrams for the Einstein static
universe, the Eddington-Lemaitre universe, and the anti-de
Sitter universe are incomplete, since single c-boundary
points are not brought into a finite distance by a conformal
transformation and included in the diagrams as boundary
points of the conformal space-time, but rather are left dan-
gling as disjoint points “at infinity.” (This is also the repre-
sentation of the global structure of these space-times in Pen-
rose’s Adams Prize essay,> and in Hawking and Ellis.*)
Penrose actually included the single ideal points of the Ein-
stein universe in a rough diagram in his first paper on the
conformal structure of infinity, but this rough diagram (Fig.
9 of Ref. 1) incorrectly represents the true conformal struc-
ture of the Einstein universe, as I shall show below.

I shall show how to include the isolated ideal points in
the Penrose diagrams for the Einstein, Eddington-Lemaitre,
and anti-de Sitter space times. I shall also construct the Pen-
rose diagram for a spatially homogeneous and isotropic cos-
mology which I term the “Eddington-Lemaitre-Bondi uni-
verse”: it is a k = + 1 Friedmann universe with positive
cosmological constant that starts at a singularity and asymp-
totically approaches the Einstein static universe (see Bondi,’
p- 84 for a discussion of this cosmology). This cosmological
model is interesting because its causal structure is identical
to a closed universe that begins in a Friedmann singularity,
but ends in a Mixmaster singularity, in which the horizons
disappear.5® If the actual universe is closed, it is more likely
to be represented by a model with a chaotic final singularity,
rather than the extremely regular Friedmann final singular-
ity, as Penrose has pointed out.>° It is possible that such a
singularity has no horizons, though this point is not estab-
lished (see Ref. 11 for a discussion). If such is indeed the
actual universe’s global causal structure, it would be useful
to have a simple Penrose diagram which would illustrate it.
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1l. CALCULATING THE DIAGRAMS

In standard coordinates, the Einstein static universe can
be written as

ds? = —dt" + R.[dy? + sin® y(d8? + sin” 8 d¢?)],

(1)
where R, is a constant, — 0 <1’ < + o, 0<y<7, 0<O<,
0<¢< 2. We can most simply bring temporal infinityintoa
finite distance via the transformation ¢’ = (Ry/a)tan ¢, where
ais aconstant to be determined later. In the new time coordi-
nate ¢, (1) is

ds?* = Rla~%sectds?,
where
ds’ = —dt? + a* cos* t [dy? + sin® y(d6? + sin? 6 d¢?)],

(2)
with — 7/2 <t < + 7/2. Metric (2), which is conformal to
the Einstein metric (1), is the metric we will use to form the
Penrose diagram. It is the metric of a closed Friedmann uni-
verse with spatial topology S > and with initial and final sin-
gularities at t = — 7/2 and ¢ = 7/2, respectively.

As is usual in the construction of Penrose diagrams,* I
shall use the manifest spherical symmetry of (2) to restrict
attention to the #, y coordinates only; each point in my pro-
posed Penrose diagram will represent a two-sphere if y#0
or yF#m. If y =0 or y =, the point in the diagram will
represent a point at the origin of coordinates or the antipode
of the three-sphere ¢ = const, respectively.

The conventions for the representations of timelike,
spacelike, and null lines in Penrose diagrams are the same as
those in Minkowski diagrams: the vertical direction is time-
like, the horizontal direction is spacelike, and most impor-
tant, null lines are those at 45°, so that any line with an angle
of less than 45° from the vertical is timelike, and any line
with an angle of greater than 45° is spacelike. In the construc-
tion of the Penrose diagrams for the standard universes,'™
this convention is obtained by conformally mapping the uni-
verses into a proper subset of the Einstein universe (1) with
R, = 1. For this particular Einstein universe, the metric in
the (¢’, y) “plane” isds’ = — dt'? + dy?, which manifestly
has null lines at 45°, and indeed the coordinates (¢, y) mea-
sure proper time and distance, respectively.

We can retain the Minkowski diagram conventions in a
two-dimensional pictorial representation of (2) only by using
proper time and distance in this case also. The coordinate ¢
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already measures proper time in (2); infinitesimal proper dis-
tance 7 in the y direction is dr = a cos® t dy. Integrating in
the y direction gives

r=ay cos’t+f(t), (3)
where 0<y <. The function f (¢ ) must vanish if 7 is to mea-
sure proper distance. [Alternatively, we can obtain f(t) =0
by imposing the usual Friedmann universe requirement that
the ratio of the proper distances between two fundamental
observers (those that have a constant coordinate distance) at
two different times be a function of proper time ¢ alone. See
Ref. 7 for a discussion of this requirement.]

A restriction on the constant g is obtained by requiring
that the paths of all the fundamental observers y = const be
manifestly timelike in the (¢, r) coordinates. This require-
ment means that we must have |dr/dt | < 1 for all fundamen-
tal observers. For fundamental observers, |dr/
dt| = alsin 2t |y, so this inequality will be satisfied for all
fundamental observers for all time if a<1/7, since Oy <7
and — 7/2<t<7/2.

As suggested by Penrose,’ the diagram will look more
symmetric if the fundamental observer, which is stationary
in the diagram, is chosen to be the maximum area two-
sphere in a ¢ = const hypersurface. Thus the paths of the
fundamental observers in the (¢, 7) “plane” will be given by

r=acos 2t(y — 7/2), (4)
with a <2/7.

The Penrose diagram for the Einstein static universe is
given in Fig. 1: the curved dashed lines are the fundamental

/(\ i" (s t=m/2)
\ time (1)
oI
/ =\
/ A
/ SERY space (r}
/ \
/ . N\
light ray /T \\
fm}ec?oryj\:r world line of 2-sphere
/ \ {x=n/269)
L \
/i \
I \
] |
\ |___light ray trajectory
\ T
\ A
\\ // world line of antipodal
\ / point {x=1)
\
\
N /
world line of v /
origin of '
coordinates \" /
xX=0) \ i

{(t'=—w,t=-1/2)

FIG. 1. The Einstein static universe.
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observers at the origin y =0 and at the antipodal point
Y=

The dotted line inclined at 45° is a light ray passing back
and forth between these two points in space. The magnitude
of the velocity dr/dt of the origin of coordinates and the
antipodal point reaches a maximum at ¢ = + 7/4, and de-
creasestozeroat? = + #/2. Thedecrease to zero allows the
universe (2) to slide into the singularity, so that light rays can
pass back and forth between the points y =0 and y = 7 an
infinite number of times. The rough diagram of the Einstein
universe given by Penrose (Ref. 1, Fig. 9) did not have this
sliding property; the velocity of the fundamental observers
increased into the singularity, thus making it impossible for a
light ray to pass between fundamental observers an infinite
number of times. This rough diagram therefore does not rep-
resent correctly the causal structure of the Einstein universe.

The singularities at t = 4 /2 are the ideal points i,
i~. Although these points are attached to the space-time at a
finite distance, they are not attached smoothly. This is un-
avoidable, for the ¢ boundary consists of two points rather
than two three-spheres as in the dust Friedmann universe.

The metric (2) regarded as a Friedmann universe is in-
teresting in its own right, for it is a nonstatic, k = + 1 Fried-
mann universe that is a simple example of what Budic and
Sachs® termed a deterministic space-time: a space-time
whose future and past are completely determined by data
given on the past light cone of any point. The only examples
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FIG. 2. The Eddington—Lemaitre universe.
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FIG. 3. The Eddington—-Lemaitre-Bondi universe.

of deterministic space-times given by Budic and Sachs'?
were obtained by topological identifications. The determin-
istic nature of (2) comes from the metric.

The Eddington-Lemaitre universe® isa k = + 1 Fried-
mann universe that asymptotically approaches the Einstein
static universe as ' — — o0, and the de Sitter universe as
t' — 4 oo.It thus has a conformal structure of the Einstein
universe in the past, and the conformal structure of de Sitter
space in the future. The conformal structure of de Sitter
space is well-known (e.g., Ref. 4), so the Penrose diagram for
the Eddington—Lemaitre universe is as pictured in Fig. 2.

The Eddington-Lemaitre-Bondi universeisak = + 1
Friedmann universe that begins in an initial singularity (with
c-boundary topology S *) and asymptotically approaches the
Einstein universe. The Penrose diagram for such a space-
time is given in Fig. 3. I use the conventions of Hawking and
Ellis*: double lines in the Penrose diagram represent singu-
larities.

Anti-de Sitter space is conformal to the part of the Ein-
steinuniversewith — oo <¢'< + oo, but withOy <7/2.1f
we follow the conventions used above for the Einstein uni-
verse (the two-sphere labeled by y = #/2 is kept fixed), then
the Penrose diagram for anti-de Sitter space including the
ideal pointsi—, i* is correctly given in Fig. 4. The ¢ boundary
consists of these points i *, i~ together with a timelike hyper-
surface # which has topology S 2X R ! and which begins at
the point i~ and ends at the point i*.
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The most general magnetized Kerr-Newman metric
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The complete magnetic generalization of the Kerr-Newman (KN) metric obtainable by applying
a Harrison transformation to the Ernst potentials determined for an arbitrary linear combination
of the two Killing vectors of the seed KN metric is derived.

I. INTRODUCTION

The main purpose of this work is to establish the most
general magnetized Kerr-Newman solution, MKN for
short, that can be derived by applying the Harrison generat-
ing solution technique' to the seed Kerr-Newman solution’
(KN).

Let the KN metric be given as

g=A(dr/R +d6?) + (A /A) sin® 6 d¢?
—4a [(mr—v)/A] sin’6dé dT
— [(R —a?sin? 8)/A] dT?, (1.1)

accompanied by the electromagnetic two-form

© =3 (fon +fioddx* Ndx®

d[ _letig) dT—(a—ircosa)d¢)]], (1.2)
r+iacosf
where
A =71 +a*cos? 8,
R=P4+ad*—2mr+2, 2vi=e>+ g% (1.3)
=(r* + a*? — Ra’sin* @

(m represents the mass, a stands for the rotation parameter,
and e and g are the electric and magnetic charges, respec-
tively). The coordinates {7T,7,0,¢} run the values
— w0 <T< w,0<r< w, 0<O<T, 0<h< 27, respectively.

Choosing a Killing vector as a linear combination of the
two Killing directions d, and d; according to

K* = abt + B5,, (1.4)
one defines a function fas

~f=K"K, =(1/A){[aa — B (7 + &’))* sin® 6
— [a@ —Basin? 8 1°R} =:D /A, (1.5)
and the Killing one-form as
_ _ | _ ledT +Bdg)
_KM dx* _f[ (a2 +02B2)
+ Wiads —BdT)], (1.6)

where the function W is
W= _ [D(az +a232)]—l
X {aBla*(1 —sin* @) R + 7 sin? 8 (P + 24%)]

+ala® —a*BYHR — P —a¥)sin’ 6. (L.7)
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Notice that the representation of X is not unique. For in-
stance, adding and subtracting in W the term (a/f)
X (a@® + a* 8%~ one arrives at K of the form

K=f[—d¢/B+ W(adp—pBdT)],
where now W is given by
W= —(1/8D)[a(R — a*sin* )
+ Ba(r* + a*> — R)sin? 4]

In terms of the quantities defined above, the metric (1.1)
can be written as

g=/f""{fAldP/R + d8?]
+Rsin’6(adp -BdT —KeK}. (1.8)
The complex Ernst potentials @ and & associated to the

KN metric and its representation {1.8) can be evaluated from
the equations

db= —iKlo,
d% =iK 1 (dK + *dK) — 2® d®, (1.9)

where 1 denotes the step product and * stands for Hodge’s
star operation.>
The ® potential amounts to

b=[le+ig)ir+iacosf)[a—LBla—ircosb)], (1.10)
while the & potential is
& =f— (2v/A)lla — Ba)* + B cos® 0]
+ 2(i/A) cos 8 {mlala — Pa sin*> ) — BA(3(a — fa)
+ Ba cos? 8)] + BriaA + 2via — Ba sin® 6)]}.

(1.11)

For the sake of simplicity we have omitted the additive
constants P, and & .

Il. MAGNETIZED KERR-NEWMAN CLASS OF
SOLUTIONS

According to the magnetizing process (Harrison trans-
formations), the new generated metric assumes the form

g=s"""{fA[dr*/R + d6?]

+Rsin?0(adp —BdT)? —K' @K'}, (2.1)
where
fr=1¥7%f
K'=f'[— (adT+Bds)/(a*+a*B?)
+ W' (adp —BdT)]. (2.2)
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The complex function W is determined as a function of the
“seed” Ernst potentials according to

Y=1—2E—iB)d—5%, 5:=E>+B? (2.3)

where E and B are real constants representing the electric
and magnetic field parameters. This function is crucial in the
determination of the new Ernst potentials, which are given
by

I}

Y =V YD+ (E +iB)¥), &' =8V~ (2.4)
The function W’ ought to fulfill the equation
dW' =WV dW +if 'asin@

X {(\pﬁ,o - “Il;‘p,o)dr - (Ww,r - W‘I’,r)de }1
(2.5)

which has a general solution

DW' =D(W + W,) — 4(Ee + Bg)[aa — B(a* + r*)rsin® § — 4(Eg — Be) (a — Pa sin® G)R cos

+ 6(8/a) vi(aa — B(a® + r*))aa — B(a* — P*)) sin® O + (a — Ba sin® 6)(a — Ba(1 + cos® 6))R]
~4(8/a)(Ee + B g){m(a — Ba) (a — Ba sin* ) (a — fa — 3Pa cos® 6)R

+ m(a — Ba)(aa — B(a* + r*)][aa — B(a® — )] sin* 6

—ar[aa — B(a®* + )1 [B* + (a — Ba)?] sin? 8

— BarR sin® 0[2(a — fa) (a — Ba sin® 8) + B(aa — B(a* + *)) cos? 0]

X 45(E g — Be)R cos 8{ (a — Ba sin? 8) [B(a® + 2v) cos? 8 — (a — Ba)?]

+ Bsin® 8[Br’ (a — Ba sin® 8) — 2(a — Pa)aa — B(P* + a*))1}

+ 8 (a — Ba)*a ' [R(2m? + a* cos® 8) + a®sin? O(2m? — 4mr + )]

— (a — Ba)’BIR(8m* — 4a® — 4v + a* cos® 8) cos® @ + 2mrR sin? 8 — P (7 + 4a* + 4v) sin® 6]
"+ (a — Pa)’B*[2aR cos® 6 ((a* + 2v) (2 — cos? §) — 3Im? cos? )

+ 277 sin® 8 (a(r* — 6mr — 2a* — 4v) — rPa~'m?) — 12mraR sin® 6 cos® 6]

— (@ —Ba)B>[R cos* 6 ((a* + 2v) (2v + a* cos® 8) — 4m?a® cos® @) + (2v — 6mr + r*)r' sin® @
+ 3arR sin? @ cos® 8 (P + ra* cos® 0 + dvr — 2m (2P + a® cos? 8))] — B*a[R(a* + 2v)? cos® 6 + r® sin? @

+ R sin” @ cos? 9 (377 + (3a® + 6v — 2mr) cos® 6)]},

where Wis given by Eq. (1.7)and W, is an arbitrary constant.

The electromagnetic field coupled to the metric line ele-
ment (2.1) is described by the two-form

F'o' =K'Add' + *[K'AdD'}, 2.7)
where K’ and ¢’ are given, correspondingly, by (2.2) and
(2.4).

We shall denote this magnetic Kerr—-Newman metric
structure by MKN(a, B).

It contains as particular branch the MKNJ(0,1) solu-
tion*’; by setting in the solution presented above a =0,
B = 1,and g = 0, accompanied by a redefinition of the coor-
dinate ¢, ¢ — a’4, one arrives at the solution Ref. 5 in
spherical coordinates. [In the expression of fof Ref. 5, for-
mula (2}, the factor a® in front of fwas omitted; the correct
definition of fisa®’f= — A~'4 P.]

In the limit o tending to zero, by choosing the constant
W, as

563 J. Math. Phys., Vol. 27, No. 2, February 1686

(2.6)

Wy = —28a~'[3v — 2mal(Ee + B g) + m*a?6),

one obtains from the MKN{a, ) metric the corresponding
magnetic Reissner—-Nordstrom solution.
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The one- and two-soliton solutions obtained by using the Belinsky—Zakharov inverse scattering
method in the particular case where the seed solution is taken as the one due to van Stockum are
studied. For the above-mentioned particular case the inverse scattering problem is solved in terms

of a single quadrature.

I. INTRODUCTION

Recently we studied solutions to the vacuum Einstein
field equations obtained by using the Belinsky—Zakharov'*
inverse scattering method (ISM) with a diagonal seed solu-
tion.>® We found that in this case the inverse scattering
problem reduces to the computation of a single quadra-
ture.>* This fact was used to study some known solutions as
well as to generate some new ones.> The ISM and other simi-
lar solution-generating techniques'®'" seldom have been ap-
plied to nondiagonal seed solutions. An example of solutions
obtained from a nondiagonal seed is the Belinsky—Franca-
viglia'? solution that uses a Bianchi II vacuum cosmological
model as a seed solution.

The aim of this paper is to study the application of the
ISM to the van Stockum' solution, which is a nondiagonal
solution depending on a single arbitrary function. We find
that in this case the inverse scattering problem can also be
solved in an explicit way, similar to the diagonal seed solu-
tion case. We have two main reasons to study the inverse
scattering problem associated with the above-mentioned so-
lution. First, to obtain new nontrivial exact solutions to the
vacuum Einstein equations, and second, to better under-
stand the mechanism of the ISM, since one of the shortcom-
ings of most of the new-solution-generating algorithms like
the ISM, Bicklund transformations, etc.,'®! is that they do
not give significant information about the physical or geo-
metric meaning of the generated solutions. Among the solu-
tions generated using the ISM with a very simple diagonal
seed solution,® we were able to identify some already known
solutions. But, even in these simple cases the meaning of the
parameters introduced by the ISM was not easy to under-
stand.

Even though the van Stockum solution has highly un-
physical properties, it is known to be related to important
solutions like the Kerr solution.'* Also, recently it has been
used to generate an interesting family of new solutions to the
vacuum Einstein equations.'’

In Sec. IT we study the Einstein equations, together with
the ISM, for a metric with a general signature and two com-
muting Killing vectors, i.e., we present a unified treatment of
the Riemannian case, the axially symmetric case, the cylin-
drically symmetric case, and the zero signature case. In Sec.
III we solve the inverse scattering problem for the van
Stockum solution. Finally, in Sec. IV we study the one- and
two-soliton solutions associated with the previously men-
tioned particular solution.
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Il. THE EINSTEIN EQUATIONS AND THE ISM
The metric that we shall consider in this paper is
ds* = e“o 5 dx* dx® + v,, dx° dx®, 2.1)

where (x4, x%) = (u, v, X, y), the indices 4, B, etc., run from 1
to 2, and the indices a, b, etc., run from 3 to 4. The functions
o and y,, depend only on x*; (0',5) and (v, ) are symmetric
2 X 2 matrices characterized by

- )

dety = na? a*>0, (2.3)

where € and 7 are two sign functions. Depending on the
value of these functions, the line element (2.1) can be used to
represent the following spaces: (a) cylindrically symmetric

space-time (€ = — 1; 7 = 1), (b) axially symmetric space-
time (e = 1; 7 = — 1), (c) Riemannian space with axial sym-
metry (e = 1; 7 = 1), and (d) zero signature space (e = — 1;
7= —1).

The vacuum Einstein equations for the metric (2.1) re-
duce to the following system of equations:

o B(aVab,AVbc),B =0, (2.4)

(na),0, +(lna),w, =2(na),, — Wabr szzb’ (2.5a)
(lna),w, +(na),w, =(na),, —¢ln a),,
+ Yar 1 VT + (€/8) Vo, 2 V5,
(2.5b)

where ( ) ,, etc., indicate partial derivation with respect to
the coordinate x*. Note that in Eqgs. (2.4) and (2.5) the
indicator 7 does not appear explicitly. It can be easily
shown'® that there is no loss of generality if we choose a = u.
In this particular “gauge,” Eqgs. (2.4) and (2.5) can be writ-
ten in the more appealing form'’

o (uy v~ 5 =0, (2.6)

o, = —(Vu)—tuTry, 7' — ey, ') (2.7a)

w, = —4uTry,v: "), (2.7v)
wherey ;! = (y') ,. Equation (2.6) is the integrability con-
dition for the system of equations (2.7).

The ISM used to solve (2.6) is based on the fact that (2.6)

is the integrability condition for the overdetermined system
of equations

D, = [(uU + AV)/(u® + €A ?)]¢, (2.8a)
D,y = [(uV — eAU/u? + €A 3], (2.8b)
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D, =4, + [2Au/(u* + €A })]39,, (2.9a)

D, =4, — [2eA /(> + €A %)]4,, (2.9b)
where ¥ is a two by two matrix function of u, v, and the
spectral parameter 4, U= uy, 7', and ¥V = uy, ¥~ ". The
inverse scattering problem associated with »# simple poles of
the scattering matrix can be explicitly solved yielding the n-
soliton solution~

(L) NEN

Vnlas = Volop — Y ——— (2.10)
k1 Ly fog
T = mi VoMb /(e 1 + €0°), (2.11a)
NE = m Yolpa, mE) =mIM ), (2.11b)
ME = g5 . (2.11c)
A=y,

Bi =2up,/(u? + € pi),

(2.12)

Hi2 = —2epi /(0 + € i),
where the m{) are arbitrary constants; ¥, and ¥, refer to a
known solution to (2.6) and its associated “wave function”
solution to (2.8). The known solution ¥, is called the *“seed”
or background solution.

The poles’ trajectories can be computed using Egs.
(2.12); we find

B =, — v+ &|[(a — v+ eu?]'?, (2.13)

where €, = + 1. Also, the determinant associated with
(2.10) can be explicitly computed:

i
dety, = n(— €+ [T mi > (2.14)
k=1

The expression (2.10) is a solution of (2.6) but does not satisfy
(2.3) (with a@ = u). To remedy this problem we can define the
physical quantity’?
Y™ =uy/(|det y|)''?
that satisfies both Eq. (2.3) with @ = u and (2.6).
The metric coefficient @ can also be explicitly comput-
ed, yielding

n n+1
o, =coo+ln[u—"2’2(l'[ ,uk)

(2.15)

k=1

x II (,uk—y,)_zdetl“], (2.16)
k I=1
k>1
where w, is the function w associated with the seed solution
Yo, and the factor

kﬁl (1 —pi)~2

k>1{
should be set equal to 1 forn = 1.

To close this section we want to point out that the ISM
solution to (2.6) does not depend on the value of 7. A unified
treatement of the elliptic case € = 1 and the hyperbolic case
€ = — 1 can be also found in Ref. 18. Note that in Ref. 18 it
is assumed that € = — 7. Thus the present results are slight-
ly more general since we assume that € and 7 are not related.
Riemannian metrics can be used to generate axially symmet-
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ric odd-number-soliton space-times.® They also can be used
to generate even-number-soliton solutions associated with
Euclidean SU(2) gauge fields.'*

lli. THE SEED SOLUTION AND THE FUNCTION 1,

The seed solution that we shall study in this section is
the solution of Egs. (2.6) and (2.7) given by

0 1
= , 1
Y “(1 ¢) (3.1)
wo = In(Cp/u'’?), (3.2)
where C,, is an integration constant and ¢ satisfies
$n+é./utedy, =0 (3.3)

In this case, 7 = — 1. The van Stockum solution is obtained
by putting € = 1 in (3.3). Note that there does not exist a
hyperbolic version of this metric with signature + 2.

A convenient change of function to solve (2.8) is

A = (u? — 2eAv — €A )2y, (3.4)

From (3.4), (2.8), and (2.9) we get the equivalent system of
equations to (2.8):

DA ={[tU—TI)+AV]1/(u* + €AY} A, (3.5a)
DA = {[uV — eA(U—1)1/(* + eA?)}A. (3.5b)
By putting A = 0 in (3.5) we get the “initial condition”'-?

Ao =¥/u (3.6)
Equations (3.5) for the seed solution (3.1) reduce to
D A= [P, + Aud,)/(u* + €A )] EA, (3.7a)
DA = [, — eAud,)/(* + €A %) A, (3.7b)
where
0 0
& = ( ) 0) . (3.8)
It is a matter of simple verification to show that
0 1
A= (1 F) 3.9)
satisfies (3.6) and (3.7) as long as
D,F=(?¢, + Aug,)/(u* + €1 ?), (3.10a)
D,F=(u*¢, —€Ad,)/ (> + €A ?), (3.10b)
Flioo=2¢. (3.10c)

Solutions to (3.10) for different functions ¢ are studied in
Refs. 3-9. Since in the solution {2.10)-2.16) ¢, only enters
evaluated along the poles’ trajectories, to compute the soli-
ton solutions we only need

Fo=F|,_,. (3.11)

From (2.12) we find that (3.10a) and (3.10b) along the poles’
trajectories reduce to

O F = /2 u, ) pr 161 — €l 292), (3.12a)
OpFy = (/2 i) pi, 182 + r28,1)- (3.12b)
Thus
Fy =f - [(x, 100 — €pi 29 ,)du
2
+ (Bx, 182 + B, 29,1)dV]. (3.13)
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The existence of F, is guaranted by Eq. (3.3) and by the fact
that In g, also satisfies this same equation. The condition
(3.10c} is also satisfied, since

, Hi,2 —0.
Hi Hi—0 u K

M1 i

(3.14)

e —0

- —P1(py + eu?/py) ,
2, + P,(¢ — 2F,)
V= (g — eu’/p))lg) — p ) — epy(F //‘1)¢
2q, + pilé — 2F))

2P + epy(u¥/uy) 2, +pilé — 2F1)]¢

The expression (3.13) unifies the corresponding results pre-
sented in Refs. 3 and 4.

IV. ONE- AND TWO-SOLITON SOLUTIONS

From (3.4), (3.9), (3.11), and (2.10}2.16) we find that the
one-soliton solution associated with the seed solution (3.1)
and (3.2) can be written as

= _ @y + eu?/py)lg, —
P1l29, + p\(é — 2F))]

©,=1n (4.2)

C, (29, + p.(¢ — ZF)]/UI]
1+ e

where we have introduced the notation p,=mj; and
g =m). Also, we have denoted the “renormalized” inte-
gration constant by the same symbol used in (3.2), a practice
that we shall follow in this paper. First we want to point out
that (4.1) and (4.2) is not a solution of physical interest, since
for either value of € we have that the metric (2.1) constructed
with (4.1) and (4.2) has the wrong signature. Inthee = — 1
case we have that the seed solution has the signature
(~ + + —) and the one-soliton ISM produces ecither
(— + + —)or(— + — +)asEq.(2.14)withy =1
indicates. Also, in the case € = + 1 we have that the seed
solution has signature (+ + <+ — ) that changes to either
(+ + + +)or(+ + — —) Aninteresting feature of
this solution is that the particular case obtained by letting
=¢ =0 in (4.1) and (4.2) is a flat solution; this fact is
unexpected, since we start applying the ISM to a nonflat
background solution. As a matter of fact (3.1) and (3.2) with
¢ = O represent a Taub-like solution.”®
In a similar way we find that the two-soliton solution
can be written as

¥ = D \Pyul, —
Mt

—”Z—fltzq,+p1<¢—2m1],
#

""[P‘f 2 (2g, + ol — 2F,)]

(4.3a)
yon ity | Bt HEW () o 2, + il — 2F)]
u By,
X[g, +pi¢ — F))] — fslp1gs + Py
+ppAAd — Fy — F))] (P12 + P29
+pwp24 — F, — F))]1 +pp, f1[2q,
+ (¢ — 2F))] [, + paé — F))1},

(4.3b)

Yis = _1”2¢ M{szz[zqz + 0y (¢ — 2F,)]
upe i,
X (g, +pid — F)1*— 2 f5((p1g:. + Pt
+ Pl — Fy — F,)] [q, + pi(¢ — Fy)]

X [q; + paA¢ — F3)]1 + p, f1[29, + pi(¢ — 2F))]

X g, + palp — F)1*}, (4.3¢)
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(4.1a)
(4.1b)
(4.1¢)
-
C,A
w,=In 2 , 44
’ [u”z(ﬂ? + ew?) (u? + eu?) 4
where
fr=pls + e®)up, + ), (4.5a)
f2=13u} + ey, + ed®), (4.5b)
fa=pupt + el + ), (4.5¢)
and
A = e, — 11,/ [p1gy + P24y + Pipo\d — Fy — Fy))?
+ (s + WV (pigs — Py — popi|Fr — F)1%. (4.6)

First we notice that the two-soliton solution (4.3) and (4.4)
with € = 1 has the right signature, since a two-soliton trans-
formation does not change the sign of the determinant of the
seed solution, as Eq. (2.14) indicates. An interesting subcase
is obtained by putting p, = ¢ = F, = 0in (4.3) and (4.4), i.e.,

=0 Y= —eu, (4.7a)
yia = — 2e€,9,(a;, — aju/plla, — v + ew?, (4.7b)
W, = Wy, (4.8)
In deriving (4.7b) we have made use of the identities
e, — py) + (opty + €4°) = (U} + eu®)u3 + e?),

(4.9)
(2 — po)lpsts + €07/ papty = 2@, — ay). (4.10)

By taking p, = ¢, = Oin (4.3) we get that %7 and $5¢, and
are given by (4.7a) and (4.8), respectively, and that

yih _Hatay B + €
u uf,

XUf2=2f3) +2(f3— fIF] (4.11)
The complementary case, i.e., p, = q, = 0, is obtained by
doing f,— f, and F,—F, in (4.11).

In the axially symmetric case we can interpret the two-
soliton solution obtained from the Weyl solution as arising
from the superposition of a potential ¢ and the potentials
associated with two semi-infinite wires.? The particular case
(4.7) and (4.8) tells us that the “flat” van Stockum solution is
related through the ISM to the van Stockum solution asso-
ciated with a point mass. The potential associated with (4.7),
i.e., ¢'=yit/u, is obtained only in the special case
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¢ = F, = p, = 0. Note that the potential associated with the
two-soliton generated from the Weyl solution is obtained
from restrictions the constants p, and g; only.

The potential ¢’ associated with (4.11)is a solution of the
linear equation (3.3), since the solution (4.11) has the same
form as the van Stockum solution (modulo an invertion in
the € = 1 case). This is an example of the nonlinear superpo-
sition principle?! with a connecting “function” ¢'. The solu-
tions used in the superposition are ¢, In %, In 1, and In p,.
Really, in this case we have a generalized nonlinear superpo-
sition principle, since in (4.11) appears F,, which is a func-
tional of the above-mentioned particular solutions, i.e., in
this case we have a connecting functional.
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The field equations obtained by Krori, Chaudhury, and Bhattacharjee for Einstein-Dirac-
Maxwell fields for several different metrics with a time-independent and a time-dependent Dirac
field for a massless neutrino and for a massive neutrino are completely integrated. It is also noted
that one of the cases, the particular solutions given by Krori, Chaudhury, and Bhattacharjee, is
not correct. All other particular solutions are the special cases of the solutions obtained here.

I. INTRODUCTION

The field equations of Einstein-Dirac-Maxwell fields
are

Ry — 184 R = — 87GE, + 87GTy, (L.1)
Yy, +mp=0, (1.2)
F*, =0, (1.3)
Fy,+F,;+F;;; =0, (1.4)
with
T =3¢y — Ty + ¥t — ¥ ), (LS)
Ey = —FLF, +}g,F"F,,. (1.6)

We use units in which A = ¢ = 1. We adopt the conven-
tions of Jauch and Rohrlich' for Dirac ¥ matrices and the
notations of Brill and Wheeler? with regard to ¢', ¢¥*, and
V. ¢

g In a recent paper Krori, Chaudhury, and Bhattachar-
jee® sought solutions of coupled Einstein-Dirac-Maxwell
equations for the following cases.

(i) A masseless neutrino with the following metrics
where Dirac field ¢ is time independent.

(a) The Weyl metric given by

ds? = e dt? — X ~2(dr* + dz*) — rPe ~**d¢?, (1.7)

where # and X are functions of 7 alone.
(b) The static plane symmetric metric given by

ds* = e®(dx? — dt?) + &°(dy* + d7*), (1.8)

where u and v are functions of x alone.
(ii) A massless neutrino with the following metrics
where the Dirac field ¢ is time dependent.
(a) The Einstein-Rosen* metric given by
ds* = e* =P (dt? — dr*) — e~ P d¢* — e d7?,
(1.9)
where a and B are functions of 7 alone.
(b) The static plane symmetric metric given by (1.8).
(iii) A massive neutrino with the following metrics.
(a) Marder’s metric® given by
ds* =P (dt? —dr*) — Pe~#d¢* — £8P+ d7,
(1.10)
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where a, 3, v are functions of r alone.
(b) The plane symmetric metric given by (1.8)

In all these cases, the authors obtained the field equa-
tions and gave some particular solutions.

In the present work we obtain the complete set of solu-
tions for these field equations.

Itis also noted that for the case of massive neutrino with
Marder’s metric the solution given by Krori, Chaudhury,
and Bhattacharjee® is not correct.

Il. MASSLESS NEUTRINO WITH TIME-INDEPENDENT
DIRAC FIELD

A. Equations
Krori, Chaudhury, and Bhattacharjee® obtained the
following Einstein—Dirac~Maxwell field equations for the

massless neutrino with time-independent Dirac field using
the Weyl metric given by (1.7):

uy +u,/r=C%"%, (2.1)
ky =k /r—uy —u,/r+2u,*= —C?% 2, (2.2)
ki +k/r—uy —u,/r=Cl% ™ (2.3)

The Dirac field #, which is, in this case, a function of r only,
is given by

Y= (1/Jr)e* =07y, (2.4)
), being an arbitrary constant spinor, and the only nonvan-

ishing components of energy-momentum tensor and electro-
magnetic field tensor are, respectively, given by

Tyo=14e“"*Q2u, —k)YVVY¥, (2.5)

T ="~ *Q2u, — 1/NY'y v’y (2.6)
and

Fuo,=Ce % F,,=Ce % 2.7

where C;, and C, are constants of integration and
C2=47G(C2 + C,%).

Krori, Chaudhury, and Bhattacharjee® presented some
particular solutions of Eqgs. (21)-(2.3); we try to give the
general solutions of the same equations.
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B. Solutions

Adding Eqgs. (2.1) and (2.2) one gets

ki —k/r+2u,>=0. (2.8)
Again, adding (2.1) and (2.3) and using (2.1) one obtains

ki +k/r=2u, +2u,/r (2.9)
Assuming In r = x and ¥ — x = v, Eq. (2.1) reduces to

v, =Cl % (2.10)
Integrating (2.9) twice one gets
k=2u+Alnr+1nB, (2.11)

where 4 and B are constants of integration. Integrating Eq.
(2.10) twice and simplifying one can obtain

e2u —_ [Crl+D/2DED+ (CED/ZD)’.I—D]Z
and from (2.11),

e =[Cr'+?/2DE® + (CE?/2D)r' ~P1*B %™,
(2.13)

(2.12)

where D and E are constants of integration.

Putting (2.12) and (2.13) into Egs. (2.1)-(2.3) one
can check that all the equations are satisfied. Thus the com-
plete set of solutions of Eqs. (2.1)-(2.3) are given by (2.12)
and (2.13).5

Ifoneputs B = 1,4 =0and CE® =2 D in (2.12) and
(2.13) one can get the particular solutions of Egs. (2.1)-
(2.3) as obtained by Krori, Chaudhury, and Bhattacharjee.?

lil. MASSLESS NEUTRINO WITH TIME-INDEPENDENT
DIRAC FIELD

A. Equations

The Einstein—-Dirac-Maxwell field equations derived by
Krori, Chaudhury, and Bhattacharjee® for a massless neu-
trino with time-independent Dirac field using the plane sym-
metric metric given by (1.8) are given by

e’z“(u,” +2u,v,)= (K/2)(C2+Cle™ ™, (3.1)
e Muy — 20, —2uv, +2v,%

= (K /2)(C> + Clle— %, (3.2)
e~ 2“(0,11 + 2v, = —(K/2)(C2 4 Cle ™. (3.3)

Here the Dirac field #, which is in this case a function of x
only, is given by .

=y, (34
1), being an arbitrary constant spinor, and the only nonvan-

ishing components of the energy momentum tensor and the
electromagnetic field tensor are, respectively, given by

Tyy=1le *lv, —u, W'Yy, (3.5)

Tyo=1e v, —u, W' ryY'y, (3.6)
and

Fp=Cie~?, Fy,=Che~, (3.7)

where C, and C, are constants of integration and K = 8#G.
Krori, Chaudhury, and Bhattacharjee® obtained a par-
ticular solution of Egs. (3.1)(3.3)
We seek a complete set of solutions of the same equa-
tions.
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B. Solutions
Subtracting Eq. (3.1) from Eq. (3.2),

Vi, — 20,0, +0,2=0. (3.8)
Adding Eq. (3.2) and Eq. (3.3),

uy +3v, —2u,0, +4,,°=0. (3.9)
Let u = u{v), then Egs. (3.8) and (3.9) reduce to

vy +(1—2u,p,2=0, (3.10)
and

(4, + 34y + (0, — 20, +4) +0,7=0.  (3.11)
Eliminating v ,, /v, > between (3.10) and (3.11),

u,, +2u,>+3u,+1=0. (3.12)

In view of Eq. (3.12) we note that if u,, = 0 then #,
= — l or — }. One can consider the following three cases.

Case 1: If u, = — 1, then Eq. (3.10) gives on integra-
tion

e =(3Cyx + C)*", (3.13)

C.e=Cy3Cx + C) 23, (3.14)
where C,, C,, C, are constants of integration. The solutions
given by Eqgs. (3.13) and (3.14) are obtained by Krori, Chaud-
hury, and Bhattacharjee.?

Case 2: If u, = — } then the solutions of Egs. (3.1)—{3.3)
are given by

e’ =2Cx + Cs,
e = C4(2Cex + Cs5)~ !,

where C,, Cs, and C are constants of integration.
Case 3: Let u,, #0, then integrating Eq. (3.12) twice,
one can obtain

(3.15)
(3.16)

2u= —v+In(l —e" " %) 4+ m,, (3.17)

where m and m, are constants of integration.
Inserting the value of u from Eq. (3.17) in Eq. (3.10) and
integrating twice, one can get

myx + my =}’ — ™) + 2e™(e’ — e™) + ™ In(e® — ™),
(3.18)
where m, and m, are constants of integration.

Putting Eqgs. (3.17) and (3.18) into Egs. (3.1)~3.3) one
can check that all the equations are satisfied. Hence in this
case the complete set of solutions of Eqgs. (3.1)~{3.3) are given
by (3.17) and (3.18).

IV. MASSLESS NEUTRINO WITH TIME-DEPENDENT
DIRAC FIELD

A. Equations

Krori, Chaudhury, and Bhattacharjee® obtained the
following Einstein—Dirac-Maxwell field equations for a
massless neutrino with the time-dependent Dirac field using
the Einstein—Rosen metric given by (1.9):

e2ﬂ—2a(a'“ —Bu —B./r+a,/r

=C% % _ §7GT,, (4.1)
eZB—Za(a'“ -8B +2ﬁ,12—ﬁ,1/"‘a,1/r)
= —C2%~ % 4 87GT,,, (4.2)
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e B, +B,/r)=C? %, (4.3)
The Dirac field ¥, which is, in this case, a function of r and ¢,
is given by

Y= (1/Jrjel?=Zer =1y, (4.4)

1. being an aribtrary constant spinor, and the nonvanishing
components of energy-momentum tensor and electromag-
netic field tensor are, respectively, given by

To=Ty= — (P /Noy.*y,, (4.5)
Ty = Ty = Le?~ “YHdiwy' ), (4.6)
Tor = Tyo = e~ “[¢' Qi)

+la, —28, WTV'?’Z?’O'/’] s (4.7)
Tos = Tyo = fe° (Y Riwy’ W

@, — Uiy, 48)

and

Fy,=Ce %, F,,=Ce %, (4.9)

where C,, C, are constants of integration,
C = 47G (C,* 4+ C,?), and w is a positive real number.

Krori, Chaudhury and Bhattacharjee® obtain some par-
ticular solutions of the equations. We try to seek general
solutions of the same equations.

B. Solutions
Adding Egs. (4.1) and (4.2),
a, =By +B,"—B,/r=0. (4.10)

We note that Eq. (4.3) is identical to Eq. (2.1) and Eq.
(4.10) is identical to the result obtained by adding Eqgs. (2.2)
and (2.3). Thus the solutions for & and S will be similar to
those for £ and u, respectively, where u and k, are, respec-
tively, given by (2.12) and (2.13).

V. MASSLESS NEUTRINO WITH TIME-DEPENDENT
DIRAC FIELD

A. Equations

Using the plane symmetric metric given by (1.8), Krori,
Chaudhury, and Bhattacharjee’ obtained the following Ein-
stein-Dirac~Maxwell field equations for a massless neutrino
with time-dependent Dirac field:

e—zu(u’” +2u,0,)= (K/2)(C12 + C22)9_4U + KTy, (5.1)
e~ Muy + 204 —2u 0, +2v,7%)

=(K/2)(C* + CYle~* — KTy, (5.2)
e Muy +20,%) = — (K/2)(C* + Cylle ™. (5.3)
The Dirac field ¢(x,¢) is given by
¢=e—(v+u/2)eiw(r"r°x—-t)¢,v , (5.4)
where
1
+1
¢V0 = A K
i
+i

a, being an arbitrary constant.
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Krori, Chaudhury, and Bhattacharjee obtained some
particular solutions of Egs. (5.1)~(5.3). In the present paper,
we shall try to seek the complete set of solutions.

B. Solutions
Adding (5.1) and (5.2),
e Muy +vy +0,7)=(K72)C7 + Clle*. (5.5)

Equation (5.5) is identical to the equation obtained by adding
(3.1)and (3.2) and Eq. (5.3) is identical to Eq. (3.3). Hence the
solutions of Egs. (5.1)5.3) are the solutions of Egs. (3.1}-
(3.3).

VI. MASSIVE NEUTRINO

A. Equations

Using the Marder metric given by (1.10), Krori, Chaud-
hury, and Bhattacharjee® obtained the following field equa-
tions for a massive neutrino:

a,IV,l +a,1/r+v'1/r_B,12_ZB,lv,l

= (87GmA /rjef—*~", (6.1)

v —a,v; + 2B.v, + B, 24 V,lz —a,/r+v,/r=0,
(6.2)

a, —2B, +B,°—28,/r=0, (6.3)
a, +vy +2B,v, +B.2+v, =0, (6.4)

with
o= % exp( - my'fe"‘ —F dr)e'ﬂ' a=2 (6.5)
r

and the nonvanishing components of energy-momentum
tensors are

T, = (mA/rle? ==, (6.6)
where

=9,

Ty=14e?"%a, — 2B, —v WYV ?Y’¥, (6.7)

Ty = 1eP~%(a, — 1/NYyv°y. (6.8)

It is to be noted that the solutions obtained by Krori,
Chaudhury, and Bhattacharjee® are not correct. We try to
present a complete set of solutions of the same equations.

B. Solutions
Equations (6.1)-(6.4) can be easily reduced to

ww, —2w,w, —v, =M, (6.9)

wy —uw, + v, +w,)* =0, (6.10)

uy — 20, +v,°=0, (6.11)

uy +w, + o, +w, =0 (6.12)
where

u=a—Inr, v=B-—Inr,

w=v+Inr, M=87GmA,
say. Subtracting (6.10) from (6.12) and integrating, we get

e“u, =4, (6.13)
where A is a constant of integration.
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Adding (6.9) and (6.10) and using (6.13), one can obtain
(A/uy)y =Me " (6.14)

Using (6.11), (6.13), and (6.14) in Eq. {6.9), one can get, after
some calculations,

uy,/u,?—2w,/u, =B, (6.15)
where B, is a constant.
We can also obtain from (6.9) using (6.13) that
_ 2
MW g Mo (6.16)
u, ’ u, A

Let v = v(u), then Eqgs. (6.11), (6.15), and (6.16) can be
written as

(1 =204y, + (0,2 = 20,,)u,2 =0, (6.17)

u'“ - (20+Bl)u,l2=0, (6-18)

(1 - ZUu)(u,n/u,,) + vuzu‘l = - (M/A)e"_“.
(6.19)

Eliminating u ,, /u ,*> between (6.17) and (6.18), one gets
,, +3v,2+2(B,— 1)y, —B,=0. (6.20)

Case I1: Let v,, =0, then v, = const, 1 say. Then one
can easily obtain the following solutions of Egs. (6.1)—(6.4):

a=Inr+ (1/B,)In(B,r + B;), (6.21)

B=Inr+ (1/B;)In(B,r + Bs) + B,, (6.22)
and

v= —Inr+ n(By + Bs) +In By, (6.23)

where B,, B,, B,,B,, and B, are all constants of integration.
Case 2: Let v,, #0. Then (6.20) gives, on integration
twice,
2v=Au+Bln(p—e™) +F,

where 4, B, P, g and F are all constants.
Using (6.24) in (6.18) and integrating, we get

(6.24)

y= |48 (6.25)
(p—e™)”
where f, g are constants. Also, from (6.13),
e’=A4/u,. (6.26)

Putting the values of 4, v, w from (6.24)-(6.26) into Eqgs.
(6.9)—(6.12) one can check that all the equations are satis-
fied. Thus the solutions of Eqgs. (6.9)-(6.12) are given by
(6.24)—(6.26). Hence the solution of Egs. (6.1)-(6.4) are
given by

a=u+Inr, (6.27)
B=v+Inr, (6.28)
v=w-—Inr, (6.29)

where u, v, w are given by (6.24)—-(6.26).
VIi. MASSIVE NEUTRINO
A. Equations

Using the plane symmetric metric given by (1.8), Krori,
Chaudhury, and Bhattacharjee® derived the following field
equations for a massive neutrino with time-dependent Dirac
field:

2u v, +v, = — 8my,pyme* — %, (7.1)
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uy +v,, +0,°=0, (7.2)

0, —2u,0, +3v,°=0, (1.3)
with Dirac field ¢ given by

Y=emtr ey, 7.4

and the only nonvanishing components of the electromag-
netic field tensor are given by

Ty, = Yo' pgme =~ %, (7.5)

B. Solutions
Let u = u(v), then Egs. (7.1)-(7.3) can be written as
(#, + Dvyy + (g, + Do, 2 =0, (1.6)
20, +(3—2u,)v,2=0. (1.7)

Eliminating v ;, /v, > between (7.6) and (7.7) one can ob-
tain

2u,, +2u,>—u,—1=0. (7.8)

In view of Eq. (7.8), we note that if u, =Othenu, =1or
— . One can consider the following three cases.

Case I: Let u, = 1, then Eq. (7.7) gives on integration
twice,

v=2In(px+p;),

Sou=2In(px +p3) +p1s
where p,, p,, p; are constants of integration.

Putting (7.9) and (7.10) into Egs. (7.1)~(7.3) one can
check that all the equations are satisfied. Hence the complete
set of solutions of Egs. (7.1)-(7.3) are given by (7.9) and
(7.10).

Puttingp, =0, p, = Aand p, = (A /2) ym in (7.9) and
(7.10),

v=u=2In(4+ (4 /2)ymx), (7.11)

where A 2 = — § mif,'tfo. The particular solution (7.11) was
obtained by Krori, Chaudhury, and Bhattacharjee’.

Case 2: Let u, = — }. Then Eq. (7.7) gives, on integra-
tion twice,

(1.9)
(7.10)

e = px + ps, (7.12)
e =pe(pex+ps) Y, (7.13)

where p,, ps, and p. are constants of integration. In this case,
(7.12) and (7.13) are the complete set of solutions of Egs.
(7.1)-(7.3).

Case 3: Let u,, #0. Equation (7.8) gives, on integration
twice,

u= — (v/2) +In(e¥?9 — 2%y L ¢, (7.14)

where ¢ and g, are constants of integration. Using (7.14) in
(7.7) and integrating twice, one can obtain

¥ dv
S —
3729 _ ,(3/200

qzx+43=j (7.15)

where g, and ¢, are constants of integration.

Putting (7.14) and (7.15) into Eqs. (7.1)-(7.3), one
can check that all the equations are satisfied. Hence in this
case, the complete set of equations of (7.1)—(7.3) are given
by (7.14) and (7.15).
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VHI. CONCLUSION

In summary the solutions of Einstein-Dirac-Maxwell
field equations obtained in this paper are as follows.
(1) A massless neutrino with time-independent Dirac
field.
(1a) For the Weyl metric (1.7) the solutions are
given by (2.12) and (2.13).
(1b) For the plane symmetric metric given by
(1.8), one gets three classes of solutions. The first is
given by (3.13) and (3.14). The second is given by
(3.15) and (3.16). The third is given by (3.17) and
(3.18).
(2) A massless neutrino with time-dependent Dirac
field.
(2a) For the Einstein—Rosen metric (1.9), the so-
lutions for a and B will be similar to those for k£ and u,
respectively, where # and k are given by (2.12) and
(2.13), respectively.
(2b) For the plane symmetric metric (1.8), the
solutions are similar to those discussed earlier in (1b).
(3) A massive neutrino.
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(3a) For the Marder metric (1.10), one gets two
classes of solutions. The first one is given by (6.21),
(6.22), and (6.23). The second is given by
B=v+Inr
where u, v and w are given by (6.24)—(6.26). It is to be
noted that the solutions given by Krori, Chaudhury,
and Bhattacharjee® are not correct.

(3b) For the plane symmetric metric (1.8), one
obtains three classes of solutions. The first one is given
by (7.9) and (7.10). The second is given by (7.12) and
(7.13). The third is given by (7.14) and (7.15).

a=u+Inr, v=w-—Inr,

'J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons {Spring-
er, New York, 1976), Appendix A,.

’D. Brill and J. Wheeler, Rev. Mod. Phys. 29, 465 (1957).

*K. D. Krori, T. Chaudhury, and R. Bhattacharjee, Phys. Rev. D 25, 1492
(1982).

“A. Einstein and N. J. Rosen, J. Franklin Inst. 223, 43 (1937).

5L. Marder, Proc. R. Soc. London, Ser. A 244, 524 (1958).

°Equations (2.12) and (2.13) can also be obtained from Eqs. (2.1) and (2.3)
only. Thus Eq. (2.2} is really superfluous.
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In canonical quantum gravity, the diffeomorphisms of an asymptotically flat hypersurface S, not
connected to the identity, but trivial at infinity, can act nontrivially on the quantum state space.
Because state vectors are invariant under diffeomorphisms that are connected to the identity, the
group of inequivalent diffeomorphisms is a symmetry group of states associated with S. This
group is the zeroth homotopy group of the group of diffeomorphisms fixing a frame of infinity on
S. It is calculated for all hypersurfaces of the form S = S */G-point, where the removed point is
thought of as infinity on .S and the symmetry group S is the zeroth homotopy group of the group of
diffeomorphisms of S /G fixing a point and frame, denoted 7, Diff (S */G). Before calculating
1, Diff . (S3/G), itis necessary to find 7, of the group of diffeomorphisms. Once 7, Diff(S3/G) is
known, 7, Diff, (S3/G) is calculated using a fiber bundle involving Diff (S */G), Diff, (S3/G),
and S'3/G. Finally, a fiber bundle involving Diff. (S */G), Diff(S3/G), and the bundle of frames
over §3/G is used along with 7, Diff,_(S>/G) to calculate 7, Diff (S */G). The groups

7o Diff (S 3/G) are comprised of SU(2) coverings of SO(3) crystallographic groups, the product
of these with a cyclic group, cyclic groups, and the product of two cyclic groups.

I. INTRODUCTION

In canonically quantized Yang—Mills theory, the state
space is invariant only under asymptotically trivial gauge
transformations. Moreover, the classes of inequivalent
gauge transformations on a hypersurface with trivial topol-
ogy are isomorphic to the group of additive integers Z (see
Refs. 1 and 2). Since these groups are Abelian, they only
have one-dimensional irreducible representations, each of
which is fixed by a single 6:

g, V="V,
where WV is a quantum state vector and g, a gauge transfor-
mation of degree n. These are Yang—Mills O-states. Even in
the case of nontrivial topologies these groups are Abelian.’

A counterpart of 8-states in canonical quantum gravity
are irreducible representations of the groups of inequivalent
diffeomorphism.*® This is easy to demonstrate using the
momentum constraint D, 7°* = 0 in the Schrodinger pic-
ture, where #°° = (#i/i) (8/6g,,)- Multiplying the con-
straint D, #*° ¥ = 0 by an arbitrary test vector field £ with
compact support and integrating it over an open hypersur-
face S yields’

fgap,,ﬁﬂbw dx=0.
S

Integrating by parts and adding the resulting integral to it-
self yields

0= f D, £, 7% dx + f D, £, 7 dx
S AY

. #i d¥
= [Putnimvax=2 T o, 1D, £,))0 .
s i dA
Recalling the properties of Lie derivatives, it follows that
dv dyv
= (8 +ADa€1y) | 1-0 = (T28a) |1~0 >
where T’} is the induced action of any path of diffeomor-
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phisms T; trivial in a neighborhood of infinity and having §
as a tangent vector at A = 0. Hence the constraint is equiva-
lent to (d¥/dA)oT*|, _, =0, for T, as above. Since this is
true for all such diffeomorphisms, it follows that
(d¥/dA)oT* = 0. The above set of diffeomorphisms is the
identity component of the group of diffeomorphisms trivial
in neighborhood of infinity, Diff i (5 Therefore,
YoT* =V forall Tin Diﬂ'N,, i (S).BIf S'is closed,’ then no
boundary term appears in the above integration by parts so
all vector fields can be used, and WoT'* = V¥ for all T in the
identity component of the full diffeomorphism group,
Diff,; (S). The groups, which can act nontrivially on the
quantum state space, are Diff, . (S)/Diff, . (S) or
Diff(S) /Diff,, (.S), for .S open or closed, respectively. These
groups are written 7, Diff , ., (S) and 7, Diff(S). The group
7o Diff , . (S) is isomorphic to the zeroth homotopy group
of Diff ., (§) (diffeomorphisms fixing a frame at infinity).
Therefore, gravity’s “-states” are given by irreducible re-
presentations of 7, Diff . .. (§) and 7, Diff(S) depending on
S. If the open hypersurface S'is obtained from a closed three-
manifold M * by removing a point x, as in the case of an
asymptotically flat hypersurface, then 7, Diff, .. (S) is equal
to m, Diff, (M?) (the zeroth homotopy of the group of
diffeomorphisms of M? fixing a frame F at the point x,).
[From this point on m, Diffr, (M>) will be denoted
o Diffp (M ?).]

Even if the hypersurface S is closed, the frame fixing
diffeomorphisms are of interest. Suppose S is closed and
S = M#N, where N is thought of as a generic environment.
Then the group w,Diff(S) includes as a subgroup
o Diffr (M). A generic “environment” N around M pre-
vents one from deforming to the identity in M#N any diffeo-
morphism that cannot be deformed to the identity in
Diff, (M). In representing an isolated system by an asymp-
totically flat space-time one imposes the conditions that M is
far from the interface between M and N, and M is small
enough to neglect the large-scale curvature of the back-
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ground. If these conditions fail, then symmetries of the envi-
ronment cannot be ignored and the full symmetry group is
o Diff (M#N), but 7, Diff. (M) is a subgroup for N gen-
eric.

One major difference between the Yang-Mills theory
and gravity is that the symmetry groups 7, Diff, (M ?) are
not necessarily Abelian, but for example can be SU(2) co-
verings of SO(3) crystal groups which are non-Abelian and
therefore have irreducible representations of dimension
greater than 1. Some of the results were given in an earlier
paper'® along with an outline of techniques. In the present
paper, calculations and results are given for M? = S?/G,
where G is a finite group acting freely on S 2, along with a
correction to a table appearing in the earlier paper.

The isometry group of S 3/G with the standard metric is
calculated using elementary group theory. The calculations
give the explicit action of Isom(S3/G) on 7,(S*/Gx,),
which is used in later calculations. The technique used to
calculate Isom(S3/G) uses the facts that S covers $3/G,
Isom(S3) = O(4), and SU(2)XSU(2) covers SO(4).
After the group Isom(S */G) is calculated, 7, Isom(S>/G)
and the topology of Isom (S /G are given. These results can
be found in Tables I and II.

The groups 7, Diff(S*/G) are found using the recent
work of Hatcher, and the calculations of 7, Isom(S3/G).
Hatcher has proven the Smale conjecture,'’ the statement
that O(4) and Diff(S ) have the same homotopy type.'? He
also proposes a generalization of the Smale conjecture that in
general Isom(S 3/G) and Diff(S *>/G) have the same homo-
topy type.'* This has been proven in several cases,'* and the
weaker result that 7, Isom(S>/G) = m, Diff(S*/G) has
been proven in almost all cases.”>~"” Assuming Hatcher’s
conjecture, the groups 7, Diff (S */G) are found.

Let 7, Diff, (S*/G) be the zeroth homotopy group of
the group of diffeomorphisms fixing the point x, on $3/G.
Unlike 7, Diff(S*/G) not all elements of Diff, (S 3/G)
for G noncyclic can be realized by isometries. A fiber bundle
having total space Diff(S>/G), base space S>/G, and fiber
Diff, (S°/G) is used to obtain an exact sequence involving
mo Diff, (S°/G) and m,Diff(S°/G). The group
7o Diff,_ (S°/G) is found using the exact sequence combined
with the action of 7, Diff, (S3/G) on 7,(S°/Gx,).

A fiber bundle with fiber Diffr (S3/G), total space
Diff* (S3/G) (orientation preserving diffeomorphisms of
§3/G), and base space F * (S>/G) (the bundle of oriented
frames over S3/G) is used to obtain an exact sequence in-
volving 7, Diff (S3/G) and 7, Diff* (S*/G). The group
o Diff - (S3/G) is found using this exact sequence and the
group m, Diff > (§°/G). For G noncyclic, no elements of
7o Diffp (S3/G) can be realized by isometries. Hence the
structure of 7, Diffz (S?/G) is very different compared to
7o Diff* (§3/G) (see Table IV). For G noncyclic, the group
7, Diff o (§3/G) is an SU(2) double cover of
7o Diff - (S°/G). This is related to the fact that the 27 rota-
tion parallel to a two-sphere!® is nontrivial in 7, Diff (S?/
G) for G a noncyclic group (see Sec. VI). If G is a cyclic
group, the 27 rotation is trivial and the groups 7, Diff + (S %/
G), m, Diff,} (§°/G), and m, Diff- (§°/G) are isomorphic
to each other.
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Il. PRELIMINARIES

The first theorem is a combination of the standard
Noether isomorphism theorems. It characterizes the sub-
groups of a quotient group, and is very useful when calculat-
ing the quotient group of two quotient groups.

Theorem 2.1: If X is a normal subgroup of G, K 4 G,
then all subgroups of G /K are of the form H /K where
K<H<G. Moreover, N/K 4 G /K if and only if N < G, also
(G/K)Y/(N/K)=G/N.

Proof: See any standard text on groups, for example,
Hungerford.'*

The finite subgroups of SO(3) and SU(2) will be en-
countered in our calculations. The finite subgroups of SO(3)
are cyclic, dihedral, tetrahedral, octahedral, and iscosahe-
dral groups. Their presentation in terms of generators and
relations are

Z, =(x:x"=1),

Dy, = (xy:x’=y" = ()" =1),

T=(xy:x’= () =p"=1),

O=(xy:x’=(xp)’=y'=1),

I=(xpy:x*=(xp)’=y"=1).

The finite subgroups SU(2) come from the double covering

of SO(3) by SU(2). These groups are the cyclic, binary dihe-
dral, and binary polyhedral groups. Their presentations are

Z, ={(x:x"=1),

D%, = (xp:x* = (xp)* =y"),

T*=(xy:x*=(xp)’ =y x*=1),

0*=(xy:x’= ()’ =y x*=1),

I*=(xy:x*=(xp)’ =y’ x*=1).

A useful property of finite subgroups of both SO(3) and
SU(2) is the following: Given H, and H, finite subgroups of
G = 80(3) or SU(2) with H, isomorphic to H,, then H, is
conjugate to H,.

The other finite groups encountered are the finite sub-
groups of SO(4). Here SO(4) is doubled covered by the
group SU(2) X SU(2), where the projection map P is given
by P(q,,9.)9 = 4,993, where gcH (see Ref. 20) and
(91,9,)eSU(2) XSU(2) (see Ref. 21). The kernel of P is
Z, ={ + (1,1)}. It follows that SO(4) = SU(2) X SU(2)/
Z,. Hence the subgroups of SO(4) can be found using
Theorem 1.1.

The following theorem gives us all the finite groups that
act freely on 5>

Theorem 2.2: The only finite groups that can act freely
onS*areZ,,D%,D 5, . 1» T* T§ 4« O*% I% and the
direct product of any of these with a cyclic group of relative-
ly prime order.

Proof: See Thomas.?
The groups D s ,, , ,, and T'; .. have presentations
Doyirniry = (x.: =1, PP ri=1, xyx~ =y,
k>3, n>1

1

e = (xpz X2 = (0’ =), Xz =y,

iz '=xp, 2 =1), k2.
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The groups in Theorem 2.2 are all isomorphic to sub-
groups of SO(4). A remaining question is whether §*/Gis a
spherical space form?” for every free action of a finite group
G. Thomas has proven that the orbit spaces are at least ho-
motopic to spherical space forms, and Rubinstein has prov-
en, in most cases, that any free action gives an orbit space
diffeomorphic to a spherical space form.?* We will therefore
only consider spherical space forms.

The following theorem gives the main tool for calculat-
ing the homotopy groups of fiber bundles.

Theorem 2.3: Let p: E—B be a principal bundle with
total space E, a connected base space B, and fiber G. The
sequence

W

iyi Pyi
o> 77, (G,go) — m; (E,ep) = m;(B,by) —>m,_ (G.go)

O Jyo

coo > (Bby) = 7 (Ggo) — T (Ee)—1

is exact. Further, it is an exact sequence of groups if 7, (E,e,)
is a group.

Proof: See Steenrod,>* pages 91 and 94.

The last theorem we need is the lifting theorem which is
used to prove which maps lift to the covering space.

Theorem 2.4: Let p: (X Xy) — (X,x,) beafibration with
unique path lifting. Let Y be a connected space. A necessary
and sufficient condition that a map f: (Y,p,)—(X,x,) havea
lifting (Z,yo)—>(X,xo) is that in 7 (Xx,), f7:1(Yyo)
<Py 1 (X Xo).

Proof: See Hu.”

lll. ISOMETRY GROUPS

Let S3/G be a spherical space form with fundamental
group G. Since § 3/G is covered by S * the isometries of S */G
lift to elements of O(4). In particular, we will show that
Isom(S*/G) = N o4, (G)/G, where we use the following
definition.

Definition 2.5: Given G and H groups with H<G, the
normalizer of H in G, denoted by N (H), is defined as
{geG |gHg ™' = H}.

When H is a finite group the above definition can be
restated in the following form.

Lemma 26: If H is finite and H<G, then
Ng (H) ={geG |ghg~'eH, VheH}. Further, Ng(H)
= {geG |ghg~'eH, for all generators h of H}. (This alter-
nate form of definition is not always true for infinite groups. )

Now letuslook at theisometries of S >/G. Let p: S °>—S 3/
G be the covering map corresponding to the orthogonal ac-
tion of G, and let /2 S >/G—S */G be an isometry. If we define

pbyp =fP’

P

AN S%/G

;\ r/
S%/G

then j is also a covering map.
Since the universal covering space is unique there exists
an isometry, f: S >—»S > such that the diagram
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f
s? 53
p r
f
5%/G —=§%/G

commutes. This means every isometry f of §3/G lifts to an
isometry of $°.

However, an isometry of S 3 is the lift of an isometry of
S3/G only if a well-defined f is provided by the relation
fUx1) = [f(x)], thatis only when [f(x")] = [f(x)] for all
x'€[x]. Then fis well defined if and only if for all heG there
exists h'eG such that &'f(x) =f(h(x)), that is
FEN 1 omcs (G). Observe from the definition of f, that fin-
duces the same isometry as f” if and only if /' = fh for some
heG. Hence

Isom(S3/G) = Nyor(s* (G)/G = No sy (G)/G,

as claimed.

Finally, the group of orientation preserving isometries
of §3is SO(4), so the group of orientation preserving isome-
tries of $3%/G is Isom™ (S°/G) = No4, (G)/G, because
the lift of an orientation preserving isometry is orientation
preserving. (See the proof of Theorem 4.9.)

Let us look at the example S 3/Z,. If we regard O(4) as
4 X 4 orthogonal matrices the group Z, consists of the matri-
ces + 1. Because these two diagonal elements commute
with every element in O(4), Ny, (Z,) =0(4) land
Nsowy (Z;) =SO0(4). HenceIsom(S3/Z,) = O(4)/Z,and

Isom™* (S3/Z,) =SO(4)/Z, = S0O(3) XSO(3) .

The calculations in the above example are very easy to
perform since we know Z, is normal in both SO(4) and
0O(4). In general the group will not be normal in O(4) or
SO(4), so representing O(4) and SO(4) as 4 X 4 matrices is
not the best way of doing calculations. By using the fact that
SO(4) =SU(2) XSU(2)/Z,, the  calculations of
Nsow, (G) are simplified. This does not help with the
Now, (G) calculations but, fortunately for us, the only
spherical space forms with orientation reversing isometries
are lens spaces (see Theorem 4.9). Therefore, Isom(S?/
G ) = Isom™* (S */G ) for G noncyclic.

The main and most useful properties of normalizers
used in our calculations are summarized in the following
theorem. The first half of Theorem 3.1 tells us the norma-
lizer N (H) is the maximal subgroup of G containing H as a
normal subgroup. The last half gives us the primary tools for
doing calculations, namely, the normalizer of products of
groups and quotient groups.

Theorem 3.1: Let N, (H) denote the normalizer of
H<G. Then we have the following.

(a) Ng (H) is group.

(b) H <N (H).

(c) HLGiff Ng (H) =G.

(d) If H A M<G, then M<Ng (H).

(e)gNg(H)g™'=Ng(gHg™'), VgeG.

(f) If H,<G; for i= 1,2, then Ng . (H,XH,)
= Ng, (H;) XNg, (H,).
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(g) fK<H<LG and X 4 G, then N; (H)/K
= Ng/[( (H /K) .
(h) If H is finite, Ng (H) is finite if and only if Cg; (H)
is finite, where C; (H)={geG |gh = hg, VheH}.
Proof: (a) through (d) follow easily from the defini-
tions.
(e) Let gegNg(H)g™'. Then g=gg,g~
g Hg '=H. So ggHg '§~'=ggHg 'g~' =gHg
This implies geNg (gHg™1). Hence
gNg (H)g '<Ng(gHg™'). Now, letg,eNs (gHg~'). Then
g8Hg g '=gHg™'. Since Ng(H) is a group,
87 'eNg (gHg™"). It follows that g 'gHg 'g, =gHg ™"
Let 2 =g 'g,g. Then

HE '= (g7 'g@)H(g 'g,8) " =g "'g,(gHg " g g

=g 'g, (g 'gHg '8,)8 ‘¢ =8 'gHg 'g=H.
Hence geN; (H). Since g, = ggg~ ' and geN (H) we have
8:€8N; (H)g~'. Hence N (gHg ')<gNg (H)g ™.

(5) (81:82)€N¢,xq, (H,XH,)
@(31,82)(H1;H2)(gpgz)ml = (H,,H,)

(g H g 8:Hg: ") = (HH,)

©(g1.82)€N, (H}) XN, (H,) .

(g) Let K<H<G and K 4 G. Clearly, H /K<G /K and
H /KNy, (H/K). Applying isomorphism Theorem 2.1,
Ng ,x (H/K) = N /K, where K< N<LG; further H I N. Ap-
plying Theorem 3.1(d), N<Ng(H), clearly, N/
K<Ng(H)/K. Since H<d Ny (H), Theorem 2.1 implies
H/K INg(H)/K. Theorem 3.1(d) implies Ng(H)/
K<N /K. Therefore N/K = Ng (H)/K.

(h) The homomorphism 7: N (H)—Aut(H), given by
r(g)h=ghg™', has kerr=Cg;(H). Then Ng(H)/
Cg; (H) = Ng (H)/ker 7=Im r<Aut(H) implies | N (H)|
<|Aut(H)| |Cq (H)|. If H is finite, then Aut(H) is finite.
Therefore, if H is finite, N (H) isfinite ifand only if C (H)
is. QED.

The first normalizer we calculate is Ngy o, (S'), where
§' = {&" |geR}. It arises when we look at cyclic groups and
subgroups of SO(4) not contained in SU(2). The technique
used in finding it is similar to that used for ali other norma-
lizer calculations.

Lemma 3.2: Ngy, (S') = {geSU(2)|g = € or je?,
feR}.

Proof: Let ¢qeSU(2). By definition, this means for all
there exists a g such that ge“q~' =¥ . Letg = [* ,. 0 |-
Matrix multiplication gives

*,i0 *®, — 0
0 _1_[ aa*e® + bb*e

1 where

-1

— abe®® 4 abe "
aa*e ™" 4 bb ‘e‘”] '
.1
We now find for what values the right-hand side of (3.1)
equals ¢. That ge® ¢! = ¢ implies
(1) ag*e® + bb*e— " =¢€", (3.2)
(2) —abe® +abe= " =0. (3.3)
Assumeab #0. Then Eq. (3.3) impliese® = e~ forallg,a

contradiction. Therefore ab = 0. Since geSU(2) implies a
and b cannot be zero simultaneously, eithera =0or b =0.

g = a*b *e % — g*b %
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Leta =0in Eq. (3.2), thene ~* =¢"¥. If 5 =0, then
e = ¢, Hence Egs. (3.2) and (3.3) are always satisfied
for ge{geSU(2)|g = ¢” or g = je®® }. Q.E.D.

The next lemma gives us the normalizers of all finite
subgroups of SU(2); combining it with Theorem 3.1 allows
us to calculate the isometry groups. The proof of Lemma 3.3
below is independent of the embedding of the subgroup,
since any two isomorphic finite subgroups of SU(2) are con-
jugatein SU(2) and Theorem 3.1(e) implies their normaliz-

ers are conjugate.
Lemma 3.3:
Nsuay (81, if n>2,
a) N, Z,)=
(a) Nsye,) (Z,) {SU(Z), if n=1,2,
(b) N, (D*)—[D:"’ o>
su \Wan/ = o*, ifn=2,

(c) NSU(Z) (T*) =0%,

(d) Nsu(z) (0 *) =0 *,

(e) Nsyy (I*) =1*.

Proof: (a) Clear, if n=1 or 2. If n>2, then
Nsuay (Z,) = Ngyz) (S1). This follows immediately from
the proof of Lemma 3.2 with 8 = 2 /n.

(b) Forn>2,D}%, is generated by 4 = ™" and B = .
All elements of D¥, are of the form 4° and BA". Let
g€Nsy 2, (D %,). Then g4g~ ' must equal 4° because g4g ™!
must be an element of D ¥, with the same order as 4. There-
fore Ngy 2, (D %,)<Nsy, (S1),n> 2, whichimpliesq = e
or je®®. It follows that gBg~' = je = or je**®, which are
elements of D% only when 8=7m/2n. Therefore
Nsuiry (D3,) =DE, forn>2.

Ifn=2,then D¢ is generated by 4 =/ and B =, and
Csuqa; (D) = Z,, which means Ngy(,, (D ¥) is finite [see
Theorem 3.1(h)]. Moreover, |Ngy,, (D ¥)| = 8m because
D¢ is normal in Ngy,, (P¥). Now D¥ < O* Hence
O*<Ngy) (D¥), [see Theorem 3.1(d)]. Since
|Nsucay (P ¥)| = 8m and the only finite subgroups of SU(2)
are binary dihedral, cyclic, and binary polyhedral groups, it
follows that O*3Ngy,, (D¥) implies O *<Ngy(,, (D ¥)

= D%, . Thestatement O *<D ¥, is a contradiction because
the only subgroups of binary dihedral groups are cyclic or
binary dihedral groups. Therefore Ny (,, (D) =O0*.

(©) Csyezy (T*)<Csyzy (DF) because DF<T* and in
general if K<HLG, then Cg (H)<Cy (K). It follows that
Ngyy (T*) is finite. Now T*JO* Hence O*<N-
su (T*).O*#Ngy(o, (T*), thenNgy(p, (T*) = D3,
which means O*<D%,, a contradiction. Therefore
Nsy@, (T*) =0*.

(d) Nsye, (O*) is finite because DF<O*. Now O*
Ngu, (0*). If O*#Ngy, (O*), then O*
<Nsyy (0*)=D¥%,, a contradiction. Therefore
Ngy (0*)=0*

(e) D¥<I*, which implies Ny, (I*) is finite. Now

I*<Ngye, (I*). Hence I*#Ngy,,(I*) implies I*
N5y (1*) = D Y, a contradiction. QE.D.

We now use Lemma 3.3 to calculate the SO(4) normal-
izers of the finite noncyclic SU(2) subgroups and products
of these groups with cyclic groups. For a noncyclic subgroup
of 80(4), any orthogonal free action gives the same mani-
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fold (see Ref. 26, page 115); hence for a noncyclic group the
normalizer of the group modulo the group is independent of
the embedding provided the action is free.

Theorem 3.2: Let GKSU(2) with G finite noncyclic,
then

s Z,xS0(3), f G=T*or DY, n<2,
Isom(s— —{P,xSO(3), if G=D%,
S0(3), if G=0% or I*,

where P, is the permutation group of three objects. More-
over

Z,XNgy, (S, f G=T*
( S3 ) or D%, for n>2,
Isom = .
G XZ, P;XNgyy (SY), if G=D2
Nsua) (81, if G=0* or I*.

Proof:- If GKSU(2), thenan embedding of G in SO(4) is
givenby G /Z, where G = G X{ + 1}<SU(2) XSU(2) and
Z, ={ + (1,1)}. Theorem 3.1(f) implies

Nsuayxsu (G X{+1H
= Nsue) (6) XNy, ({ £ 1.

Lemma 3.3 implies N g2, ({ &+ 1}) =SU(2). Hence
Nsuayxsu@ (G X{ £ 1) =Ngy(,, (G) XSU(2).
Theorem 3.1(g) implies
Nsuayxsu (G X{£ 1)
Z,

=N, (G x{ + l})
= V5u(2) xSU(2)/2Z, T"’

=NSO(4) (G)y
Isom (-’5—3-) =M
G G
— Nsuayxsu) (G xX{+1})/2,

(G x{+1h/z,
The isomorphism Theorem 2.1 implies

Isom (iz_)z Nsyayxsua (G X{+ 1D
G Gx{x1}
It follows that®’
S3\ NsuxyG_SUQ2) Nsyw, (G)
Isom (——)z X = XSO(3) .
G G {+1} G (
From Lemma 3.3 we have
(O */D ¥ xS0O(3), if G=D%,
Isom (§1)=4 D*/D¥* XS0O(3), if G=D%, n>2,
0*/T*xS0(3), ifG=T*,
LSO(3), if G=0% or I*.
Hence
. [P,xSO(3), if G=D},
Isom (—G—)=4Z2><SO(3), if G=T* orDY, n>2,
SO(3), if G=0%* or I*.

If the fundamental group is G X Z,, then an SO(4) em-
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bedding is given by G/Z, where G=G XZ, and
Z2k = { :t enwn/k }:

Nsuyxsu@) (G XZyi ) = Ngy(p) (G) X Nsy(ay (Zyi ) s
NSU(2) (Zy) = Nsum (Sl) .

Using an argument similar to the one above we have

G XZ, G Zy,

We can show

Nsuvay (81)/2y =Ngy(3, (S1) Q.E.D.

There are two remaining families of noncyclic finite sub-
groups of SO(4) not discussed in Theorem 3.2, namely
Dyzn 1y XZ, and T . XZ,. Again we only need to do the
calculations for a particular embedding of these groups.

A particular embedding of Dions " ><~Z, in SO(4),
which acts freely on S* for k>2, is D/Z, where
Z,={ + (1,1)} and D is generated by

a= (", =), b=0d" T, E= (L.
Theorem 3.3:
Isom( ' s3 )=D:(2n+l) vasutz) shH .
2*@2n+ 1) XZ, D
Proof:  Let  (hyh,)eNsy)Xsuy (D). Then
(hy,hy) (81,82) Ch 'k 7 DeD. This means
hlgh 1_ lGD :(2” +1) and hzgzh 7:- lezzkr. Hencc

heNsu, (D :(3,, +n) and heNgy,, (Z, ). Therefore
N suyxsuy (PD)<D $an 4 1y XN sy, (S1). .

Let heNgy (S'). Case (i) h=e®. Then
(LWa(Lh~) =4  (Lbb(L,h~) =B, _ and
(L,h)é(1,h ~') = & Hence (1,6” )eN gy 2y xsucay (D). Case
(ii) A = je’®. Then

(Lma(lL,h~") =a,

(Lb(LE ") = (1,je®) (je™> ) (1, — e~ ")

— w2t )

= (j,e

~ T 2k—17 —
=a2n+lb2 b 1

and
(LR)e(Lh~Y) = (1,/e°) (L,e™) (1, — e~ %)

= (lse-i”/') =Z'_l .

Hence (1, je”)eN syp)xsu@ (D). Therefore {1} X Ngyy (S
<N supixsup (D). .

Now, we look at the action of (¢™>***+ 1, 1) and (j,1) on
the generators of D:
(elﬂ/2(2n + 1)’1 )a(e — m/2(2n + ”,1) = & ,
(ehr/Z(Zn + 1),1 )B(e —in/2(2n + 1)’1)
in/2(2n + Djg
(’-e — im/2n 4 l’el‘rr/lk- l)

_ k—1
= (e in/2(2n + 1)’ein/2 )

-—1F 9k~
a~ b,
and

(el1r/2(2n+ 1)’1)E(e—i1r/2(2n+ l)’l) — E .
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Hence (¢™2@*+ D 1)eN sy xsuc (D). We now have

1

(sha(—jly=a"",

GDb(—j1)=b"

Hence ( j,1)eN su(2) xsuc) (D).NowD¥,, . 1, is generated
by €72@"*+D  and j, therefore D ¥u,. ) X{1}
<Nsuayxsuy (D). It follows that  Ngyepyxsuc) (D)
=D3¥on+ 1 Xsua (51,

NSO(4) (D ;"(2n+ 1) XZ')

D
= NSU(Z)XSU(?-)/Zz (Z—z)
— Nsuayxsu@ (D)
Z,
3
Isom (————S———)
’ er

2k@2n+ 1)
’
NSO(4) (D 2*2n + 1) XZ,)
= Do

2k (2n+1) XZ
NSU(Z)XSU(2) (D)/Z2
D/,
- NSU(Z)XSU(Z) (D) .
D

QED.
A particular embedding of T/ .. XZ, inSO(4) is T /Z,,
where T7<SU(2) XSU(2), is generated by
a = expl (7/3)(i +j + k)/\B], exp[i(7/3%)],

b= (jl1), é¢=(k1), and d= (L"),
for k>2.
Theorem 3.4:
s ) (T*XSHU(O*\T*X;jS")
Isom = = .
(Tx;.s"xzr T

Proof: Clearly, T<T*XZ, .,  Let (h,h,)
€Nsuyxsu (1) Then (Ay,h,) (81’82) (h Lk Vel im-
plies h,gh;'eT* and hg,h; ‘€L Therefore

NSU(Z)XSU(I) (T')<0 ><JVSU(2) (S )
Suppose (1, je' )eNSU(z)XsU(Z) (7). Then

(1,je®)a(1, — e~ ) = (exp[ (w/3) (i +j+ K)/\B],
exp[ — i(m/3)DeT,

2. 3kre

Theorem 3.5:
Nsueay (81 XNguay (S,
Nsua, (SN XSU(2)/Z,
Isom(L( p,g)) ={04)/Z,, ifp=2,

(§'XSHUj(S' XS (S X jSHu(jS'XSNHIT/Z,

(S'%xS"HUj(S'xS")/Z,

Proof: Let S° = {(20,2,)€C?|2o2¥ + z,2¥* = 1}. Then y(zq, z,) = (27 z,,
= y " for some n. This is equivalent to gy = y"g, where

1

gv8
. a b c
8= _b* g*)\_ag=
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‘i))eSU(z)xSU(z)
c

otherwise.

which implies
(exp[ (27/3) (i +j + k) /B3], 1)eT .

Now T'* is generated by exp| (27/3) (i +j + k)/43] and .
Hence it follows that 7* X {1}< T, which implies that T'is a
direct product of T* and a cyclic group, a contradiction.
Therefore (1, je' )eNSUQ)XSU(Z) (D.

Suppose (1, je)eNsu 2y xsue) (D), where (4, e*)
€ Nsuezyxsu (T). Then (r=%e™* )GNSU(z)XSU(Z) (D).
This implies (1,je°~¢) GNSU(Z)stm (T), a contradic-
tion. Therefore Ngy 5y xsu(2) () cannot contain elements of
the form (1, je'?), where (2,e*) is in the normalizer.

Now, we look at the action of (1,6 and (e, je*®) on
the generators: (1,6)a(l,e ) =a, (1,6°)b(1,e~*) = b,
(1,e?)é(le®) =&, (1,e°)d(1,e ) = d. Thus

( iT/4 ]ere)a(e i1r/4’ _ x(?]) — 6—155,
(enr/4 jete)b(e i‘ﬂ/4, e—t@ ) — C,

( ir/4 jexe)c(e 117'/4, _10 )

(em'/4, jete)d(e — l1r/4’ _ )

Hence (1,€"), (e"”/“ Jje' )eNSU(z,XSU(Z)(T), and

T<Nsy 2y xsua (). Therefore T* XS ' <Ngy 2y xsuca, (1)
Now O *is generated by T * and ¢"™*. Therefore elements of
O *X Ngy(a, (S!) withtheform (7, je*), wherezeO *\ T *are
in Ngy 2y xsu2) (7). It follows that

3 * * * i1
Isom [—5 _ (T*XSHUONT*XJS!)
Tz’;.a"xzr r
Q.E.D.

The lens spaces L( p,q) are the spaces .S/, Z,, where the
Z, action is generated by 4(zo,2;) = (62 z,,6*™*?z,). The
positive integer g tells how Z, is embedded in SO(4), and
satisfies 0 < g < pand ( p,g) = 1. Clearly, this action is equi-
valent to the action on S where

Z, z
(20:21) = o oo

and

em‘(q + /p 0 em'(q - 1)/p 0
0 e— "+ 1/p ’ 0 e~ ™@—/p

is an element of SU(2) X SU(2). Every space S*/Z, with Z,
acting freely as a subgroup of SO(4) is equivalent to a lens
space. The isometry groups of lens spaces are calculated be-
low.

if g¢>=1mod p and ¢ = + 1 mod p,
ifg= <+ 1 mod p,

if p>2and ¢>= — 1 mod p,

e™?z,), geNsow, (Z,) if and only if
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with action given by

a b Zy F4 c* -
820 2) = —b* a*/\—zF z§ LI

; 3 ) . a b e21rl'/P zZ,
gy(20,2)) = (™7 2,€" ™7 2,) = ( —b* at) ( — e~ i/ 2%

_ a
8v(202,) =

V' &(z02) = ( e*™ P — adz, + bdz¥ + acz, + bcz¥)

APz \ (et —
e- 27i/p zg d* ¢ ’

c*e*™? 2, — be*e ~2™/P z¥ + ad *¢*™? z, + bd *e = *™? zg‘) (3.4)
ade*™? 7, + bde = *"9P 2¥ + ace™? z, 4+ bce ~ P28 )’ '

&™P(ac*z, — bc*z, + ad *z, + bd *z3)

(3.5)

Now, find for what values of a, b, ¢, and d there exists an # such that gy = ¥” g. This means (3.4) and (3.5) are equal,

which implies

ac*@™Pz, — bc*e = 2™/z¥ 4 ad *¢*™Pz, + bd *e = *"VPz% = e~ *™/P(ac*z, — bc*z? + ad *z, + bd *z¥) ,

— ade®™Pz, — bde ~ *™¥Pz¥ 4 ace*™Pz, + bce ~ *™4/Pz% = *™P( — adz, — bdz¥ + acz, + bez¥) .

These two equations must hold for all (z, z,) € S>. In parti-
cular they must be true for (1,0), (i,0), (0,1), and (0,i).
These values of (z,, z,) give the following eight equations:

ace®™? + bd *e=?™P = ™ (ac* + bd *) , (3.6)
— ade™? 4 bee— 2P = ETIP( _ ad + be) (3.7
ac*e™'? — bd *e = *™P = &™"/P(ac* — bd *) , (3.8)
—ade*™P — bee = 2™P = &™P(—ad —bd*),  (3.9)
ad *e*™’P — pcte ~ VP = 2™"P(gd * — bc*),  (3.10)
ace®™? 4 bd *e ~*™P = ™"P(gc 4 bd *) , (3.11)
ad *é™P 4 bete TP =™P(ad * + bc*),  (3.12)
QCe*™P — pd %o —2mP — 27D (ge _ bd %) (3.13)

Adding equation (3.6) to (3.7), (3.8) to (3.9), (3.10)
to (3.12), and (3.11) to (3.13) implies the following set of
conditions:

2mi/p — g2min/p, ifac*#0,
e = man? ifqd 40,
2mie’r — g2mn/P ifad *£0,
emiar = g2maP ifge#£0 .

Likewise subtracting equations (3.8) from (3.6), (3.9)
from (3.7), (3.12) from (3.10), and (3.13) from (3.11),
gives the following conditions:

e~ /P — g2min/p, if bd *#0,
e~ 2mi/p e21riqn/P’ lf bc;éo ]
e~ TP = Z2mn/P if he¥£()
e~ 2mig/p _ e2"iq"/P, lfbd ‘#o .

Combining the above conditions we have the following.
If ac#0, then

ez-m'(l —n)/p 1

If ad #0, then
e21ri(l —gm)/p _ 1 and e21ri(q— n)/p — 1.

If bd #0, then

eZTrl'(n+ /e _ 1

and &ma( =M=,

and 2™+ /P _ |
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{
If bc #0, then

Amian+1/p _ | and 2T+ O/ — |,

Suppose ac#0 and b #0, then it follows from the above
that emt—nyp _ 1, e2mia(1 —m/p 1, e2mitan+ 1)/p 1’ and
g™ =m/P — | which implies n = 1 — ps, g(1 — n) = pr,
gn+ 1= pk,and g(1 —n) = pl. Now n = 1 — ps implies
qps = pr, (1 —ps) + 1 =pk, and gps =pl. These equa-
tions imply ¢ = p(s+ k) — 1, g=— 1 mod p. Suppose
d #0was also nonzero, then "+ V? =1,Son + 1 = pj,
which is only true for p = 2. Therefore ac#0 and b #0 im-
plies g= — 1 mod p and d = O unless p = 2.

Suppose ac#0 and d #0, then ™! -"7=1,
e2mial —m/p — | @2m(1 —aM/p — | and ™4~ "/? = |. Hence
n=1—ps,q(1—n)=pr, 1 —gn= pk, and ¢ — n = pi,
which implies g=1 mod p. Again, a,b,c,d #0 implies p = 2.
Therefore, ac#0and d #0impliesg=1 mod punlessp = 2.

If we apply the above conditions ac#0 and b #0 to
(3.4) and (3.5) we obtain

_ (ac‘e""'/ P 2o — bc*e 24P z,)
BY(202)) =\ o gamaro 2z, + bee ~*P z% ]’

5(202,) — (ez”""/ P(ac*z, — be* z,)
V8(zo21) = ™ "P(qcz, + bez¥) )’
which are equal for all (zyz,)€.S> when n=1 and
g= — 1 mod p. Likewise, if we apply ac+#0 and d #0, we
obtain
c*e*™? 2, + ad 2™V zl)
ace’™’Pz, — aqde*™?z, |’

. e2™P(ac*z, + ad * z, ))
V(i) = ( E7P(ac%z, — adzo) )’
which are equal for all (zy,z,)eS> when n=1 and
g=1mod p. The above results imply Ngye)xsu) (Zp)
= Nsua, (§1) XSU(2), for g=1 mod p, Ngy(2)xsuca) (Z,)
=SU(2)XNgy(2y(S'), for g=—1modp, and
Nsuayxsueay (Z2) =SU(2) XSU(2).

Suppose ad 70. Now look at Eqs. (3.4) and (3.5). If
b =c=0we have

8y (z02,) = ("
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8y(202)) = (ad *¢™9? 2\, ade’™ ? z,)
and

¥" 8(20,2,) = (€¥™Pad *z,, ™" Padz,) ,
which are equal for all (z,, z,)eS? if and only if # = g and
¢*=1mod p.

Suppose bd #0 and a = ¢ = 0, then (3.4) and (3.5) be-
come

£v(20,2,) = (bd *e~*"'P 28, bd *e ~*™P z3) ,
and

7"3(20»21) - (eZWin/pbd ‘Zg’ e2m’qn/pbdz.ly) ,
which are equal for all (zy,z,) € S°, whenn= — 1.

It follows from the above that
Nsuezy (81 X Nsyry (81,

if =1 mod p

andg 3 + 1 modp,
(S'XSHuj(S'xShH,

if ¢ 5= 1 mod p.

Nsum XSU(2) (zp )=

We have

8Ty (zp2,) = (

and
¥ 8T (202,)
" (ac*z¥ — bc*z¥ + ad *z, + bd *z;)
= ( E™P (— adz8 + bdz* + acz, + bez,) ) '
(3.15)

Evaluating (3.14) and (3.15) at (1,0), (i,0), (O,1), and
(0,i), we have the following eight equations:

acte = ¥™/P 4 bd *e¥™ P = ™™ P(gc* + bd *) , (3.16)
— ade =P 4 bee*™P = ™ P( — ad + bc) , 3.17)
—ac*e P 4 bd *e*P = P™P( —qc* + bd *) , (3.18)

ade ~ ™7 4. pee*™ /P = ™9/P(ad + bc) , (3.19)
— bete =P | gd ¥ = TP _ be* 4 ad %)

(3.20)
bde %P 4 ace®*™4'P = ¢#™"P(bd + ac) , 3.21)
bcre ~ P 4 qd *e*™P = 2™"P(bc* + ad *) , (3.22)
— bde —¥™P | qce®™ VP = ™P(gc — bd) . (3.23)

Adding equation (3.16) to (3.18), (3.17) to (3.19), (3.20)
to (3.22), and (3.21) to (3.23), we have

bd *¢*™P = bd *e*™nP | (3.24)
bee*™P = pee*manp (3.25)
ad *>"9P — gd *e*™P | (3.26)
ace™’? — geetmanp (3.27)

Subtracting equation (3.16) from (3.18), (3.17) from
(3.19), (3.20) from (3.22), and (3.21) from (3.11) we have

(3.28)

ac*e — 2wi/p —_ ac*e2m'n/p ,
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ac*e ~2m/Pz% — bete ~mPz¥ 4 ad %Pz, + bd *¢*™P 2,

— ade —*™/Pz% 4 bde ~*"Pz¥ + ace®™¥? z, 4 bce®™? z,

The above calculations give the orientation preserving
isometries of L( p,q). If p = 2, then L(2,1) = §*/Z, and
1 0 -1 0

1 -1

1 —1 ’

0 1 0 -1
a normal subgroup of O(4). Hence Isom(L(2,1)) = 0(4)/
Z,, which implies L(2,1) has orientation reversing isome-
tries. Suppose p > 2, we would like to find the orientation
reversing isometries of L( p,q). Clearly, every element of
O(4) \SO(4) has the action gT(zyz,), where
T(24,2,) = (28, 2,) and geSO(4). The definition of norma-
lizer implies that g7 €N, (Z,) if and only if gTyT ~'g™!
= 9", which is equivalent to gTy(2,,z,) = ¥ "€T(242,), for
all (z5,z,)€S? and geSU(2) X SU(2).

Now, we express both g§Ty(2,,z,) and ¥'§T(2,,z,) in
terms of

i=(( 5. w5 2)

Z2=

), (3.14)

I
ade— P — gde*menP | (3.29)
bete — 2P — permin/p (3.30)
bde — ™4/ — pge*manp (3.31)

Now, suppose bd * #0, then (3.24) impliesn = 1. Equa-
tion (3.31) gives e ~2"%P = ¢»™%?  a contradiction unless
p = 2, because ( p,g) = 1. Likewise, ifac#0, (3.28) implies
n= — 1 and (3.27) implies £*™? = ¢ ~2™4'P, 3 contradic-
tion. Therefore, bd * = 0 and ac = 0.

Suppose be #0, then (3.30) implies n = — g. Equation
(3.25) implies e>™? = ¢ ~ 2™7/?, which is true if and only if
¢ = — 1 4 sp. Likewise, if ad #0, then (3.26) implies
n =gq. Equation (3.29) implies e ~>""? = ¢>"7/?. Hence
¢’ = — 1+ sp. Therefore gTeNy,(Z,) if and only if
¢*= — 1 mod p. Further, either ad #0 and be = 0, or be #0
and ad = 0 unless p = 2. The action of these orientation re-
versing isometries on S * are given by

81 T(zp,z,) = (ad *¢*™? z,, — ade ~*™/7z%)
or

8 T(zp,2,) = ( — bc*e ~*™4/Pz¥ bce*™? z,,) .
Therefore, Isom(L( p,q)) = Isom*(L( p,q)) for ¢°s%= — 1
mod p and

Isom(L( p,g)) = (S'XSHU(S'XS"

Ul(S'XSHU(S'X jSHIT/Z,
for ¢>= — 1 mod p. Q.E.D.
Table I summarizes the results of this section. The

groups D, T, and (jS'XS") T are defined in Theorems 3.3,
3.4, and 3.5, respectively.
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TABLE L. The isometry groups of spherical spaces M = $°/G.

mM Isom (M)

DY, n»3 Z,XS0(3)

Dt P, XS0(3)

T* Z,X80(3)

o* SO(3)

It SO(3)

Dt XZ,, n>3 Z,XNsy (81
DtxZ, P3X N5y, (S
T*xZ, Z,X Ny, (S
0*xZ, Nsy (81
I*XZ, Nsuizy (81
Dyirniy XLy P= 1 or 2*Q2n+1),p)=1 DYy 1) XNsy(, (S1)/D

T; «XZ, p=1 or 8-3%,p)=1
z,

Z,, ¢=1modp with g + 1 modp
, qg=+ 1 modp with p>2

, ¢=—1modp with p>2

»» Temaining cases

N.NN

(T*XSHYU(O*\T*xjs")/T

0(4)/2,

Nsuay (SN XNy, (S1/Z,

Nspay (1Y XSU(2)/Z,
(S'XSHU(S' XS (S XSS ' XSH]IT/Z,
($'XS"(S'xSY/Z,

V. o Isom(S$2/G) AND =, DIff(S2/G)

The groups 7, Isom (S 3/G) are found using the defini-
tion of 7. The groups 7, Diff (S */G) are given as results of
the weak form of Hatcher’s conjecture.

Strong Conjecture’® Isom(S>/G)~Diff(S*/G). The
motivation for the conjecture is the following. Suppose
G = 1, then the spherical spaceisjust.S 3, Isom (S 3) = O(4),
and Hatcher!! has shown that O(4)~Diff(S 3). Therefore
the conjecture holdsfor G = 1.IfG # 1, then S *is the univer-
sal covering space of S>/G and isometries of S*/G lift to
isometries of S 3; likewise diffeomorphisms of S /G liftto.S 3.
Because the diffeomorphisms and isometries lift and O(4)
~Diff(§3), it seems feasible that Isom(S>/G)
~Diff(S$3/G). So far the conjecture has been proven for § 3,

8§32y, S°/D s, 1,38 /D iy s 1, X2y, and for S°/D Y,
XZ,, m#2, by Ivanov.'* It turns out for the calculations we
do all that is needed is the following weaker conjecture.

Weak  Conjecture: (i)  w,Diff(S%/G) =,

Isom(S*/G), (ii) w, Diff(S3/G) has the same number of
generators as 7, Isom(S3/G).

After each theorem giving 7, Isom(S3/G), there is a
corollary stating part (i) of the weak conjecture in cases for
which 7, Diff(S3/G) has been calculated by Rubinstein.
The last theorem in this section (Theorem 4.6) uses lens
spaces to prove that the only spaces with orientation revers-
ing diffeomorphisms are lens spaces. Moreover, this result is
independent of the conjecture. Table II summarizes the re-
sults.

TABLE I1. Topological structure of the isometry groups of spherical spaces M = §°/G, and indication of which conjecture is known for each space.

Orientation
Topology of reversing

M Isom (M) 7, Isom (M) Conjecture diffeomorphisms
D2, n»3 Z,XRP? z w No
Dy P;XRP? P, w No

T* Z,XRP? zZ, Open No

o RP? 1 w No

I+ RP? 1 Open No
D3 XZ,, n>3 Z,XZ,xS"* Z,%XZ, S No
D2xZ, P, XZ,xS! P;xZ, w No
T*xZ, Z,XZ,xS! Z,XZ, Open No
O*XZ, 22xS! Z, w No
1*Xz, Z,XS' z, Open No
Dtz sy X2y P>1 Z,XZ,xS§' Z,XZ, 8 No

T; wXZ, p>1 Z,xs! z, Open No

Z, Z,xRP>*XRP? VA S Yes
Z,, ¢=I1modp Z,XZ,xXS'XS! Z,X2, w No

with ¢5= + 1 mod p

Z,, ¢g=+1modp with p>2 Z,XS'XRP? z, w No
Z,, ¢=—1modp with p>2 Z,XS'xS! z, w Yes
Z,, remaining cases Z,XS'XxS! z, w No

1 Z,XS*XRP? z, S Yes
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As an example of calculating 7, Isom(S3/G). Look at
G = Z,. Then Isom(S%/Z,) = O(4)/Z,. The identity com-
ponent of O(4)/Z, is just SO(4)/Z,; hence

7o Isom(S3/Z,) = O(4)/Z,/S0(4)/Z,
=0(4)/80(4) =Z,.

Looking at Table I, most of the calculations will be this easy,
and the following theorems give the results.

Theorem 4.1:
7o Isom(S?/G)

(P, ifG=D},
PyxX Z, ifG=D¥§XZ, withp>1,
Z,XZ,, ifG=D} XZ, n>3,

=4 or T*XZ,, withp>1,
z, ifG=D%,,n>3,T*0*XZ,,

orI*XZ, withp> 1,

L ifG=0%orl*

Proof: If GSU(2) and noncyclic, then Theorem 3.2
implies

Z,XS0(3), ifG=T*orD%, n>3,
Isom(S°/G) = 1P, xS0(3), ifG=D?¥,
SO(3), fG=0%*orIl*

Since SO(3) is connected, the only disconnected part is due
to the finite groups P; or Z,. Therefore

Z,, fG=T*orD¥,h6n>3,
7o Isom(S?/G) ={P,, fG=D%,
1, ifG=0*orl*
If G=H XZ,, where H<SU(2), and H is noncyclic,
then Theorem 3.2 implies

[Z,X Ny (S1), ifG=T*XZ,
or D}, XZ,, n>3,
Isom(S%/G) ={ P,XN,, (S), ifG=D}xXZ,,
N (S, ifG=0*xZ,
L orI*XZ,.
Clearly, N,,;, (S ') has two components. Therefore
Z,XZ, ifG=T*XZ,
5 or DY, XZ,, n>3,
o Isom(S™/G) =1 p w2, ifG=D3xZ,
z, ifG=0%XZ,or I*XZ,.
QED.

Corollary 4.2: m, Diff (S */G) = m, Isom(S*/G) for G
#T*XZ, or I*XZ,.

Proof: See Rubinstein'® and Theorem 4.1 for G=D ¥,
XZ,and D, . ,, XZ, with p>3. See Rubinstein and Bir-
man'® and Theorem 4.1 for G = 0 *XZ, with p>1. QE.D.

The groups 7, Isom (S >/ G) above were easy to calculate
because the isometry groups were just products. For
D xzn 1, @nd T;  this is not the case and it takes a little

more work.
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Theorem 4.3: 7, Isom(S°/D s, .\ XZ,) =Z,XZ,.

Proof: Let a=[(1,))], b=[(e"**+1]1], and
c=[(e™**"+D, j)], where [( )] means equivalence
classes in 7, Isom (S 3/G). Clearly, no two of the above ele-
ments of 7, Isom (S 3/G) are connected, or connected to the
identity.

All elements of 7,Isom(S>/G) are of the form
[ (eivrs/2(2n o+ l)’eie) ]’ [ (ei1rs/2(2n + 1)’ei0j) ] , [ (et‘m/2(2n . l)j’eie ]
or [(m22n+ D ;0% ], where seZ and GeR. The classes
[ (™22 + D )] are the same because [ (¢722"+ 1) o) ]
= [b][(em™2"+1 ¢®)], where b= (j,e™* ). The
classes [ (eiﬂ's/Z(Zn -+ l),eisj) ] and [ (eiﬂ's/2(2n + l)j’eiaj) ] are
equivalent for the same reason. So without loss of generality
we only need to conmsider [(e™2?"+D )] and
[ (gimr2n + 1)’8:@.?]-) 1.

If 5 is even, then [ (e™/22"+ 1 ¢] is connected to the
identity. This is true because if we define £ [0,1]
—Isom (S 3/G) by

f(/{) — [(eiws/2{2rs+ !)’e:w +/1(21r—6)))]’
(1) = [(e™22+D 1)2]
— [a—s/zéz"-‘][(efwv2<2n+1),1)]
=[(1,1)], ifs/21isodd,
— [a—s/2] [ (eim/2(2n+ 1)’1)]
= [(1,1)], ifs/2iseven,
f(O) — [(eim/2(2n+1),ei9] .
This is the path that is connected to the identity.
If 5 is odd, then [(e™/2®"+D ¢9)] is connected to b.
Because, using the fabove we have
f(l) — [(eim/2(2n+ l),l)] — [&l —3/2] [(eiﬂs/2(2n+ 1)’1)]
— [(efﬂ/2(2n+ 1),1)] .

If s is even, then [ (™27 D ¢ j)] is connected to a.

Let g: [0,1]—>Isom(S*/G) be defined by

g(,{) = [(eivrs/2(2n+ 1)’e«0+i(27—9)?]~)] ,

g(l) — [(eiws/2(2n+l)’j)] ,

g(l) = [a="1[(e™2** D, )] = [(L))], ifs/2iseven,

g(l) - [6—3/252"“] [(eirs/2(2n+ 1),}-)]
=[(1,/)], ifs/2isodd.

If s is odd using g it follows that [ (e™2@"+ D )] is
connected to c.

Clearlya® = b? = ¢*> = 1. Thereforem, Isom(S>/G) has
four elements {1,2,b,c}. It follows that 7, Isom(S3/G) = Z,

X Z,. Q.E.D.

Corollary 4.4:

3

1, Diff (-——S-——)
2*Qn+ 1) X Zp
3
= 7 Isom (-—,—E————-—) , p>»l.
22 + 1) X Zp

Proof’ See Rubinstein'® and Theorem 4.3. QE.D.
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3
Theorem 4.5: 7, Isom _ 57 )= Z,.
Tx';-s“ X Zp

Proof: Let a=[(e™*j)]em,Isom(S*/G) with
G=T..XZ, Thend®=[(i, — )] = [@*Be] [, — D]
=[(1,1)], where a=(exp[(a/3)(i+ j+k)/\3],
exp(in/3%)),b = (j,1),and é = (k,1).Soa is not connected
tothe identity. Therefore g has order twoin 7, Isom(S3/G).

There are two types of elements in 7, Isom(S3/G),
namely [(z,¢)], teT*, and [ (¢, je®®) ], 1 €0 * \ T*.If they
areoftheform [ (2,¢°)],2€T*,thent = + 1, +i, +J, + k,
W1 +i+ j+ k), W1 —i+ j+k), or
W(—14i4 j+k),etc

If t is of the form i, j, k, etc, then let f(1)
= [(,e9*)], £ [0,1] >Isom(S5%/G), f(0)
= [(4,¢9], and f(1) = [(51)] = [(1,1)].

If ¢ is of the form §(1 +i+ j+ k), (1 —i+j+ k),
A +i—j+k), etc., then let SA)
= [(t,exp {0 — A(8 + [7/3*]s))) ], where seZ. We have
£ = [(,¢™)] = [(1,1)]. This implies all elements of
the type [ (1,¢) ], teT * are the identity in 7, Isom (S */G).

If tcO*\T* then [(tje®]=][("e""]
X [ (&%, je®®') ], where (¢, je®®)eT. Hence all elements of the
form [(t,je®)] are connected to [(e™*j)]. Therefore

7o Isom(S%/G) = Z,. Q.E.D.
Theorem 4.6:
my Isom(L ( p,g))
Z,XZ, if¢g’=1modp withq + 1 modp,
=1Z, if = — 1 mod p withp > 2,
Z,, otherwise,
and
7o Isom (L ( p,q))
Z,%XZ, ifg*=1modp withg % + 1 modp,
=11, ifp=2,
Z,, otherwise.

Proof: Suppose p = 2, then Isom(S°/Z,) = 0(4)/Z,
and Isom™* (S3/Z,) = SO(4)/Z,. Because SO(4) is con-
nected and Z, acts freely on SO(4), SO(4)/Z, is connected.
Since SO(4)/Z, is connected, it follows that the only discon-
nected part of Isom(S>/Z,) comes from the orientation re-
versing isometries. Hence, the identity component of
Isom(S3/Z,) is just Isom™* (S */Z,). Therefore,

Oo4/z, _ 04 _ 7z
SO(4)/Z, SO(4)
and 7, Isom™* (S3/Z,) = 1.
Now suppose p>2 and ¢° % — 1 mod p. This means
there are no orientation reversing isometries (Theorem 3.5),
soIsom™ (L( p,q)) = Isom(L( p,q)). Ifg= + 1 mod p, then

Isom(L( p,)) = Ny, (S XSU(2)/Z, .

o Isom(S3/Z,) =

2 s

|

Clearly,
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Clearly, the identity component of Ngy,,, (S!) XSU(2) is
S'XSU(2)and Z,<S ' XS '<S ' XSU(2). From this, it fol-
lows that S'XSU(2)/Z, is the identity component of
Isom(L( p,q)). Hence,

o Isom(L( p,q))
_ Nsyry (S")xsU(2)/z,
§'xSU(2)/Z,
_ Nsuy (S xSU(2) _NSU(z) (S1) SU(2) _,
~ T §'xsu@)  S? st B

for g= + 1 mod p with p > 2. If g’=1 mod p with g~ + 1
mod p, then
NSU(Z) (Sl) xNSU(Z) (Sl)

Z .

P
Here S'XS! is the identity component of Ngy,, (S1)
X Nsuqay (S1). It follows that S'XS'/Z, is the identity
component of Ngy 5, (S') XNy (S ')/Z,. Therefore,
(Nsu) (81 XNsyz, (SH)/Z,
(S'XSV/Z,)
_ Nsuy (") XNsyezy (S1)
Sixs!
_ NSU(Z) (Sl) NSU(2) (Sl)
T s T s
=7Z,XZ,,
for g?=1 mod p with ¢ # + 1 mod p. If ¢ does not satisfy
either g= + 1 mod p or g= + 1 mod p, then
Isom(L( p.g)) = (S'XS")Uj(S'xS")/Z,,
whereZ,<S'XS"',and S' XS 'is the identity component of
(S'XSYH uj(S'%S!). Moreover, (S'XS) uj(S'XS?h)
has only two components, namely S ' XS ! and j(S'XS").
It follows from the above that S'XxS'/Z, is the identity
component of Isom(L( p,q)). Therefore, 7, Isom(L( p,q))
=Z,, for ¢* %= + 1 mod p.
Finally, if p> 2 and ¢°= — 1 mod p, then
Isom*(L( p,g)) = (S'XS") Uj(S'XS")/Z,.
Hence, 7, Isom™ (L ( p,q)) = Z,. Recall from the proof of
Theorem 3.5, that
8:T(zp,2,) = (ad *¢*™¥P z,, — ade ~*"7 z¥)
and
8:.T(zp,2,) = ( — bc*e —*™9Pz¥, bce*™? z,))

are the two types of orientation reversing isometries. Taking
the product of these two elements gives

(8. 7) (8.7 (2p2y)
— (aceZm'q/pd *bezari/pzo,acehriq/p db *o— 27i/p 21) ,

where ( g,7) ( g,T) is equivalent to

Isom(L( p,q)) =

7o Isom(L( p.g)) =

)

(acez’”"’/ ’ 0 ) ( Zy 21) (d *be P 0
0 atcte = P)\ —zt z§ 0 db*e =2
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ace>™P 0 d *be*™/P 0
0 a*cteYav)’ 0 bd *e—2/?

is an element of the identity component S'xS'/Z, of
Im(L( p,g)). Therefore, g,T is the inverse of g,T in
i

( 0 —e“z”‘/"ad) z, oz ( 0
e2m‘/p a * d * 0 _ Z"" 23‘ e2m'q/p a d *

Clearly
0 —e~ Zﬂi/pa 0 e 2m’q/pa*
(PP T )

is an element of j(S'x.S'). It follows from the above that
o Isom(L( p,q))is generated by g, T.. Since g, T squared is in
Jj(S'xS"), it follows that g,7 has the order of 4 in
mo Isom(L( p,q)). Therefore, =,Isom(L(p,q))=12Z, for
¢°= — 1 mod p with p>2. QED.
Corollary 4.7: w, Diff{L ( p,q)) = m, Isom(L ( p,q)).
Proof: See Hodgson and Rubinstein!” and Theorem

4.6. QED.
Corollary 4.8: The only lens spaces with orientation re-
versing diffeomorphisms are ones with g>= — 1 mod p.

Proof: Corollary 4.7 implies every diffeomorphism is
connected to an isometry. Hence L( p,g) has orientation re-
versing diffeomorphisms if and only if it has orientation re-
versing isometries, because two diffeomorphisms are con-
nected only if they are both orientation preserving or
reversing. The only lens spaces L ( p,g) with orientation re-
versing isometries are ones with g= — 1 modp. Q.E.D.

Corollary 4.9: If G is a noncyclic group which acts freely
on S3, then $3/G has no orientation reversing diffeomor-
phisms.

Proof: Let G be a noncyclic group acting freely on .S 3.
Then Theorem 2.2 implies G is isomorphicto D ¥,, T*, O ¥,
I, D ;"m o’ T, ,«, or the direct product of one of these
with a cyclic group of relatively prime order. Each of these
groups contains a Z, subgroup. We look at the presentations
of these groups in Sec. IT and observe that a Z, subgroup is

generated by x2* *forD *c2m 4 1) ARA DY X in the other cases.
Using the relations given in these group presentations, it can
be shown that the Z, generated in the above way is conjugate
to any other Z, contained in these groups.

Given a free action of a noncyclic group G on S 3 there is
an induced free Z, action on S, because Z,<G. From the
above, it follows that the map p: §3/Z,—S3/G defined by
P ¥1) = [xlc is a well-defined covering map. (Here [ y1]
denotes the equivalence class of yeS > with respect to the Z,
action and [ y] denotes the equivalence class in S */G.)

Now, let 2 S 3/G—S 3/G be a diffeomorphism of S*/G.
Then p = pfis a map of S3/Z, into S3/G

4
S3/2, - 8%/G

P F

S$¥G
From the lifting theorem, Theorem 2.4, j lifts to a map fsuch
that
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o Isom(L ( p,q)). The square of g, T is
(8. D*(zp2,)
— ( — aZe — 21ri/pe21riq/pzo*’ — d 2e — 27i/p e~ 2wig/p Zf),

which is equivalent to

— e ma/pyk g *

0 ) '

commutes, because all Z, subgroups of G are conjugate to
each other in G. Therefore, every diffeomorphism of $°/G f
lifts to f'such that the diagram

¥
Sz, — S3%1Z,

4

f
§*G — S%G

p

commutes. The degree®® of the composition of maps is given
by deg(gh) = deg(g) deg(h) (see Ref. 29, p. 268). Apply-
ing this to the above commuting diagram implies deg( f)
deg( p) = deg( p) deg(f). Hence deg( f) = deg( /).
Now, supposef: S >/G—S /G is an orientation reversing
diffeomorphism. Hence deg( f) = — 1. Therefore, deg( /)
= — 1, which implies S */Z, has orientation reversing dif-
feomorphisms, when S3/Z, is just a lens space L(4,q) (see
Rubinstein’®). The only allowed values of ¢ are 1 and 3.
Neither g value satisfies g>= — 1 mod p. Hence Corollary
4.8 implies $°/Z, has no orientation reversing diffeomor-
phisms, a contradiction. Therefore, S3/G cannot have any
orientation reversing diffeomorphisms. Q.E.D.
Table II summarizes the results of this section. Under
the column labeled conjecture, “W”’ means the weak conjec-
ture holds, “S” means the strong conjecture holds, and
‘““open” means it is not known at the present time if the con-
jecture is true. All results given in Table II are independent
of the conjecture.

V. m, Diff, (S3/G)

Let M be a connected manifold. Define a projection p
from Diff(M) to M by p(f) = f(x,). This projection pro-
duces a fiber bundle with total space Diff (M), base space M,
and fiber Diff, (M). Since it is a fiber bundle, we have the
following exact sequence of groups:
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w— 7; Diff, (M)—m; Diff(M)—m, M
— m;_, Diff, (M)— ... —m, Diff, (M)
— 7, Diff(M)—1.
The only part of this sequence we use is
7, M —, Diff, (M)—m, Dif(M)—m M
— o Diff, (M)—m, Diff(M)—1.

Associated with a manifold of the form S3/G is the fiber
bundle p: §°>—S 3/G and the sequence

—> 17-,.G—.m',~S'3 —>m.S*/G—>m_,G
— e > TGS 2 — 7S /G,

where 7,G =G and 7,G = 1 for all i>1, since G is finite.
Hence 1» 7,S* — 7,8%/G — 1, for all i>2 and 7,S°/G
= G. This implies that 7,5>/G = 7,5 > = 1. The exact se-
quence we are interested in is

Py,
1— 7, Diff, (M) — m, Diff(M) — G

N i

: o
— T, Diﬂ'xo (M)— 7, Diff(M) —> 1.

The above sequence is exact, so ker i, = Im d, , and ker Oy,
= Im p, . Combining this with the fact that the image of a
homomorphism is the domain modulo the kernel we have

keriy, =Imdy, =G /kerdy, =G/Imp, .
The sequence

1—ker iy — m, Diff, (M)— m, Diff(M)—1
is exact. Since

keriy, =G/Imp, ,

‘we have

s,
1-G /Impy — 7, Diﬂ',\co (M) - 7, Diff(M)—1 (5.1

is exact. In order to calculate Im p, and 7, Diff, (M) itis
necessary to find out another relation between 7, (M,x,) and
o Diff, (M).

Given any homeomorphism between a manifold and it-
self 1 M—M that fixes a point x,, i.e., f(xo) = X, there is an
induced automorphism of 7, (M,x,) denoted by f, . Further,
if two such homeomorphisms are homotopic, then the in-
duced automorphisms are the same. Hence y: 7, Diff, (M)

— Aut 7, (Mx,), where ([ f1) = f, isawell defined ho-
meomorphism. Suppose y([ f]) = y([ g]), where both f
and g are orientation preserving and M = 5°/G. Clearly, f,
= g, . This combined with the following lemma implies

f~g

Lemma 5.1:Iff, g:S */G—S >/ G are orientation preserv-
ingand f, = g, ,thenf~g.

Proof: S*/G can be thought of as a CW complex. Let X!
be its one-skelton, f|x: =~ g|x: because fy = g, (see Ref.
25, page 194). Now f'| x: = g|x- because the obstruction to
deforming f into g restricted to the two-skelton lies in the
second cohomology group of S 3/G with local coefficients in
m,(S3/G) = 0 (see Ref. 25, pp. 183 and 193). Finally, f | .»
=~ g| - if and only if there is no obstruction to deforming f
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into g in the third cohomology group of $3/G with local
coefficients in 7,(S >/G) = Z. The obstruction is just the dif-
ference of the cohomology classes induced by the two maps f
and g. Since both f and g are orientation preserving, their
degrees are both equalto + 1, and they both must determine
the same class in H *(S3/G,Z). Therefore the obstruction is
zero. Since K ? is S /G, fis homotopic to g. Q.E.D.

Homotopy implies isotopy when the weak conjecture
holds; therefore y([ f]1) = y([ g]) implies [ /] = [ g] if we
look at y: Diff,” (M)— Aut 7,(M,x,). Therefore ¥ is one to
one on 7, Diff,} (M). The fact that y is one to one on
7o Diff;} (M) means Im y is a subgroup of Aut 7, (M,x,).

Given [ fleDiff* (M) there is an induced homomor-
phism f, : 7 (M,x,) — m, (M, f(x,)). Since in general an
element of Diff* M does not fix x,, f;, is not necessarily an
automorphism of 7, (M,x,). By moving the base point f(x,)
to x, via conjugation by an element of fundamental group,
i.e., an inner automorphism, (M, f(x,)} can be mapped to
m(M,x,)., Therefore it follows that #: 7, Diff ¥ (M) — Out
1, (M,x,) where 7 is y after moding out by Inn 7, (M,x,). It
follows that 7, Diff* (M) is a subgroup of Out 7, (M,x,).

We now use the above information to find Im p,_ in se-
quence (5.1). The homomorphism J, maps each
gem, (Mx,) to an equivalence class of diffeomorphisms in
7, Diff,} (M). By exactness iy d, = 1; hence the action of
dy, () as an outer automorphism of 7, (M,x,) is trivial. It
follows that the action of d,, ( g) on,(M,x,) is given by the
inner automorphism d, ( g)h = g'hg’~", where for a fixed
gem (M,x,), g is a fixed element of 7,(M,x,) and 4 is an
element of 7, (M,x,). Therefore, the image of 7, (M,x,) in
o Diff ., (M) is contained in Inn 7,(M,x,). The group of
inner automorphisms Inn 7, (M,x,) is equal to

(M, x,)/Center(m,(M,x,)).
Since the image of 7, (M x,) is contained in Inn 7, (M,x,), it
follows from Theorem 2.1 that

Im 3, = A /Center(m,(Mx,)),
where A<, (M,x,). Hence
_ m(Mxy) _ A .

Center(7,(M,x,))

Suppose 4 #1,(M,x,), then

|4 | <|m (Mxo)]|,

Im p, <Center(m,(M,x,))
(See Ref. 30). Hence

|m p, | <Center(,(M.xo))) -
Therefore

|4 || Im py, | < |Center(m, (Mxo))| |7 (M. x,)] ,
a contradiction to

A _mMx)
Center(m,(M,x,)) Im Py,

Therefore 4 = 7,(M,x,;) and Im p, = Center(m,(M,x,)).
So sequence (5.1) becomes

1 — Inn(m,(M,x,)) — 7, Diff } (M) — 7, Diff " (M) — 1,

where
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7o Diff (M) <Aut{m, (M,x,))

and
e DIff " (M) <Out{r (M, x,)} .
Theorem 5.2:
[0, ifG=D¥*T* orO0*
D,,, ifG=D%, 6 n>3,
1, ifG=1T*,
7o Diff} (S%/G) ={ 0 XZ,, fG=D}XZ,T*XZ,
or O*XZ,,
I XZ,, ifG=1I1*XZ,,
\Din XZ,, ifG=D% XZ, n>3.

Proof: If G=0%* or I* Theorem 4.1 tells us that
7, Diff(S§3/G) = 1. Hence our sequence is 1— InnG
—r, Diff, (M)—1, and 7, Diff, (M) =Inn G.

If G=D¥* or T* the sequence is 1—InnG
—o Diff, (M)—>Out G— 1 because OutD§ =P, and
Out T* = Z,, and Theorem 3.1 gives 7, Diff(S*/D*) = P,
and 7, Diff(§°/T*) = Z,. Hence m, Diff, (M) = AutG,
where AutD¥=0 and Aut7*=0. Therefore,
7o Diff, (M) =0forG=D¥orT*

If G=D% ={(x,p: x*=1,y"=1, pxp~ ' =x71"),
n33, then Theorem 4.1 implies 7, Diff(M) = Z,. The action
of m, DIff(M) on 7,(M,x,) is given by e™/*"de ~"/*" = 4
and e™?"Be ~ ™/?" = AB, where A = ¢™" and B = j. All the
elements of D ¥, are of form x" and xy. To find the action of
Inn D}, on DY, just conjugate the generators by the ele-
mentsof DY,

Xxx~"=x, xyx "=x"y,
and
Xyxy~'xTT=x"" xpyyTxTT=x"y.
Clearly all inner automorphisms are generated by
_ [f(x) =X,
SN =x%,
and
h(ix)=x"1,
- [h( =y

where @ and b satisfy the relations a"=1=5? and
bab ~' = a~'. The action of 7, Diff (M) on D ¥, is given by
de {k(x) =X,
k(y) =xy,
2 {kk(x) = k(x) =x,
T kk(p) = k(xp) = k()k(y) =x7,

hkhk(x) = hkh(x) = hk(x~")
=hik(x) y=h(x"") =x,

bdb—'d =
hkhk( y) = hkh(xpy) = hk(x"y)

=hk(x)Tk(p)=h(x""xp) = y.

Hence d > =a and bdb ~'d = 1. Therefore, 7, Diff, (M)
= D,, for n>3. Q.E.D.
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Theorem 5.3:

. s3
o Diff (D )=D4(2n+1) XZ, .

Proof: Recall D’

*on+ ) T (x,y:x2k= L yreli=1,
xyx~!' =y~ '), Every element of D, .\, is of the form
y'x’, where s and 7 are integers. If m is even, then ( y'x*)™
= y(rm/2){1 + ( — 1)°)}x*™, and if m is odd, then ( y'x*)"
=yp(r/2}m+ 1+ (m— 13— 1)Ix*". The center of
Dk, 1, 1s the subgroup with elements y’x” such that

(¥x) y?xUx "y~ *) =yPx9 for all pand g, and
YXpPxIx Ty S = YTy PxI Ty S = PPyl gy —s

xZ,

’
*n+ 1)

=ysyp( - l)ry—s( —Dayg
=y5(1 — (- I)q)yp(— Dryq
=pPxi, (5.2)

for all p and g. Expression (5.2) holds only whens = O and »
is even. Therefore, the center is generated by x % and is a
cyclic group of order 2~ !. It follows that the center of
XZ,i8Z, 1 XZ,. The group

Fd

@+ 1)
’

2520 + 1) XZP
sz—l XZP

isjust Dy, 4 1y, since (D 5y, ) XZ,)/Zy— 1 XZ, has two
distinct types of elements y* and y”x mod Z,. . XZ,. The
explicit form of inner automorphisms is found by conjuga-
tion on the generators x and y by elementsof D . , . | XZ,.
The Z, part does nothing since it commutes so we only need
to look at elements in D, , ... The general element in
D iiynyy, is of the form y?x9 so (y"x)x(x~%~7)
= y¥xand (y’x)y(x " ~F) =y 4

Therefore, all inner automorphisms are of the form

f(x)=y*xandf(y) =y*', wherepis an integer. Let

— 2 —
(x) =y, and bz{g(x)~x,

Inn(D

2%(2n + 1)

XZ,) =

a =
) =y, g =y~ '.
Then a and b generate Inn D ., ., bi=1,a""'=1,
andbab ~'=a" .
The group
7o DIfi(S*/D sy, 1, XZ,) = L, X1,

is generated by (¢”/>®"+ " 1) and (1, ), see Theorem 3.3.
The action of (¢™?@"+ 1 1) is given by
(eiﬂ/2(2n + 1)’1) a(e e iT/2(2n + l),l )
— (ei1r/(2n+ l)’ — 1) =a ,
(eiw/Z(Zn + ”,1 ) S(e —iT/2(2n + 1)’1 )

: . i gk — 1 L7 gk —1
— (em/2(2n+ I)Je in/2(2n+ 1), em/l ) =ab2 b ,

where = (™" +D _ 1) and b= (j,e"””k”). Here
g(@) =aand g(b) =ab* ™" b. The action of (1, ) is given
by

(Lpa(l,—j)=(7**+P, _1)y=a,
(Lpb(l, —jy=a"+'5% """,
Let h(@) =aand h(b) =a**' 5% "5 !, then
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c= [h(") =" [g(x) =y x,
hO) =y, 80 =y.

Now the relations between the generators are derived:

o= [hf(x) =h(yx) = (hO)Ph(x) =y*x* ' x71,

h(y) =h(y) =y,
) =f & x) = P !
— =y(2k~l_1+1+(2k_l—1—1)(—1))x2k_lx*l
ac= =y2x2kklx_l,
m=rf»=y,
ch = [hg(x) =h(x) =x"""x"1,
hg(y)=y~1,
be= [gh(x) =g(x* ' x ) =x"""x""1,
gh(y) =g(y) =y~ ',
kk(x) = k(yxzk—!+1) = k( y)(k(x))zk"'+l
d? =J’y(v2)(2k-l+‘+‘+(2"“+1—1)(—1)2k_l*‘)
- Xx(zk-l+l)2:
kk(y) =k(») =y,
- [kk(x) =yy(1/2)2x(2k—l+l)z=y2x,
kk(y) =y,
2= [hh(x) =A==y T oy
(hh(x) =h(x¥ 'Y =y(x2"-‘—1)zk—l+1
de =] =yx~',

Lhk(p) =h(p) =y,

rkh(x) =k(x2kvl+l) =y(x2k_|_l)2k—|+l
cd = ¢ =yx_l

Lkh(D) k() =y

(ghgk (x) = gkg(x® ™' +1)
= gk(g((x)* 'Y
bdb ~'d = ¢ =gk(y~'x® 7'+,
gkgk(y) =gky(y) =gk(y~") =g(y™")
L =y,
rgkgk(x) =gk(y" X2 1
= g((k() kP
bdb —'d = { =g(y—-|(yx2“—‘+1)2“—‘+1)
=gy~ yx)=x,
L ghgk(y) =y.

Hence, ca=ac, bc=ch, d*=a, ¢* =1, dc=cd, and
bdb ~'d = 1. Therefore, 7, Diff,;} (S°/G) =Dy, , 1y XZs.

The above technique used in Theorem 5.2 and 5.3 will
work for any space S >/G, but it becomes quite lengthy when
the group G is complicated as in Theorem 5.3. There is an-
other technique that is simple to apply when the group
Inn G has no center, as is the case for T’ 8.3k

Lemma 5.4: Given a centerless group G and another
group I, there is a 1-1 correspondence between inequivalent
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exact sequences E of the form
E: 1-G—>P->T'—1
and elements of Hom(I",Out(G)). Two sequences E and E'

are equivalent if and only if there exists a homomorphism p
such that

E 1-G —» P> Il

idg P idp

’

E:"1-G — P-» TI'->l

commutes. ;o

Proof: Let E: 1 -G—P'—T'—1 be an exact sequence of
groups. Exactness implies f (G) is a normal subgroup of P'.
Since f (G)<IP' and G=f (G), it follows that ¥(p)g=f "
(pf (g)p~')is an automorphism of G for each peP’. This im-
plies ¥:P'—Aut(G) is a group homomorphism and ¥{f (G))
= Inn(G). Let yeI, define @(y) to be ¢(pf (G)), where
h(p) =v. Then ¥pf (G)) =¢(P)Yf (G)), and ¥(f(G))
= Inn(G) implies ¢ (¥) is an outer automorphism for each
yel. 1t follows that ¢: I'—>Out(G) is a group homomor-
phism, i.e., pe(Hom(I',Out(G)).

Now, suppose @eHom(I,Out(G)) and G is
centerless. For a centerless group the exact sequence

1—Center(G)—G—> Aut(G)—Out(G)—1 reduces to

1-G ->Aut(G)—Out(G)—1, where 7(g)h = ghg~". For
@eHom(I",0ut(G)) construct the pullback P

P________ 2 T
i |
idg “ P I (5.3)
T * 8 '
1— — Aut (G) — ut  (G),

P={(a,y)eAut(G) XT'|6(a) = p()},
P1(0,7’) =a, and Pz(aﬂ’) =%
Now

8(aa’) =68(a)s(a’) =p(a)p(a’) =@(aa’) .

Hence, (a,y), (@',y’)€P implies (aa’,yy’)eP. Thus 8(a™")
= (8(a))™" = (@())~' = @(y~"). Hence (a,)eP implies
(@ Yy Y =(ay)"'eP, and &(1)=¢(1) implies
(1,1)eP. Therefore Pis a group and it follows that p, and p,
are group homomorphisms, which makes diagram (5.3)
commute. Now, fill in the map from G to P in the diagram

i P2

G----=P r

Dy

idg

r

1 - G — Au(G)

Out(G)—1,

where i(g)=(r(g),1). That the left square commutes is im-
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plied by id¢ (8)) = 7(g) = p,i(8), where
Pi(g) = p,((7(2),1)) = 1. Now find all (a,y)€P such that
p2(ay) =1; p,(a,y) = 1 implies y = 1; 6(a) = (1) = 1;
8(a) =1 if and only if aelnn(G). Hence, ker p, =i(G)
= Im i. It follows that the diagram
i P2

1 - G —> P —- T —1

idg P 7

T -]

1 - G — Au(G)— Out (G)—1

commute and the top row is exact. Therefore, given gecHom
(T, 0ut(G)), there is an exact sequence E.

Now,suppose E': 1-G—P'—»I'—1 is an exact se-
quence. LetA (p")=(¢¥ ("), h(p')), whereyy: P'—Aut(G) as
defined above. Thend(¢(p')) = a(h(p’)) implies A: P'—P.
Clearly

1-G—P'—»I'—1

idal /1‘ idp
Al p,

1-G—-P->I'—1

commutes. Q.E.D.

Using Lemma 5.4, the group 7, Diff;} (S3/T; .. XZ,)
is calculated.

Theorem 5.5: 7, Diff,} (S°/T . XZ,) =0.

Proof: The center of T for p=1 is generated by
& = (exp[(7/3) (i +j + k)/V3).exp(in/3%))* and b2
= (j,1)% Hence the center of T/ . is generated by 4 * and
B?. The center of T, , is therefore equal to Z,

Inn T, = L2k

2.3%
=(4,B: 4°=1B2= BC)*=C2=1,
ABa—'= C, ACA=BC).
Therefore Inmn7;,.=7T. Theorem 4.5 tells us
7o Diff(S°/T} ,.) = Z,. Hence, sequence (5.1) becomes
1—»T—m, Diff, (M)—Z,—1. Here T is centerless, hence
the number of choices is |Hom(Z,Out T)|
= |Hom (Z,,Z,)| = 2.Onechoiceis 1 >T—T X Z,—~Z,—1,
another is 1-7—0->Z,—1. The action of
7o DIff (S3/T  ..) onm, (S3/T u.X,) is given by
A—A 7'BC,
z=4{B-C,
C—B3

(see the proof of Theorem 3.4). Here z does not commute
with every inner automorphism, for example, let

>

A—A,
f=1{B—-C, feElnn T .,
C—BC,
conjugation by A, zf#fz. Hence the choice is
1->T-0—-Z,—1.

If 7,(M,xo) =T, «XZ,, then the center is center
(T} %) XZ, and 7, Diff (S°/T; « XZ,) = Z,, so again we
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have 1>T—w, Diff, (M)—Z,—1 with the Z, action being
nontrivial. So we have 7, (S°/T . XZ,) =0. Q.ED.
Theorem 5.6: 7, Diff "(L (p,q)) = m, Diff,} (L(p,q)).
Proof: Since the center of 7, L(p,q) equals the whole
group, we have

Inn 7,(L(p,9)) = m(L(p.))/m(L(p.g)) = 1.
Hence

1—1—m, Diff } (L (p,q)}>7, Diff * (L(p,g))—1.

Q.E.D.

Table I1I gives the zeroth homotopy groups of the group
of orientation preserving diffeomorphisms fixing a point.
The only results depending on the weak conjecture from Sec.
IVarer M =T*, I* 5.3¢» and those with adirect product
of Z,. It should be also noted that T'; ; = T'*, so the conjec-
ture is really only open in two cases.

VI. wo Diff - (S%/G)

We now look at the symmetry groups of the asymptoti-
cally flat hypersurfaces of the form S = §'3/G-point, these
are the groups 7, Diff . (S°/G). They will be calculated us-
ing the results of Secs. III and V combined with an exact
sequence. The reason for using an exact sequence to calcu-
late 7, Diff - (S3/G) is that none of the elements of 7, Diff
(§3/G) can be realized by isometries for G noncyclic.

Since every element of Diff, (3f) fixes the tangent space
at x, it follows that Diffp (M)<Diff" (M). Let
p: Difft (M)—F* (M) be the projection defined by
P(H =(fxy), fF), where p: F* (M)—M is the bundle of

. oriented frames over M with structure group SO(3), and f F

is the action of the diffeomorphism f on the frame F at x,,.
The fiber of the projection jp is Diff (M). We can show this
is a fiber bundle. We have the following exact sequence of
groups because p: Diff " (M)—F * (M) is a principal bundle:

TABLE III. The groups of path components of point fixing diffeomor-
phisms of spherical spaces, M = §3/G.

M m, Diff 7 (M)

DY, n33 D,

D# 0

T* O

o* (0]

I* 7

D3 XZ,, n>3 D, XZ,

DEXZ, OxZ,

T*XZ, OxZ,

0*xz, OxZ,

I*X1Z, IXZ,
P Dians 1y X2,

T;.s" o

Dkirnry X%,y Dyansny X2y

T} wXZ, o

z, o, Diff* (M)
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J#,; By,
w7, Diff o (M)— 7; Diff* (M)~ 7. F (M)

3.

i I
7, | Diffy (M), F + (M) — 1, Diff z (M)

Jao

5 7 Difft (M)—1.
All three manifolds have a global frame which implies
F*(M)=M XSO(3). Hence
. F* (M) =m,M X SO(3).
The only part of the sequence we need is
m,M X, SO(3)—m, Diff o (M)—m, Diff* (M)
—m M X, SO(3)—m, Diff o (M)
—so Diff ¥ (M) —1.

Using the fact that 7,(M) = 7,(S3/G) = G and 7,(S*/
G) = m,(S?) = 1, then

P,
17, Diffp (M)—, Diff* (M)— m,M XZ,

ay,
— 7, Diff . (M)

‘i 0
= 7, Diff* (M)—1

is an exact sequence of groups where M = S°/G.

The exactness of the above sequence implies kerj,
=Imd, and kerd, =Impy, . So Imd, =mM
XZ,/ker dy . Hence Imdy =7 M XZ,/Imp, . Since
kerj, =Imdy, , it follows that the sequence

M XZ,
Imp,

1— — 7, Diffr (M) — 7, Diff* (M) — 1

(6.1)

is an exact sequence of groups. If we determine Im p. , then
mo Diffz (M) can be calculated using sequence (6.1).

The projection p: F*(M)—M is just p(m,s) =m,
where meM and seSO(3). The projection p: Diff* (M)—M
is the composition of p and p, pp: Diff * (M)—M. This means
the diagram

»
Diff* (M) —F™* (M)

M

commutes. Since p = pp, it follows that

Py,
m, Dif* (M) — F*(M)
Py, l P,

M

commutes. From Sec. V, we know that, Imp, = Cen-
ter (7, M), . F (M) = mM XZ,, and p  is just the pro-
jection p, (m,s) = m. Hence, the above diagram becomes
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Py,
m, Diff* (M) Center(w,M) XZ,
Py, P (62)
Center(7, M) .

Table II implies 7, Diff* (M) has one generator for 7 M
=7,(S*/G) = G, a noncyclic group. In fact the groups
m, Diff ¥ (M) are either Z, or Z. If G<SU(2) and noncyclic,
then diagram (6.2) becomes

Pu,

Z2 Z2 X 22

P#’(M,S) =m .

zZ,

From this diagram, it follows that there are only two choices
forp,, ,namelyp, (a) = (a,1)andp (a) = (a,a), where
a* = 1 and a# 1. For either choice, Im p #, = Z,. Hence se-
quence (6.1) takes the form

1>, M X Z,/Z,—>1o Diffp (M)—1, Diff* (M)—1,
(6.3)

where 7, M is a finite noncyclic subgroup of SU(2). This
implies 7, Diff - (S */G) hastwicethe order of m, Diff,} (S°/
G) for G noncyclic. If G is a noncyclic subgroup of SO(4)
that is not contained in SU(2), then 7, Diff* (S%/G) = Z.
The center of G is a cyclic group Z,,, n> 2. Diagram (6.2)
becomes

Py,

zn XZ2
p#l(m,s) =m,

Py,

Z

n

where Z,, = Center (7, M). Again there are only two choices
for py,. One is py (a) = ([a],,1), and the other is
Py, (a) = ([al,,[a];), where [ ], and [ ], denote the
equivalence classes in Z, and Z,, respectively; and a gener-
ates Z. One can check that for either choice
Im p, = Center(7,M). Hence sequence (6.1) takes the
form

1—» 7 M XZ,/Center (7, M)

— o Diff . (M) -7, Difft (M) — 1, (6.4)
where 7, M is a finite noncyclic subgroup of SO(4) not con-
tained in SU(2). This implies 7, Diff. (S3/G) has twice the
order of 7, Diff} (S 3/G) for G noncyclic. Using sequences
(6.3) and (6.4) the groups 7, Diff (S3/G) are now calcu-
lated for G noncyclic.
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Theorem 6.1:
o Diff - (S 3/G)
(0%, fG=Dg, T* 0% orT; X7, p>1,
D, fG=D%,n>3,
I*, fG=1I*,
={O0*XZ, {G=D¥XZ, T*XZ, orO*XZ, p>1,
Dt XZ, ifG=D¥XZ,p>1 and n>3,
I*XZ, fG=I*XZ,p>1,
LD:(2n+1) XZZ’ ifG:D;"(zn...]) sz’p>1 .
Proof: If G<SU(2), then sequence (6.3) implies
1-G XZ,/Z,—1, Diff . (M)—7, DIff " (M)—1,

where M = §°/G. We must decide which choice of p, is the
correct one. If we think about the definition of §, it maps f to
(f(xo), fF). The choice p, (a) = (a,1) says that p does
nothing to the elements in 7, SO(3), and the other,
P4, (a) = (a,a), tells us that p acts simultaneously on 7, M
and 7, SO(3). This agrees with { f(x;), f F); the details will
appear in Ref. 31. Hence the correct choice is py
(a) = (a,a)-G XZ,/Z,~G. The exact sequence becomes
1—-+G—m, Diff - (§*/G)—7, Diff * (§°/G)—1.
In the case G = O * or I *, 7, Diff* (M) = 1. Hence the se-
quence gives 7, Diffz (§°/G) = G, for G=0*or I *.
IfG=D%,, n>3, then

1—D?* — 7, Diff(S3/D%,) — m, Difft* (S3/D%,) — 1

is exact, and 7, Diff* (S3/D% ) =12, for n>3. Hence
1—>D¥— 7, Diffc(S*/D¥*) >Z,— 1 is exact. This
means D ¥, is a normal subgroup of m, Diff; (S*/D%,).
Thus conjugation by elements of m, Diff- (S°/D*,) gives
automorphisms of D¥,. Since 7, Diff*(S°/D¥,) =1Z,,
there exista y € Diff (S */D ¥, ) for which y is an outer auto-
morphism of D¥,. Further, ¥ and D, will generate
7o Diff- (S3/D *,). The action of ¥ on D ¥, is known from
the proof of Theorem 3.2. It is ¥’ =x, yxy~!=x, and
yxy~ ! = xp. Therefore,
7o Diff . (S3/D%,) =

<7/’ Y 7/4n= 1, }’4: 1, yyy~l =7_1) =Dt
for n>3.

If G=T* then 1-—T*—m,Diffp(S*/T*)
— 1, Diff* (§3/T*) — 1 is exact, and 7, Diff* (S°/T*)
=1Z, Hence the following sequence is exact: 1 > T*
— 74 Diffz (S§3/T*) — Z, — 1,and T *isnormal subgroup
of , Diffz (§3/T*). Again there is a yem, Diff (S°/T*)
such that yis an outer automorphism of 7'*; y and T * gener-
ate 7, Diff. (S3/T*). The action of ¥ on T* follows from
Theorem 3.2. It follows that 7, Diff (S%/7*) =0*.

If G=D? then 1—D}— 7 Diff,(S/D¥)
— P, — lisexact. Again D ¥ < Diff (S*/D ¥). The action
of P, on D ¥ is just conjugation by elements O */D §. It fol-
lows that 7, Diff- (S3/D¥) = O*, because 7, Diff - (S*/
D¥) is generated by D ¥ and 7, Diff (S°/D ¥).

If G is a noncyclic subgroup of SO(4) not contained in
SU(2), then sequence (6.4) is exact:

580 J. Math. Phys., Vol. 27, No. 2, February 1986

1— G X Z,/Center(G)
— 7o Diff , (S*/G) — m, Diff* (S3/G) — 1.
Since p(f)=(f(x0),fF), the choice is pg
(@) =([a),,[a),). F G=H XZ,, where H<SU(2) is
noncyclic, then the sequence becomes
1— (H XZ,)XZy/(Z, XZ,) — 7, Diff . (S°/H X Z,)
— 7o Diff* (S*/H) XZ, — 1,
because 7, Diff* (S°/H X Z,) = mo Diff* (S*/H) X Z,.
Therefore 1 — H — 7, Diff (S*/H XZ,)
— 7o Diff (S */H) X Z,— 1. Theorem 3.2 implies that the Z,
action is trivial on H. It follows that m, Diff.(S3/
H XZ,) = m, Diff (S*/H) X Z, for H<SU(2) and noncy-
clic.
fG=D’

’
san+ 1, OF Ty 4 then sequence (6.4) be-
comes

1- D!

*Q2n+ 1)

— 7, Diff s (S%/D

2*¢n+ 1)

X Z,/Center(D ! )

2%2n + 1)

) > Z,XZ, — 1
and

1» T o« XZy/Center (T )

— 7o Diff ($°/T} u) > 2, — 1.

It follows that 1—D%, —mDiffp(S*/D}, )
—2Z,XZ,—1 and that | — T*—u,Diff(S%/T; )
— Z, — 1 are exact. Checking the action of the Z,on 7%, it

follows that 7, Diff (§°/T; ) = O *. Theaction of one of
the Z, factors in the first sequence is just a trivial action

because it comes from N gy, (') and the other comes from

the D}, factor in the normalizer. It follows that
m, Diffp (5'3/1);:((2,l ) =D XLy
If G=D;k(2n+l) XZP or T;~3k sz, then

7, Diffz (S */G) isthesameasthe groupsfor D 'and T ' alone,
because 7, Diff (S 3/G) is the same withp = 1and p > 1 (see
Table II). Q.E.D.

Let &: w,Diffp (M) — m, Diff,! (M) be the map
S(Lf1r)=1f]s, where [ ] and [ ], denote equiv-
alence classes in 7, Diffr (M) and 7, Diff;} (M), respec-
tively. Let f'e[ f ]7. Then f’ == fg,wheregisintheidentity
component, and g must also be in the identity of Diff,;} (M).
Hence f'e[f],. Therefore, &([f'15)=1[f"]s,
=[f],, =8 ([f1F), ie, is well defined:

S(LAIMSULLIF) = [ Al Lfals,s
s(LAL)) = Aif]s, = [fil [ £2)s,-

Hence

S(LAL)F) =8ULAIRS L]6).

Therefore & is a group homomorphism. Using Theorem 6.1
and the results of Table III, observe that

1 = Z, — 74 Diff £ (S >/G)—> 7, Diff } (M) — 1,

for G a noncyclic group. The Z, corresponds to the 27 rota-
tion R ,,, parallel to a two-sphere at x,,. For spaces .S */G with
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G noncyclic, this implies the 27 rotation is nontrivial in
7, Diffz (S3/G).

Now suppose our manifold is a lens space. Then Cen-
ter(w,L( p, g)) = 7, L( p, q). Sequence (6.2) becomes

Py,
m Diff ™ (L( p, ¢)) —= mL(p, ) XZ,
Pi#, Pty
mL(p,q),

with Impy, = m,L(p, q). It follows that Im p,, is either
equal to 7,L( p, q) or to m,L( p, q) XZ,. Hence, there are
two choices for §, namely

1— 7, L(p, q) XZy/mL( p,q) — Diff (L p, q))

> 7 DIffE (Lo @) — 1,

and

1— 7, L( p, q) XZ,/m\L( p, ) XZ, — mo DIff (L ( p, ¢))
2, mo Diff (L( p, @) — 1.

The first choice is

12, — mo Diff (L p, )} Diff; (L( p, ) — 1,

which corresponds to the rotation R ,, being nontrivial in
mo Diffe(L( p,q)). The 27 rotation is trivial in
7o Diffp(L( p, q)) (see Ref. 31 and 32). Therefore, the sec-
ond choice is the correct one. So 1 — 1 — 7y Diff-(L( p, 9))

—arrroDiﬁ' +(L(p, g)) — 1. The following theorem is a result

of this argument.
Theorem 6.2: 7, Diff(L( p, q)) = m, Diff " (L ( p, ¢)).

Proof: Because R ,,, is nontrivial in 7, Diff(L( p, q)),
7o Diff(L( p, q)) = mo Diff,} (L( p, ¢)). Theorem 5.6 im-
plies 7o Diff. (L( p, ¢)) = 7o DIffiL( p, 9)).
Q.E.D.
Table IV summarizes the results of Secs. IV, V, and VI.
Theresultsform,M =T*,I* T, ..,andthedirect product
of these with Z, depend on the weak conjecture. This table
also gives corrections to Table II in Ref. 10 for the spaces
withm M =D %, . 1,,and m,M = Z, withg’= — 1 mod p,
and fills in the cases that were unknown at the time that
paper was published.

VIl. CONCLUSION

Comparing the groups , Diff} (§°/G) and
7o Diff . (S 3/G) for a noncyclic group G (Table IV), we see
that , Diff-(S°/G) double covers ,Diff} (S°/G).
Moreover, it is an SU(2) double covering of the factor of
o Diff} (§°/G) coming from the noncyclic SO(3) crystal
group. The SU(2) covering is due to the 27 rotation being
nontrivial in 7, Diff . (S */G) for G noncyclic. Physically,
R, nontrivial allows half-integral angular momentum
states to arise as Friedman and Sorkin have pointed out.*
The SU(2) double covering is what one would expect for
half-integral angular momentum.

The remaining mathematical problem is to calculate
7o Diff - (M) for M=S°G #-#S5°/G,#S?
XS'#-#S2XS". These calculations would involve
7o DIff(S3/G,) and 7, Diff(S*X .S '), maps coming from
the interchange of factors, and slides of the factors along
curves on M. The groups 7, Diff . (M) correspond to the
symmetry groupofquantumstatesonS = (S3/G,#--#S53/
G #S*X S ' #--#S5? XS ")-point. Thesegroupsareofphys-
ical interest because all classical asymptotically flat vacuum
space-times seem to have spacelike hypersurfaces with this
topology.*?

TABLE IV. The groups of path components of the diffeomorphisms fixing a frame, point, and nothing for spherical spaces M = S*/G.

M o Diff, (M) 7o Diff ; (M) o DIfft (M)
D%, n33 Dt D, zZ,

D? o* (o] (0]

T* o* (0] z,

o* o* (o] 1

I* I* I 1

D%, xZ, n>3 D§ XZ, D,, XZ, Z,X1Z,
D¥X1Z, 0o*XZ, O XZ, P, xZ,
T*xZ, 0*XZ, O X1Z, Z,XZ,
0*XZ, 0*xZ, O XZ, Z,

I1*X2, I*XZ, IXZ, zZ,

Dz D¥ans 1y X2, Dign i1y X2, Z,XZ,

L o* o Z,

D1y X2, D¥ons1y X2, Dy 1) XZ, Z2,X2,

T, «XZ, o* (0] Z,

Z,, ¢=I1modp with g5~ + 1 modp 7Z,X1Z, Z,X2, Z,X2Z,

Z, p=1lor2 1 1 1

Z,, remaining cases z, Z, Z,
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It is shown that under rather mild conditions the triangle relation represents a necessary
condition for the existence of commuting transfer matrices of arbitrary size. The cases of spin

models and vertex models are treated separately.

I. INTRODUCTION

The problem of the parametrization of the models is one
of the most important in exactly solvable models. All the
solutions known in the literature are parametrized by ellip-
tic, trigonometric, or even rational functions, but solutions
involving curves of genus bigger than one or even surfaces
are still unknown. There is not proof (nor even good argu-
ments) that only genus one curves should occur in the solu-
tions of the Yang-Baxter equations; it is possible to argue
(see Appendix A) that one has to deal with algebraic varie-
ties, but it seems very difficult to prove that it is necessary to
deal with Abelian varieties. For that reason our approachisa
very general one: there are no assumptions like the existence
of a unique spectral parameter or the reduction of the Boltz-
mann weight to a simple transposition for a special value of
the parameters. Therefore the proof is completely algebraic.
The reader should be told that it is certainly possible to find
simpler but less general proofs of the previous equivalence.

H. THE MAIN RESULT
A. Statement of the theorem

Following many authors (see, e.g., Refs. 1-11), it is
quite simple to show that the star-triangle relation (for the
Boltzman weights W, W', W") implies the commutation of
the transfer matrices with periodic boundary conditions
Ty (W)and T, (W'), whatever their size N. The proofleads
to a distinction between the case of the vertex models (see
Fig. 1) and the case of the spin models (see Fig. 2). The
configurations of the spin i, - iy, k, - k in Figs. 1 and 2
are fixed and we sum all the configurations of the remaining
spins ( j, - jn, @;, B;). These two figures represent the pro-
duct of the two transfer matrices 7 (W) and T (W) for
vertex and spin models, respectively. In the case of the Potts
model (with spins belonging to Z,), the transfer matrices
are thus ¢¥Xx¢¥ matrices with coefficients
TnW)i, . igjniy @d Ty (W), oy, The commu-
tation of the transfer matrices means that for any configura-
tion of the spins i, -- iy, k, --- k, the partition function of
the two graphs on both sides of the equality are equal. Let us
introduce the two matrices M, (i,, k,) and

o B X 15Bn 1

* Laboratoire associé au Centre National de la Recherche Scientifique LA
280.

593 J. Math. Phys. 27 (2), February 1986

0022-2488/86/020593-06$02.50

M, (insin 4 13Kk, 4 1) associated with the two follow-
ing graphs
kn Kn Knet
W
LY LI ) w'
jn w Jn LM .
B Bret w
in 51 'hd

These two matrices (associated with the vertex and spin
models, respectively) are g*Xg” (resp. ¢ X g) matrices and
there are ¢* (resp. ¢*) of them [as many as the num-
ber of configurations for (i,.k,) and (i,,i, . ;:k,.k, )]
From now on these matrices will be denoted by M,
and M; , . [I, =(i,.k,)]. We add a prime to denote the
same matrices with the two Boltzmann weights W and W’
permuted. With these notations the commutation of T (W)
and T (W) is equivalent to

Tt M, M, - M,") =Tr(M; M} -
and
Tr (MI,I,MI,J, MINI,) =Tr (M;J,M;z], M}NI,) (2)

for any configuration of the 7, ’s, that is to say for any config-
urations of the 7, ’s and k,,’s that index the coefficients of the
matrices T (W )Ty(W') and Ty (W' )Ty (W).

We want to establish an equivalence between the exis-
tence of a star-triangle relation and the commutation of the
transfer matrices 7 {W)and T, (W) for arbitrary size N; in
other words, we want to show that when relation (1)
[resp. (2)] is satisfied—for all I,’s and N—there necessarily
exists a star-triangle relation. With the above notations it is
equivalent to saying that there exists a ¢°X¢® matrix
R (resp. ¢* ¢ X g matrices R;) such that

RM; =M ;R (3)
(resp. R, M;; = M };R;). (4)

M) (1)

B. Proof in the case of the vertex models

The case of the vertex models is the simpler case to deal
with. Switching to a slightly more convenient notation
(I, — n), the question is easily seen to be reduced to the
following theorem.

Theorem 1: Let .# and .#’ be two subalgebras of M, (C)
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kq ks k3 ke kn L}
w‘ﬂz W X3 W’ 1 9% 1% w
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U U] Iy I N

(the n X n complex matrices) and ¢: .# — #, a surjective
algebra homomorphism satisfying the following property:

YM,..M e,
Tr (M, - - M,) = Tr [¢ (M- - - M,)].

Suppose further that there is no nontrivial invariant sub-
space of E~C" under the action of .#, then, there exists
R € GL,(C) so that

VMe.#, M'(=p(M))=RMR "

In Appendix A we discuss the problem of the existence of
nontrivial invariant subspaces.

Proof: For any M € .# , the corresponding spectral pro-
jection operators are elements of .# (being polynomials in
M).

We shall need the following lemma.

Lemma: There exists in .# a matrix with (n) distinct
eigenvalues.

Proof of the lemma: For any M in .#, we set

MM )=Z2 (dim. spectral subspace — 1)

and v=infv(M ), Me .#.

The lemma is then equivalent to v = 0. Suppose v#0
and take M € .# such that v(M ) = v; select further ¥ a spec-
tral subspace of M of dimension >2 and let 7 be the associat-
ed spectral projection operator. One has the following simple
proposition.

Proposition: VM, € #, wM, 7 has only one eigenvalue
when considered as an operator on V.

For if not, consider operators of the form

M=(1—mM(l —7)+xN—k)m,
where k € C and 7N has more than one eigenvalue on V.
Then, for suitable k, v(M ) < v(M ) = v, a contradiction.
Any M, in .# can thus be written as
ﬂMAﬂ'= kﬂ.]lv +N/1’
k, € G, N, nilpotent on ¥ (1, is the identity operator on V).
Adding (1 — k,)1,, we obtain a family of operators on ¥ of

the form 1, 4+ N,, stable under multiplication. The Engel
theorem'? provides us with a vector ve ¥V such that

M ke k3 kg kv K=k
w i W'j V'j w
h L L SR Mazh < idem WesW'
W w W w
W R B W Mz

FIG. 2. Pictorial representation of the commutation of two transfer matri-
ces of size N in the case of spin models.
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FIG. 1. Pictorial representation of the commu-
tation of the two transfer matrices of size N,
Ty(W), and T(W') in the case of vertex mod-
els.

= idem WeeW’

N,v =0 (VA). The subspace (Mv),,._. is then a nontrivial
invariant subspace for .#, contradicting the assumption.
This finishes the proof of the lemma.

Returning to the main proof, we let M € .# be a matrix
such that v(M) = Oand let (7;); = } be the corresponding one-
dimensional projection operators

Ty = Ty = Oy 277'1' =1g.

i=1

Let 7 =@ (m;) and choose e; € Ran 7, e; € Ran /.
Setting e/=Re, we shall prove that R is the intertwining
operator up to scaling, that is,

R =DR, D=diag(a,..a,),

for some nonzero ¢;’s.

To prove this, for M, in .#, we denote by (m’) and
(m ,fj"l ) the matrices of M, and M ;=@ (M), with respect to
the bases (e;): =7 and (e]); = |, respectively. The existence of D
{(which implies the theorem) is then equivalent to the exis-
tence of nonzero numbers (a;)!= 7 such that

A A
mi* =mia,/a;.

The existence of the @,’s is now proved in a sequence of
simple assertions.
Assertion 1:

ot A
By=m’/m{

is independent of 4.

Foral M, M, e .#, Vij,

m) m¥) = Tr (m, M, m;M,, ),
hence

m - m = m . i
or

mi /m) = mi /mi,
which demonstrates the validity of the assertion.

Assertion 2: VY 1i,j, B,.j #0,00, ie., Vij, AM, e #,
mi)#0.

In fact, if there existed a pair (i, j) such that m{}’ = 0 for
any M, in .#, then the subspace (Me; ). , would be a non-
trivial (it would not contain e;) invariant subspace for .#'.

Assertion 3: There exist n nonzero a;’s such that
B,.j =a;/a;.

Setting a;=p3,, , it only remains to show that

Vi,j’k’ B}] 'Bjk =Bik .

This can be written (dropping the superscript 4 ) as

’ ’ ’
my mh my my,;
’
m; my mi my;
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(the last equality comes from the proof of Assertion 1) or
My My -Mi =My - My - My,
This finishes the proof of the theorem.

The result has thus been established in the case of vertex
models.

C. Proof in the case of the spin models

The algebra is more intricate in this case; this is why, in
order to be able to obtain a neat mathematical statement we
shall restrict ourselves here to the case ¢ = 2. For general g,
however, the result must still be valid except for very parti-
cular values of the matrices (Boltzmann weight). So let us
consider the ¢ = 2 case. Here we can replace the cumber-
some indexation I, = (i,,k,) (i, = + 1, k,= +1)byan
index / running through the values 1,2,3,4.

We are thus given a set of sixteen 2X2 matrices
(i, 7 = 1,2,3,4) with positive coefficients, but we can only
form “chain products” of the form M,, M, M, ,, re-
turning to the same index i/;. We shall apply Theorem 1 to the
algebra generated by multiplying chains starting, and finish-
ing, with the same fixed index, but we first need to find a
condition that ensures that the hypothesis on the nonexis-
tence of invariant subspaces is satisfied. Since the matrices
are 2 X 2, this is equivalent to the nonexistence of a common
eigenspace; we shall also see below that the condition is inde-
pendent of the length of the chains we consider.

The only possibility we need to explore is the following:
Whatever i, (i; = 1,2,3,4), there exists a common eigenvector
V, for the matrices M;, - M, - M, , -M,; (with vari-
able i,,...,i,).

The M;’s induce homographic transformations on
P(C), which we still call M, ; When there is no risk of confu-
sion. The existence of the four vectors V; is then equivalent
to the existence of four points F, (i = 1,2,3,4) for P!(C) such
that

Mi,,i, (El )= Fi,
multiplying by M, , we get
M, My, M, . (M, (F)=M,F,).

i 700

iy

This shows that we can assume that the F,’s are permut-
ed under the action of M,;’s:

Vije {1,234}, M,F)=F,

Also, recalling that the M,’s have real positive coeffi-
cients, we find that each M;; has two real fixed points, one
negative and one positive (possibly oo ), and that the real posi-
tive axis (including oo) is stable under their action. This
shows that the F;’s are all positive or all negative real
numbers. In the latter case, we can replace all the M, ;s by
S'M;S [S=(} })] and this allows us to assume that the F,’s
are all real positive. In Appendix B we describe a pair of
families (M;) and (M ;) arising in this fashion, which do not
satisfy the intertwining property to be shown below; they are
seen to be essentially the only possible ones.

Let us now state our result in the case of spin models.

Theorem 2: Let (M;) and (M ;) be two families of sixteen
2 X 2 matrices such that the following hold.

(i) All M;’s and M ;’s have positive elements and are
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invertible matrices.
(ii) Vn, Vi,,....i, € {1,2,3,4},

Tr (Miliz - Min - linMinil) = Tr (M '{li2 - M;n— linM;nil )'

(iii) There do not exist four—all positive or all nega-
tive—real numbers F; (i = 1,2,3,4), some of the F,’s possi-
bly co sothat M, (F;) = M,, M, being viewed as a projective
transformation on P'(C). Then there exist four matrices
R; (i=1,2,3,4), R; € GL,(C) with the property

Vije{1,23,4}, RM;=MR,

[/

Remarks:

(1) Assumption (iii) can be made on any one of the two
families; if it holds for one, it will also be satisfied by the
other.

(2) The F,’s can be replaced by vectors V; = (1, F;) (or
V; =0,1)if F; = oo sothat M;V; = 4, V,.

(3) The validity of (iii}, intricate as it looks, is nonetheless
very easy to check. In fact, each F; is simply one of the two
fixed points of M;; compute these, and check (iii) for the two
disjoint sets of the positive fixed points and negative ones.

Proofof the theorem: Since (iii) is satisfied, we can apply
Theorem 1 to the algebra generated by the
M, _, M .M, (i fixed), and we choose » =2 (any
fixed n is allowed); we also set i, = 1, without loss of genera-
lity. Assumption (iii) means that the
(MMM, );x_,2:4 have no common eigenspace.
Theorem 1 then asserts the existence of R, such that

Vjak: RlMleljkMkl =M;ij'le'nR1 .

Now, define R, by R/M,;=M|R; .ie,
Ri=M;='"-R,-M,;. We need to check that
RM; =M R,V ije {1,2,3,4]. But we can write
RiMij =M;i— lRlMliMij =M;.1 'RlMliMijjujl '1‘{;1—1

=M MMM RM;'
=M M R M;',
and thus we only need to prove that

RM; =M} R, Vje{l234].

By the very definition of R;, the left-hand side is equal to
M ;= 'R, MM, and the equality to be shown is therefore
equivalent to
M RM M, =M, R, or RM M, =M MR,
which in turn can be reduced to

RlMljJleMu =M;jM;lR1M11'

Using the definition of R,, the left-hand side is equal to
MM MR, and we only have to prove that
MR, =RM,. But, we already know that
M iR, = R,M3},. Since both matrices M,, and M ;, have
real positive coefficients, it is easy to show that the desired
equality follows, finishing the proof of the theorem.

We thus arrive at (4}, which is equivalent to the existence
of a star-triangle relation for spin models.

We should note that in both cases (spin and vertex mod-

els) the star-triangle relation is implied by the commutation
of the transfer matrices for only a finite number of sizes V.
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This is similar to the result of Parke'® according to which the
existence of only three conserved quantities in involution
implies the existence of an infinity of conserved quantities.

lil. PROSPECTS

In the previous sections we have tried to specify the
equivalence between the commutation of transfer matrices
and the star-triangle relations. This amounts to reducing the
complete integrability property to a simple local relation. On
the other hand, the commutation of transfer matrices of spe-
cific sizes leads to the determination of algebraic invariants
[cf. Appendix A(a)] that constitute constraining conditions.
This explains the results of the search for models satisfying a
star-triangle relation, namely, that there exist very few such
models. For instance in the case of vertex models with two
valued spins the general case is essentially given by the Bax-
ter model and the free fermions models of Fan and Wu.'
Such an analysis underlines the exceptional occurence of
solvable models.

This study also calls for a generalization in dimension 3.
In this respect we would like to establish a similar equiv-
alence between the commutation of transfer matrices of fin-
ite sizes and the so-called tetrahedron relation®'?; this looks
like a nontrivial extension. However these commutations of
the transfer matrices of finite sizes
([ Twpe (W), Tape(W')] =0 are still necessary conditions
for the validity of the tetrahedron relation; in particular this
includes the conditions that pertain to the two-dimensional
models ([Ty(W), Ty(W')] =0, M =1), and these have
been shown to imply the star-triangle relation. This imposes
severe restrictions on the possible solutions of the tetrahe-
dron relation that, in a way, appear as extensions of the—
sparse—solutions of the star-triangle relation.

The above discussion may give the impression that the
domain of validity of the star-triangle and tetrahedron rela-
tion is indeed very restricted.

However, if the commutation of transfer matrices al-
lows their simultaneous diagonalization (Bethe ansatz),
thereby leading to the calculation of the partition function,
we can imagine weaker condition that still make this calcula-
tion possible. In fact there already exist simple examples that
illustrate this idea; these are the so-called disorder (or crys-
tal-growth) solutions.’®"® These solutions lead unfortu-
nately to simple analytical expressions for the partition func-
tion; however, we should notice that one condition for the
existence of such disorder solutions is very similar to a con-
straintful relation occurring in the framework of exactly
solvable models [compare Eq. (2.10) of Ref. 19 and the so-
called Frobenius relation®*?!].

More precisely, if we look carefully at the construction
of the Bethe ansatz for the Baxter model,? we can see that
only relations similar to the so-called Frobenius relations are
used [Egs. (C.34a) and (C.34b) of Ref. 2] and not the full
Yang-Baxter structure. We could therefore imagine that a
model involving a higher-dimensional theta function would
not satisfy the Yang-Baxter equations,””?* but that it would
actually be possible to build a Bethe ansatz for that model

(because of the Frobenius relations) leading to a commuta-
tion of transfer matrices only in a subspace of the space on
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which the matrices act; the case of disorder solutions corre-
sponds to a one-dimensional subspace.

IV. CONCLUSION

We have thus shown the equivalence between the exis-
tence of a star-triangle relation and that of a family of com-
muting transfer matrices of arbitrary size; this has been es-
tablished under conditions mild enough to be almost always
satisfied in physical cases. Moreover we have proved that it
suffices to check the commutation of the transfer matrices
for a finite number of sizes. It may be interesting to look for
the three-dimensional generalization of the above results.

In two dimensions, the above equivalence fully legiti-
mizes the tentatively exhaustive studies that are currently
done on the star-triangle relation.”*** In this framework we
have also touched upon the problem of finding simple, alge-
braic, necessary conditions for the existence of the star-trian-
gle relation {see Appendix A). Such relations, which appear
very stringent, are directly related to one of the major prob-
lems concerning exactly solvable models: that of the parame-
trization of these models (rational or elliptic uniformization,
Abelian varieties).

Finally these studies on the star-triangle relation seem
to show that this is really a rarity; it is thus desirable to
extend the notion of integrability beyond it, and to introduce
new local criteria.
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APPENDIX A: ALGEBRAIC VARIETIES AND
COMMUTATION OF MATRICES

In this appendix, we briefly describe a solution to three
elementary but important questions. The approach is both
theoretical and practical, in that it readily provides effective
algorithms. However, being as the size of the different matri-
ces involved is a very important feature of the problem for
practical purposes, there may be more powerful methods of
solution in a given situation.

Let 4 and B in M, (C) be two complex n X n matrices,
which we also view as linear operators on E =~ C" with basis
{e;);=". The three questions are the following.

(a) Can we find a list of invariants that ensure commuta-
tion of 4 and B ? By this we mean expressions (@, ) = 7, alge-
braic in the coefficients of 4 and B, such that

{9 (4) = @ (B); k=1,..,m}{4B = B4}.

(b) Can we find an easy way to detect a nontrivial invar-
iant subspace under the action of 4 and B?

(c) This is the same question as (b} in the one-dimension-
al case, namely, when do 4 and B have a common (one-
dimensional) eigenspace? '

(a) We restrict ourselves to the case when 4 and B are
both diagonalizable with distinct eigenvalues [we denote this
subset of M, (C) by M, C), that is, we discard the codimension
one algebraic variety in M, (C) given by the vanishing of the
discriminant of the characteristic polynomial; the invariants
will have poles on this surface.
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Now, let Me M, (C) have eigenvectors (w,):= 7. There is
a natural map @, given by the composition

M,(C)— C™" — ("~ Y(C))"/a,,
M= (Wy...W,)— (W,,...W,)mod o,

where the bar denotes the natural fibration map C”
— P"~1(C).
Clearly we have the following proposition.
Proposition: ¥ A, Be M,(C), AB=BA ¢ (4) = ¢ (B).
It remains therefore to give an explicit description of the
map @. To this end we use the embedding

(P"~(C))/o, - P(S"E)

(Wl,...,-ﬁ’" )mOd g, — Wl DR Wn s
and consider the map iop: M, (C) — P(S"E ). This is easily
seen to be described by the following proposition.

Proposition: (iog )M ), Me M,,(C), represents the one-di-
mensional eigenspace of M °” (the nth symmetric power of
M) for the eigenvalue det(M ).

Proof f MW, = u, W;, we have

MW, e-oW,=MW,8--8 MW,

=Hyfp - Wl ®@® Wn

=detM)W,--0 W,.

The recipe is thus the following: Compute M ®" acting
on S"E [of dimension (*?,~') ] and find the eigenvector of
this matrix for the eigenvalue det(} ), which appears as a
polynomial in the variables (e;); =}, homogeneous of degree
n. The quotients of the coefficients of this polynomial by any
one of them represent the sought after invariants.

Example:n=2,M = (2}), det{M ) = ad — bc,
a®@ 2ab b?
M®*=|ac ad+bc bd];
& 2cd d?
the eigenvector of M ®? with eigenvalue det(M ) is given by

b =A(be;®e, + (d—ale,8e, —ce,R¢,).

This gives the (projective) invariants (b,d — a, — ¢} and we
may take

@(M)=b/c; @,M)=(d~a)ec.

The validity of this result of course can be readily
checked by direct computation.

Important remark: The @’s we have found are enor-
mously redundant for » > 2. In fact, there should be n{n — 1)
[ =dim(P"~!(C))*/0, ] of them, whereas our result gives
(*7 ') — 1. It would be interesting to know what is the
minimum possible number, a question equivalent to finding
“better” embeddings of (P ~(C))"/o, in projective varieties.
Can the optimum (n{n — 1)) be achieved?

{b) This question is reduced to the next by the following
obvious proposition.

Proposition: There is an equivalence between the follow-
ing statements: (i) M has an invariant subspace of dimension
J generated by (U,,...,U,); and (i) A’M [the jth exterior
power of M, dimension ( )] has U, AU,A--AU; as an
eigenvector.

(c) We make again the hypothesis that 4 and B are in
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M,(C)andlet U,,..,.U ; (resp. V4,...,V ;) be the eigenvectors—
unique up to scalar multiplication—of 4 (resp. B). Then
Uye-8U,and ¥V, ®-. @V, are viewed as two polynomials
inCle,,....e, ]. We have the following equivalence: (i) 4 and B
possess a common eigenvector; and (ii) U, e o U, and
V,®--® ¥, have a linear factor in common.

To check (i), simply use Cle,,....e,]=Cle,,...,
é;,...¢, | [e;] for some j (any j will do) and perform the
Euclidean algorithm. (This, of course, relies heavily on the
fact that we know a priori that the polynomials we are work-
ing on can be decomposed into a product of linear factors.)

APPENDIX B: DEGENERATE CASE FOR ISING SPIN
MODEL

Here we describe two families of 2 X 2 matrices

a;; by

M, = (cij dij)
(resp. M ;) with the following properties:
(i) The M, ;’s and M ;;’s have real positive elements.

(ii) The M;;’s (resp. M ;;’s) generate M,(C) as a vector
space.

(iil) Ya, ¥Yi,,....I, (1<, <4),

’1“1'(1"{:',1'z Mi,,_,i,,Mi i,) =TrM;; - M:,,_ ,i,,l‘lf ).

(iv) There do not exist matrices (R;);Z | such that R,M;;
= M ;R ;. The constructed families will be seen to be essen-
tially the only ones possessing these properties.

We first choose four points 0 < f, < F, <F; <F, e P} (C)
on the positive real axis (possibly with F, = «), corre-
sponding to four vectors V,,V,,V,, ¥, [for example, take V;
= (1,F;)and ¥V, = (0,1) if F, = « ] and we also select 16
strictly positive numbers 4,;. The M,,’s and M ;;’s will be
constructed in order to satisfy

(a) Mij . Vj =/{ij’/i; M- V; =/{’ij -V,

(b) det M,; =det M ;,.

Proposition: (a) and (b) imply condition (iii).

In fact, M,, -M, , M, and M; M| .

+ M, ; will have the same determinant and one eigenvalue in
common, namely 4, 4, . i)

Next, we prove the simple following lemma.

Lemma: YA, u; A >0, > 0, there exists a one parameter
family of 2 X 2 matrices with real positive elements such that
det M = A, A some fixed strictly positive number; and
M ($) =y(%), v fixed, positive, with > AL /u.

Proof: The corresponding homographic transformation
looks like

MZ)=p+a(Z—-A)/(cZ+d), a>0, ¢>0, d>0.
Now
M=("":'“ dﬂ;M)detM=a(ic+d),
y=Ac+d.

We have therefore a=Aa and d arbitrary inside
(Al/uy,y) so that dy—ail>0 and C=(1/
A)(y—d)>0.

Repeat the above construction for all pairs F;, F;, keep-
ing thed, ’s as a set of variables. For the M,;’s and M |,’s, we
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shall take matrices of this form, with different values of the
d,;’s. Conditions (i) and (iii) are automatically satisfied.
Condition (ii) also is, except for very special values of the
d,;’s [and elementary calculations show that these can be
chosen so that (iv) also holds]. In fact R; (resp. R ;) inter-
twines M, and M/, (resp. M;; and M ;) and we can choose
d,; such that R;M,; and M [;R ; are different for any R, and
R satisfying the intertwining property.
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Utilizing a 15-term recursion that describes exactly the composite nearest neighbor degeneracy
for simple, indistinguishable particles distributed on a 2 X N lattice space, (6,,), the expectation
of the normalized number of occupied nearest neighbor pairs, is calculated as a function of

coverage and the reduced interaction potential.

I. INTRODUCTION

In a recent paper,' we derived a 15-term, four-variable
recursion relation that yields exactly the composite nearest
neighbor degeneracy for simple, indistinguishable particles
distributed on a 2 X N rectangular lattice space. In the pres-
ent paper, we utilize the aformentioned recursion to deter-
mine the grand canonical partition function and (6,,), the
expectation of the normalized number of occupied nearest
neighbor pairs as a function of the lattice coverage and of the
reduced particle-particle interaction potential.

Il. DETERMINATION OF THE GRAND CANONICAL
PARTITION FUNCTION

We have shown previously' that 4 [N, g, n,,, n), the
number of arrangements of g simple, indistinguishable parti-
cles on a 2 X N rectangular lattice that exhibit #,, occupied
nearest neighbor pairs and n,, vacant nearest neighbor pairs
(as well as n,, mixed nearest neighbor pairs), satisfies the
recursion

AN+ 3,9+ 3n,,+4ny+4]
=A[N+2,qg+3n,;,+4n5+ 1]

+A[N+2,g+2,n,+ 4ny + 4]
+A[N+2,9+ 2,n,; + 3,np + 3]
+A[N+2,9+ 1L,n;, + Ling + 4]
+A[N+ 1,9+ 2+ 405+ 1]
—A[N+ 1,g+2,n,+ 3,n4]
+A[N+ g+ Ln;, + 3,05+ 3]
—A[N+1,g+ Ln, + Ling + 1]
+ AN+ Lgn, + Ling + 4]
—A [N+ Lg,nyn00 + 3]
—A[Ng,ny; + 3n5+ 3]
+ 34 [N,g,nyy + 2,00 + 2]
— 34 [Ngny; + Ling + 1]
+ A4 [Ng,nyy,ne0] - (1)

The initial conditions for the recursion contained in Eq.
(1) are contained in Table 1.
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Utilizing Eq. (1), we form the polynomials

Srg(xp)= 3 A[Ngn,,nee] x™y™ (2)

1,700
[where
x=exp[ — V,,/kT'] and y=exp[ — V,o«/kT],

in which ¥, and ¥, are, respectively, the interaction poten-
tials for the occupied nearest neighbor pairs and for the va-
cant nearest neighbor pairs] and obtain a recursion for the
generating (canonical partition) function:

TABLE I. The initial conditions for the recursion given in Eq. (1).

z
=
3
8

£

WWWHWWWWLWWUWWWWRWWWRWWWWLWRWLWNRNNNNR - - -
UMM E EEPLEREALWWWWWNNNNOEN = = O &A&WNNMERON=D oy
NN ERWWNNNN == O~ == 00000CAN—OOO=O0OO
QOO = m O=0ONSNMmOARWNWNWMEANOO —~ONROO —
[ I N O N e - . X LS R T I N N G Ny ¥ R O G R N C I
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Svs 39+3%0)
=y’f~+;q+3(xy)+ (1 +xy]fN+2,q+2(x!y)
+x3fN+z,q+1(x’y) +y°[1 = XPUn s 1q42(x0)
+xy[1 _xzyzlfN+l,q+1(xJ’)
+ 20 = xp Uy 1 1,00) — 2911 — 1 f (x0)
with the initial conditions 3
o =¥fu-ros N>2,

Svi =V + Y10, N33,
Sz =.V3f1v—1,z + 1 +xplfv_11

+ Y1 —xylfy_21 +Xfv_20, N>3,
Jio=y, fu =47, (4)
fia=201+20], fi, =2*[1+2],
fi3 =201+ 207 + 2xp + 3% + 2%y,
Fra =4 + 437 4 2px* + 4px® 4 px?,
fis=2*[1+2x], fie=x.

In Egs. (3) and (4), we adopt the convention that
Sugxp)=0,if g<Oorifg>2N.

The grand canonical (bivariate generating) function is
written as

2N
Enlxp2z) = Zofzv,q(xd’)zq , (5)

where
z=mexplu/kT],

in which g is the chemical potential, m is the adsorbed parti-
cle partition function

m=m(xym(y)m(z) exp[ — Vo/kT],
and ¥, is the interaction potential between the particle and
the surface. It should be mentioned that in the Langmuir
model for adsorption,” m(x), m(y), and m(z) are single-parti-
cle harmonic oscillator partition functions.

We can now obtain gy (x,y,2) by substituting Eq. (3) into

Eq. (5):
gy (xy.2) = [’ +z(1 + xp) + x*21gy_, (x,3,2)
+ P —xp)z + xp(1 — x3*) 2
+x°22(1 — xp) 18y — 2 (x.0,2)
— [xp(1 —xy)°21gn_ 5 (x1:2), (6)
where the initial conditions are
g1(xy2) =y + 22+ x2%,

& (xp,2) =y + 4%z + 222(1 + 2xy) + 4x%2° + x*2*,
(7b)

(7a)

& (xy.2) =y’ + W' [1 + )z
+ 47 + 4" + 2 + 4y + xp°)2°
+2[1 + 2xy” + 2xp + 3xH% + ]2
+ [4x® + 4x? + 2x% + 4x%y + x%p)2*
+ 21 + 2x]2° + %725 (Tc)

To obtain an explicit relation for gy(x,y,z), the grand
canonical partition function, we first form the polynomials
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h (xJJ,n))ENil gnlxp2im”

_ ao +a,m + a7 _ .
“”{bo+bm +bzn2+bsn3] ~ )’
(8)
in which
ay=y+2z+x2, (9a)
a; =z[y*(4 — x) — y(1 + 27)] + 22 [y(2x — x°) — xp°]
+22[x*4 — y) — x(1 + 2x7)] , (9b)
a; = 22[4x)? + 4x%p + 2xY” — 4xYP — 4x*y? — dxy
— X%y — xp® + x%? + xH* + %], (9¢)
and
bo=1, (108)
b= — [y’ +2(1 +xp) + 25°], (10b)
b= — [zl —xp)1 [y’ + xpz(1 + xy) + 2%°] , (10c)
by = xy2’(1 —xp)?, (10d)

and r{7) is a quadratic function of 7, while s() is a cubic
function of 5. From

1 |9%k
XP,2) = —— | , 11
gnlxy2) N 37 |y o (11)
and using a partial fraction expansion of 4 (x,y,z,7), we obtain
3
gnlxyz)= > kK RY, (12)
i=1
and the k;’s are given by
k;= —nR;)/s(R,;), (13)

and where the R;’s are the reciprocals of the roots of the
cubic [see Eq. (8)]

s(n) = bo + byn + by + bsy® =0. (14)

If 5, is the smallest root of s(7), then, as N— o0, Eq. (12)
becomes

gnlx.p2)~k, RY, (15)
where R,=n; ..

This explicit expression for the grand canonical parti-
tion function can now be used to determine the expectation
of the lattice coverage and the normalized fraction of the
number of occupied nearest neighbor pairs.

lll. THE DETERMINATION OF (6>

To determine the expectation of the lattice coverage we
define (0 ) tobe

(0)v=(@)n/2N, (16)

where

(@)= [Z Y 94 [N,q.nu,noo]x"’w"“"zq]

q Ninngo
—{Z 2 A [N’q’”n:’loo]x"“y"“f] . (17)
q Minhgo
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Thus

z d
(0)y = W Elnlgn(xwx)]

)
=%E [in(k;, R} . (18)
For N— 0, we may write
dR z dy
fy=—"20="0_ _ 2N 19
@) 2R, @ 29, 9z 19)
From Eq. (14), we see that
%={ 251 2 95 s%]
oz n oz tm dz +h oz
+{by +2bm, +3b3 711} . (20)

Utilizing Eq. (10), and assuming that y = 1 (no vacancy—
vacancy interaction), Eq. (19) becomes

<e>=-;—{{1+x+zx3z1 + (1 —x)[1 +2xz + 2x%2

+ 3x%22]p, — 32%x(1 —x)* 7}
{14201 +x) + 2] + 29,[z(1 — x)]

X [14xz(1 4+ x) +22x%] — 3pix2(1 — x)%},
(21
which, for x = 1, i.e., no particle-particle interaction, re-
duces to
(6)=z/(1+2), (22)
the Langmuir isotherm. Figure 1 shows (8 ) as a function of

log, (1), where u = x*/?z, for several values of x.

IV. THE DETERMINATION OF (6;,>

We wish to determine (8, ,), the expectation of the nor-
malized number of occupied nearest neighbor pairs. In this
calculation we will assume that y=1, i.e., that there is no
interaction potential between vacant pairs on the lattice.
Here we define (4,;) to be

1.0

0.9

0.8
©

0.7

0.6

log, (u)

FIG. 1. Shows (@ ) as a function of log, () for various values of x=V,,/kT.
() x = 0.0625; (b} x = 0.125; (c} x = 0.25; (d) x = 0.5; (¢} x = 1.0; () x = 2.0;
(8) x = 4.0.
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10 -8 -6

fog (u)

FIG. 2. Shows (8,,) as a function of log, (1) for various values of x=¥,,/
kT, (a) x = 0.0625; (b) x = 0.125; (c) x = 0.25; {d) x = 0.50; (¢) x = 1.0; {f)
x=2.0; (g} x =4.0.

(011 y=(ny)n/3N - 2), (23)
where
(np)={Y) Y n,4 [N’Qs”m”oo]x""zq}
q ny,
+{S S 4 gl 24
q ny

—x c_;ixln[gN(x,z)] .
Thus, from Egs. (23) and (24),

a
0,y =———-Z [k, RY]. 25
(610w N —3 2 [k RT] (25)
As N— 0, Eq. (25) becomes
dR x dn
0 )y=-X_°% _ _ X 9 26
6u) 3R, Ox 3y, dx 26)
From Egq. (14)

®,p

07 01 02 03 04 05 06 07 08 08 10

[(cM]
FIG. 3. Shows (8,,) as a function of {8 ) for various valuesof x=V¥,,/kT. (a)
x = 0.0625; (b) x = 0.125; (c) x = 0.25; (d) x = 0.50; (¢) x = 1.0; (f) x = 2.0;
(8) x = 4.0; (h) x = 8.0; (i) x = 16.0; (j) x = 32.0.
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FIG. 4. Shows y={(#,,) — (8 )* as a function of kT /¥ ,,, the reduced tem-
peraturefora2 X N lattice (solid line)and fora 1 X N lattice (dashed line), for
0) =1

a_77_l=_[ (ﬂ’;) z(%) 3(@2)]
ax M o) PTG ) T (5

+ (b1 +2bym, + 3b5 71}, (27)
so that Eq. (26) becomes [see Egs. (10)]

=X [ b, | 2 (s
O =3 I(ax)+”‘(ax)+"' (8x)]
+{by + 2bym, + 3b, 77}
=(§)[+z(1+3zx2)—z[1+z(3x2-1)
+ 22x%(4x — 3)y, + 2°[(4x — 1)ix — 1)*] 73}
{1+ 21 +x) + 2251 + 21 —x)[1 + xz(1 + x)
+ 2x%]m, — 3x2(1 —xP 71} . (28)

For x = 1, i.e., for no particle—particle interaction, Eq.
(28) reduces to the expected result:
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(01) =1 =[2/(1 +2))*=(0)2., . (29)

Figure 2 shows (8,,) plotted as a function of log, () for
several values of x.

In Fig. 3, we show (8, ,) as a function of (8 ) for several
values of x. Curve (e) (x=1.0) is the parabola
(611) = (6)> We see that for large repulsive potentials
(6,,) is small until the coverage is greater than i, beyond
which occupied nearest neighbor pairs are formed in spite of
the repulsive interaction. For large attractive potentials, oc-
cupied nearest neighbor pairs are easily formed even when
the coverage is low.

V. COMPARISON WITH A 1 XN LATTICE SPACE

We define ¥ to be the deviation of (&,,) from its random
value, i.e.,

r=(6,) —(6)*. (30)
Figure 4 shows ¥ as a function of kT /V},, the reduced tem-
perature, when (0 ) = 4. For comparison we show ¥ for a
2X N lattice and for a 1 X N lattice for which

y = — jtanh[V,,/4kT ] . (31)

VI. CONCLUSION

We have developed exact statistics for occupied nearest
neighbor pairs when simple, indistinguishable particles are
distributed on a rectangular 2 X N lattice. Expressions have
also been derived that yield exactly the expectation of the
coverage and of the density of occupied nearest neighbor
pairs.

Results are compared with analogous results for a one-
dimensional lattice.

'R. B. McQuistan and J. L. Hock, J. Math. Phys. 25, 261 (1984).
2T. L. Hill, Statistical Thermodynamics (Addison-Wesley, Reading, MA,
1960).
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The purpose of this paper is to examine the relationship between the entropy balance equation, the
Gibbs formula, and the Boltzmann equation. Consider a system of a mixture of gases contained in
an arbitrary region {2 with volume ¥, where no chemical reactions take place. Let f; be the one-
particle distribution function of species /. First, suppose there exist some f;, such that the entropy
density pS, the entropy flux J,, the entropy production o, and the Boltzmann H-function, H(?),
satisfy, respectively, the entropy balance equation and the Boltzmann H-equation under
appropriate boundary conditions on the surface dQ of 2. Then f; can be shown to satisfy the
Boltzmann equation. Under the functional hypothesis, where f; depends on time ¢ and the spatial
coordinates r only in terms of the thermodynamic variables—particle density of species , p;,
hydrodynamic velocity v, energy density E, stress tensor %, heat flux Q;, and mass flux J;, and
possibly the spatial derivatives of { p;, v, E, #,, Q;, J;}, the entropy balance equation together
with the semipositive definiteness of the entropy production, ¢>0, then provides an alternative
method of solving the Boltzmann equation. The thermodynamic variables, in turn, are governed
by their corresponding evolution equations with appropriate boundary conditions. Second, to the
linear order of the spatial gradients of the temperature T, the hydrodynamic velocity v, and the
ratio of the particle number n,/n, the entropy balance equation then yields a generalized Gibbs
formula and a nonlinear solution of f; in terms of the thermodynamic variables, such that o>0.
The generalized Gibbs formula is an exact one-form of the thermodynamic variables that contains
the equilibrium Gibbs formula. Furthermore, if f; is linearized, it is identical to the expression
given by Grad’s 13-moment method. Finally, we consider the stability problem of the evolution

equations for %;, Q;, and J,.

I. INTRODUCTION

It is well known that the Gibbs formula plays an impor-
tant role in equilibrium thermodynamics.! Whether the
same assertion holds true or not for nonequilibrium thermo-
dynamics has been a controversial question for some time. In
1949, Prigogine® showed that, to the first order, the Chap-
man-Enskog solution® of the Boltzmann equation* was con-
sistent with the Gibbs formula of equilibrium form. Recent-
ly, De Groot and Mazur® analyzed the entropy balance
equation in terms of the Chapman-Enskog solution of the
Boltzmann equation. They concluded that, beyond the first
order, the statistical expression of the entropy density con-
tained the spatial gradients of the thermodynamic variables,
which inevitably led to contradiction with the Gibbs for-
mula. This inconsistency can be attributed to either an inap-
propriate approach in the series expansion and the con-
straints imposed on the Chapman-Enskog method or
incompatibility of the Gibbs formula with the Boltzmann
equation in general. It would be ideal if a satisfactory theory
of irreversible thermodynamics can be constructed from ki-
netic theory in terms of the Boltzmann equation. With this
aim in mind, recently Eu® proposed a modified moment
method similar to Grad’s 13-moment method.” In order to
conform with the second law of thermodynamics, Eu em-
phasized the importance of the Gibbs formula and the en-
tropy balance equation, thereby closing the gap between ki-
netic theory and irreversible thermodynamics. Based on
these considerations, he was able to obtain some interesting
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results in nonlinear transport processes and a new formula-
tion in nonlinear irreversible thermodynamics.®

The main purpose of this paper is to further examine the
relationship between the entropy balance equation, the
Gibbs formula, and the Boltzmann equation.

In the following discussions we shall adopt the same
notations and definitions as given in Eu’s paper® except for
some minor changes. For convenience, these notations are
given in Appendix A.

Consider a system of gases with » components contained
in an arbitrary region Q with volume ¥, where no chemical
reactions take place. Let f; (¢, u;, r) be the one-particle distri-
bution function of species i. The Boltzmann equation for the
system can be written as

af

L rw V=S Clhh) 0
where u, is the velocity of molecular species  and C( f;, f;) is
the Boltzmann collision integral.

By Eq. (1) we can derive the following set of evolution
equations for the infinite hierarchy of moments, such asp, v,
E, %,Q,J,etc.:

dp de; ( Pi)

— = — vi s —_—— L4 . i=_’ 2
ar AR vV-J e p (2)
dv o

— = _V-.P, 3
P 3)
dE =

— = —V:Q—P:Vy, 4
P Q- Py “
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d;t' —Zny z Am, (5)
% =ZM + Z A%, {6)
% =7+ S AL, Y
Ziozpy 3 AL, 4

where Z“” /W /WAL A"” AP, A, and A are givenin
Appendix A and d /dt = 3 /6t +ve V is the substantial dif-
ferentiation.

Equations (2}—(8) are the evolution equations considered
by Grad and by Eu. We note that each evolution equation
depends on the rest of the set. Henceforth, without a closure
relation, the infinite set of evolution equations must be con-
sidered. However, it is interesting to note that by the defini-
tion of the moments, we can rederive the Boltzmann equa-
tion (1) from each evolution equation except for the
conserved equations (2)—(4), where the collision contribution
vanishes. In fact it will be proved in Appendix B that the
infinite hierarchy of evolution equations for the moments of
/; is formally equivalent to the Boltzmann equation. Hence,
iff; can be expressed as a series of moments of /;, then solving
the set of evolution equations of the moments will be equiva-
lent to solving the Boltzmann equation. However, from a
practical point of view, it is impossible to study the infinite
hierarchy of the moment equations. In order to study the
hydrodynamic state of a fluid, Grad truncated the hierarchy
by including only the 13 moments { p, v, E, #, Q}. Inspired
by Grad’s method, recently Eu developed a generalized
moment method for nonequilibrium thermodynamics,
where the state of the thermodynamic system (of mixtures)
is described by W=1{p,, v, E, &, @/, J,}. Based on
Eqgs. (2)-(8), a general closure relation can be written as f;

=fi(w;, p:, v, E, ®;, 0, J;, Va), where Va denotes the spa-

tial gradients of W. If f; can be determined uniquely in terms
of Wand Ve, then Egs. (2)(8) form a complete set equivalent
to the Boltzmann equation.

In order to determine f; in terms of W and Va (approxi-
mately), we consider the following nonlinear functionals of
fi: pS, J;, and o defined, respectively, by

pS= =K | du,fllogf, - 1) o)
- -k 3 [ dufu,—vs08s; - 1) (10)
o= —KZL_du,-C(f,-,fj)logﬁ, (11)

where X is the Boltzmann constant and £}, is an arbitrary
region of u,.
By Eq. (1) and the definitions of pS, J,, and o we can
easily derive the following entropy balance equation:
ds

.__=._VJ+0' 12
P (12)
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Conversely, by Eqs. (9)-(12) we can obtain

S [ an{Z4u-vs-Scunplions=o

Since no chemical reactions take place, the f; are indepen-
dent for all i. Thus

f "“‘[%* weVi-2 C(ﬂ’fj)]logf,- 0. (12

We now show that Eq. (12') leads to Eq. (1). Let the Boltz-
mann H-function, H (¢), be given by

H(t)=ZJneridu,.f}logf“

where (1 is the region of the vessel containing the system with
volume V.

Consider an arbitrary (). The boundary () of ) may be
moving or stationary. If 30 is moving, the boundary condi-
tion of f; on J can be set up as described by Cercignani,’
whereas, if J(Q is stationary, the boundary condition can be
set up as described by Darrozés and Guiraud.'°

Suppose there exist some f;, such that pS, J,, and o,
defined by (9)—(11), satisfy (12) and H {t) satisfies the Boltz-
mann H-equation

d_i’= —ZLiduJ;ﬂ(u,.ﬁlogf,-)'dA

+3 nerdu,. C(f, fillog £,

but

afi

—+u Vf—Y Cfif)=heLl (1)

at
where d A is a surface element of Q). Then

Jdrf du; h,(tu,r)
—f du, fdrh(tu,,r) thi=0.

Since ) and ; are arbitrary with finite measure (volume)
and b, € L', thus h; = 0 almost everywhere.

Proposition 1: Consider a dilute system of a mixture of
gases contained in an arbitrary ) with volume ¥, where no
chemical reactions take place. Suppose there exist some f;,
such that, pS, J,, and o satisfy {(12) and H (¢) satisfies the
Boltzmann H-equation with appropriate boundary condi-
tions as described by Cercignani, or by Darrozés and Guir-
aud. Then f; satisfies the Boltzmann equation (almost every-
where).

Notice first that in the proof of Proposition 1, no bound-
ary condition of §; is required. Thus, £); is completely arbi-
trary. However, from a physical point of view, (2, should be
sufficiently large so that f; vanishes outside the region (2;. In
that case, pS is the entropy density, J, the entropy flux, o the
entropy production, and Eq. (12) is usually referred to as the
entropy balance equation. Furthermore, the condition
§ § h; =0 is equivalent to the conservation of mass (of the
system) as can be easily verified by (1’). Second, the Boltz-
mann equation is valid only for dilute systems, whereas the
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entropy balance equation is practically valid for all systems.
Third, if there are no oblique stresses of the gases exerting on
the surface d€), nor is there net energy flow from the gases
into the solid body that constitutes the boundary of the ves-
sel, Cercignani and Darrozés and Guiraud have, respective-
ly, proved the Boltzmann H-theorem based on the Boltz-
mann H-equation.

Hence, instead of solving the Boltzmann equation di-
rectly,'' we look for some f; indirectly through Eq. (12),
which satisfies the Boltzmann H-equation with appropriate
boundary condition. In order to achieve this goal, we assume
the functional hypothesis (closure relation) that f; depends
on ¢ and r only in terms of the thermodynamic variables W
and possibly their spatial gradients, where the thermody-
namic variables W, in turn, are governed by the evolution
equations (2)-(8). The boundary condition of f; must be re-
formulated in terms of the boundary conditions of the ther-
modynamic variables W for the evolution equations (2)—(8).
Since this is a very delicate and difficult problem, we shall
not discuss it in this paper. We assume that the boundary
conditions can be set up so that Eqgs. (2}~(8) can be solved. On
the other hand, the second law of thermodynamics requires
that o>>0. Henceforth, by the functional hypothesis, we look
for some f;, which satisfies Eq. (12) and the condition >0,
where the thermodynamic variables W are determined by
the evolution equations under appropriate boundary condi-
tions. The functions f; obtained in this manner certainly sa-
tisfy the Boltzmann equation. We therefore call them the
thermodynamic solutions of the Boltzmann equation. In the
next section we show how f; can be obtained (approximately)
in this alternative approach, where the Gibbs formula plays
an important role.

Il. GIBBS FORMULA AND THE THERMODYNAMIC
SOLUTION OF THE BOLTZMANN EQUATION

Letf, =f,(p;, V., E,VB) = f{¥ (1 + ¢,),where VB de-
notes the spatial gradients of p;, v, and E. Equation (12)
then yields

(&5 1], 25, %)

g Tlar TPa T ety

- -le-Sua]-v(3)

1 1
+7*:VV+27J, -V(;t,.)

_KZ V. [fdu,.(u,. —v) f; log(l + ¢,-)] +0o, (13)

where the divergence is with respect to the spatial coordi-
nates, v = p~ ! is the specific volume, y; is the chemical po-
tential of species / per unit mass, and p;, pv, and pE are
defined by

p i
pv =Zfdu,-m,-f} u;
pE) T b, — v
1
! %(“i - V)z
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Equation (14) then implies the following constraints on ¢,:

1
du; f0,{(u; —v) =0 (15)
3w, — v)?

By the definition of the entropy density, we have

S=iT{E+pv—Zpici]

P K'S, [ du,, logl + ). (16

Hence, S becomes a first-degree hoinogeneous function of
the extensive variables ( p;, v, E ), which gives rise to the local
equilibrium Gibbs formula

de.
T_‘_1£=1E_ av _ s _i, (17)
dt dt dt 7 dt
if and only if
fduiﬁlog(l +4¢,)=0. (18)

We now define the thermodynamic solution of the
Boltzmann equation as the solution of the entropy balance
equation (13), which satisfies the Gibbs formula (or the
generalized Gibbs formula to be defined later) and the con-
dition o>0.

With the Gibbs formula (17), it is evident that f; is a
thermodynamic solution of the Boltzmann equation if

10 1 /‘l'i
= —{—%V —Q-ViogT J -V(—)]
7 [T VHp Q Ve T+ Y 3V

+KZ’V- Udu,.(u,- —v) f; log(1 +¢,~)], (19)

and 030. Conversely, we can solve Eq. (19) for ¢, subject to
the constraint (15). If ¢, satisfies the condition (18), then f;
certainly satisfies the Gibbs formula (17). Therefore, f; is a
solution of Eq. (13). By examining the conditions fdu, f,
Xlog(1 + ¢;) = fdu, f%,, we notice that either ¢, = 0, the
trivial solution, or (1 + ¢;)log(1 + #;)~¢,. Equation (19)
then yields

Y P i

(20)
which can be shown to be the first-order solution of the
Chapman-Enskog method. Hence, by the entropy balance
equation (13), we have recovered the following well-known
result.

Proposition 2: Suppose f,=fi(p:, Vv, E, VB)

=f9 (1 + ¢,). Then f; is a thermodynamic solution of the

Boltzmann equation with respect to the Gibbs formula (17)
if, and only if, either (i) f; =1 or (ii) f; is the first-order
solution of the Chapman~Enskog method.

By Proposition 2, f; is called the linear thermodynamic
solution of the Boltzmann equation, because if can only de-
scribe linear irreversible thermodynamics.’ This drawback
is attributed to the following possibilities: (i) the constraints
on ¢, are too restrictive; or (ii) the Gibbs space spanned by
the thermodynamic variables ( p,, v, E) is inadequate. Re-
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cently, in order to study nonlinear irreversible thermody-
namics, Eu proposed a modified moment method to over-
come the above difficulties. The ensuing discussion is a
reformulation of Eu’s method.

Let us now enlarge the hydrodynamic variables to
(pis v, E, #;, Q;, J;, Va). Assume f; = f; (pis Vi, E, #:, Q)
J;, Va) = (1 + ¢;), where p;, pv, and pE are still defined
by Eq. (14). In Eq. (13), p;, v, E, %&,, Q}, J;, and Va are now
considered as independent variables. According to the defi-
nitions of AE’}’, A%, A, /7, and $" given in the Appendix,
we can eliminate the log{1l + ¢;) term in Eq. (13) by setting

log(1 + ¢;)

= = [, — u, — )P
—— |5 o = w2 - —:—KT](ui — ¥ X
—%(u,- —v) - X — e, — v}, (21)

where X{?, X*), and X!’ are independent of u,, and the su-
perscripts p, A, and d represent pressure tensor, heat, and
diffusion. The last term — e{u, — v)*, with € as an infinitesi-
mal real number, is needed to ensure the normalizability of
J;. That is, if we write

log /" = ‘é(ﬂx —p) = — L [_;'mi(ui — vy ".u'i]
and (1+¢;)=exp(—(I/KT)H'"), we can
exp[ — e(u; — v)*] into /1 and define u, by

include

exp( — Bu;) = 161_12 n! fdui exp[ — €(u, — v)“]

Xexp( — —pH),
with 8 = 1/KT. Henceforth, in the following discussions we
shall drop the term — e(u; — v)°.
With Eq. (21), we have
~ K [ dufu, —v)f; logl1 + )
S TANE RTIRS T

and

o=3 {§$"’:X$§” + XU Al 4 X Al
7

=E[‘X’¢.p>:d*" +x. 2 o, 8 g
=15 Tde T ar dr

Xz X -7, 22)
Equation (13) then reduces to
£lrds_dE_,dv 5,2 Tsgndt

TV ar o Far T4 a T o4l ar
dQ; dJ,
XM ——+X{"- ”
+ dt + dt

=—*V v+ — Q VlogT+zJ V(T:)
.._2 {X(,p):z(,-” +X(ih).z(ih) + X(id).z(id)} —V-D,
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where
D=3 {XIP(" + X: i) + X0 B, ). (23)

If X(#, X(*), and X! can be determined in terms of pisV, E,
#,, Q/, and J,, then f; is independent of Va. By Eq. (9), §
becomes a first degree homogeneous function of the exten-
sive variables p,, v, E, #;, Q;, and J,. We therefore look for
such an approximate solution f; of Eq. (23) that satisfies the
condition ¢>0. Let

X“’) X( P p,,v,E,%;,Q;,J;) + terms involving Va,
XM = X" (p,,v,E,#,;,Q;f,J;) + terms involving Va,
X =X (p,,v,E,#;,Q;,J;) + terms involving Va,
Z\» = Zi7 1 higher-order terms of Va

= -2p,[W]1?+..,
zr—zpiy...— _SKpigr
2 m,
Zid)=Z('do)+..-=p[v(ﬂ)+(_’_li_p_l)v10gp]+
n n p
=Vp/T)+--

Equation (23) then becomes

__{ dS dE _ dv
T

+ [ dC,- :‘\’ .d*,-
& @ Pt

Mg =
dQ dJ,
b+

— X(ho) X (dy) ,

dr dt
Kpi X‘ho)

=2 ”2”" X"+ l1"f.~]=[VV]‘2’ + [ -

77 v7+ [pxm Ky,
mn;

- [V(ﬂ) (= pans]
n n o p
+ higher-order terms of Va, (24)

where X7 —(T /p) Xl Xt = (T /p) X, X ida
= (T /p)X'%\. It is evident that the left-hand side (lhs) of (24)
is a generalization of the lhs of (13) such that S depends on ¢
and » only in terms of the thermodynamic variables
W={p, v, E, %; Q], J;). Since the spatial gradients of &
are independent quantities, to the linear order of [Vv]?, VT,
and V(n;/n), (24) in conjunction with (2)-8) yields
lhs = rhs = 0. Consequently,

as _ dE

T4 = dt Zyl L4 z [X(Po)
~ dQ; A dJ,;
XE.h")'—'-‘-XEd")'——"‘}, 25
+ dt dt 23)
where
%f_l’o)— ._1__%l= —Lﬁ"-,
2pip 2p;
A 2m,- 2mi N
= ———— Q= — Q:, (26)
5Kp,Tp 5Kp, T
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X(d°)= '——'——J = —'—Jp
piP Pi
and the distribution function f; can be written as
fi=rP exp[l + [(u — V), — )] %%,

i 1 5 ’
+§Fp—i-T_2 [7'".—(“.- —v? —TKT](“x —v)-Q;

ml
+ KT (w; —v) J.}- (27)
Since X !#), X (%), and X @ are independent of the den-
sity p, they are intensive variables, and thus can be defined as
the conjugate variables of %;, Q;, and J,, respectively. By Eq.
(27), S becomes a first degree homogeneous function of the
extensive variables ( p;, v, E, %, Q; + J;) and gives rise to Eq.
(25), which can therefore be defined as the generalized Gibbs
formula. Note that by (25), T d'S can be shown to be an exact
one-form.
Second, the entropy production is given by

z {X( Pole A( Po) + X(ho) A(ho) + X(do) A(do)}

i

= K3 | du (gl + ),

where A‘ Pol, A""" A, are obtained from A‘,f’, A}, and A,

respect;vely, w1th f given by Eq. (27). By the propertles of
the Boltzmann collision integral, one can easily show that

= 4KT2 druf(O)f(O)(H* —Hij)
X [e = #% — e~ Hu] 50, (28)
where H; =log(l + ¢,), H;; = H; + H;, H}; is the post-

collision value of H; ;, and dT", ; is the measure of the collision
integral.
Finally, by linearizing Eq. (27) we have

©) 1@

£ =11 [1+ ,KT[‘“ T
[ L g = 3KT
+ 51(219,12 [2 il ](
Q=) } 29)

which can be shown to be identical to the 13-moment meth-
od of Grad. We can summarize our results in the following
proposition.

Proposition 3: Suppose f; depends on ¢ and r in terms of
the thermodynamic variables W= (p,, v, E, &%,, Q/, J,),
which in turn are governed by the evolution equations (2)—(8)
with appropriate boundary conditions. Then, to the linear
order of [Vv]®, VT, and V(n,/n), f; is a nonlinear thermody-
namic solution of the Boltzmann equation with respect to
the generalized Gibbs formula (25), if, and only if, £; is given
by Eq. (27).

In view of the definitions given by Egs. (9)-(11), S, J,,
and o can be considered as nonlinear integral transforms of
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f;. Consequently, the entropy balance equation (22) is also a
nonlinear integral transform of the Boltzmann equation (1).
In Eq. (24), the entropy balance equation is solved to the
linear order of [Vv]®, VT, and V(n,/n), which in turn gives
rise to the nonlinear solution of Eq. (1). This is in contrast to
the first-order Chapman-Enskog solution of the Boltzmann
equation.

By the closure relation (27), we have a closed set of evo-
lution equations (2)~(8). If Eq. (2}{8) can be solved, we can
then obtain a complete description of the thermodynamic
solution of the Boltzmann equation. Recently, in a sequence
of papers, Eu’ has extensively studied the nonlinear trans-
port coefficients based on Egs. (6)+8). We shall not repeat
these topics in this paper. However, it is essential to know
whether or not the distribution function f; given by Eq. (27)
indeed approaches equilibrium as #— . In the next section
we discuss the stability and asymptotic behavior of #;, Q;,
and J,.

lll. THE STABILITY AND THE ASYMPTOTIC BEHAVIOR
OF THE EVOLUTION EQUATIONS FOR #;, Q;, AND J,

In order to simplify the notation, we introduce the fol-
lowing column vectors H, X, ¢, Z, A with 3r — 1 compo-
nents given by

H=[H].  H" HY. HYHD, HY ],
where

HY = [m,(u; —v)u, — V)]m’

H? = [im,(n, — v} — 5KT /2]{; — V)

HY =m,u, —v);

X = (X0 XX, XOXP,. X0, ],

where

X=Xl XDyt X0 = X,
¢ = [*1,...,*',Qi ,...,Q;,J],...,J,_ 1 ];
z=[z...z"Z®,.,Z2%29,.,.ZY ],
where
ZW=Zim, ZO=7ZM, ZP =7,
A= [AD, APAD AP AP, AP ],
where
A(ia) = ; Ai-‘}’ = ; J drij f(io) fJ(p) Hﬁ-")
X {e—’”-— e ™}, a=123,
1
= [X(BPH(B)+X(3)H(3)]
and

iy =X ¥ = post collision value of X ;.

To the linear order of Vv, VT, and V(u,/T) the evolution
equations for #;, Q/, and J; can be rewritten as

d a
E ¢(’ ) — A(, )( pj,V,T,¢)
+Z ™ p;,¥,T,VV,VT,V(u,/T)), (30)
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which is a system of first-order quasilinear partial differen-
tial equations with the same principal part!?
d¢(a) ¢(a)
dt at
We now define the stationary solution ¢! (s.t.) of Eq.
(30) as the solution of the homogeneous equation

L A .
_ ) 2o,
i e T Ty T a

+ (v V)i,

(31a)
Thus ¢! (s.t.) is obtained from the following system of alge-
braic equations:
ZP = — AP p;v, T hls.1)),
i=12,.,r, a=123. (31b)
By inverting ¢!*)(s.t.) in terms of Z'®, we then obtain the

nonlinear consititutive relations. On the other hand, the
characteristic equations of (31a) are given by

Ve v, v, J
Zgl) z dI‘,f‘°’f‘°’H“’[H(”
y 2,3
=gy X Ms.t) + 3 X Ns.t.),
J#Ei

Z(ﬂ)

=Y &PX st + 3 Y X Pist), B=23.

J#i ¥

Let the matrix g be defined by the block form

g 0 0
g= 0 ¢2,2) g(2,3) ,
0 g(3,2) g(3,3)

where the elements of g''"), g?,....,g* are given by (33a) and
(33b). It can be shown easily that g/ = gi/"), gi" = g7,
and g{#" = gi®) . These are Onsager’s relations."> By Eqs.
(33a)and (33b), Eq. (32) then reduces to the linear irreversible
thermodynamics given by Eq. (20), and the generalized
Gibbs formula (25) becomes the equilibrium Gibbs formula
(17).

The system of evolution equations (30) is equivalent to
the following system of ordinary differential equations'?:

dx _dy dz _
U, v

d¢(a)
“dt

(34a)

= A p; v, T,9) + Z“"’( PN T,V VT, v( T))
(34b)

Strictly speaking, the whole set of evolution equations (2}{8)
must be considered. However, ¢/ changes rapidly in time
toward the stationary state ¢/ (s.t.) as compared to the con-
served variables p, v, T. For this reason, we can separate the
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H(l)‘]X(l)(st ) +z

fdl'* f(O)f*’)H(B)[H(r) H”’"]X"”(st)+
y 23

and ¢{(s.t.) = const on the characteristics. From a physical
point of view, due to the chaotic molecular collisions, ¢
changes rapidly in space and time as compared to p,, v, T.
Thus ¢ reaches the stationary state defined by ¢/ (s.t.)
within a short period of time. During this period of time, p;,
v, T can be considered almost constant. Once the system is in
the stationary state, $\* (s.t.) then depends on ¢ and r in terms
of p;, v, T, which in turn are governed by the conserved
equations (2}—5).

By Eq. (22) the entropy production for the stationary
state becomes the following familiar expression:

)7 (o 1 1
o= —-;Xﬁ- 1Z@ = —7*(s.t.):Vv——fQ(s.t.)

Vieg T— ZJ(st) v(T') (32)

However, #(s.t.), Q(s.t.), and J;(s.t.) are related to Vv, VT,
and V(u,/T) nonlinearly, respectively, via the nonlinear
constitutive relations (31b). If A!® is linearized, we then have
the following linear constitutive relations:

dl, fOfOH P [H®P — HM' XV (st)

j;e:

(33a)

i fdrij fi-o’f}o)H i(ﬁ)[H}”) — H,‘-”']X}Y’(s.t.)
T ZiyS3s

(33b)

1
#'® from the conserved variables, and consider only Eq. (34b)

in terms of p; v, and T and their spatial gradients. For simpli-
city, we start with the linearized equation of (34b):

d¢e
o _zrla,ﬁ)¢(5) ZS'GL (35)
where
,.l;;-ﬁ) =g(1;z.ﬁ) aj‘.‘” ,
with
aV = — 1 , 0}2)= _ 1 , 0}3)= _L
2p; p 5Kp,Tp piP

Supposep;, v, and T are uniformly bounded and continuous-
ly differentiable such that |p;|, |v|, and |T’| are integrable
over the interval [#,, «), and p;, v, and T approach their
thermodynamic equilibrium values as ¢~ . Then #%#) is
also uniformly bounded and continuously dlﬁ'erentlable
such that

dr;;

J. 15t

and #5%)—al5#) = const as t— 0.

dt < w0,

Let R(t)=A+R(t), where (R){5P =rifP,

(A = alf®.
Then the matrix R,(#) has the property
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fe |IRs)||ds< 0, and §2||dR,/ds||ds< o, where
[|Ry($)|| = =, Z; |(R,);;| is the norm of R, (¢). Like the matrix
g, both 4 and R, have the same block form.

Now the solution of Eq. (35) can be written as

4 = + f Y ()Y 2 s, (36)

where ¢/® satisfies the homogeneous equation

a)
d'/}( _z,ia.ﬂ),/,(B)_z [4 +R1(t)](" B) #B)’ (35')
78
or, invectornotation (d /dt W =1[A + R,(t)]¥,and Y (¢ )isthe

fundamental matrix of (35’) with ¥ (0) =

Suppose A has distinct characteristic roots 4,. By the
properties of R, (#), Eq. (35’) has a fundamental system of
solution'* ¢;, such that

crexp[Retd,t) + a; [ 1R 1]

<lvd =cyexp|Relhr) +4, 1Rl 5]

for all ¢, where ¢,, c,, d,, d, are positive constants; in
particular, log(|¢;|)/t—Re(4,) as t— . As a matter of fact,
it can be shown that y,—¢ £, as - o, where £, is a charac-
teristic vector of 4 corresponding to the characteristic root
A; (see Ref. 15). On the other hand, the system (35’) is uni-
formly asymptotically stable'® if and only if there exist posi-
tive constants k and c such that || Y (£)Y ~'(t,)| | <k e <~ "),
t, < t; <t. But this is true if and only if all A; have negative
real parts. For binary mixtures, the negativity of Re(4;) can
be confirmed by the Routh-Hurwitz method.!” In general, it
is almost impossible to prove that Re(4,} < 0. However, if all
Re(A;) are indeed negative, then ¢ approaches ¢! (s.t.) ex-

ponentially. This can be seen by setting ¢! = ¢/
+ ¢!¥s.t.). Then
d

g = Ly = 3 fabiy)

dt W z I

+ 5 A st + zp|
J

z r(a , B) B)

Once the system is in the stationary state defined by ¢{*(s.t.),
it is then identical to the first-order solution of the Chap-
man-Enskog method.

All characteristic roots of 4 may not necessarily be dis-
tinct. In that case, 4 can be reduced to the Jordan canonical
form. Still, the system 3’ = 43 has solutions all approaching
zero as f— oo, if, and only if, all Re(d,) <0. Alternatively,
given any matrix A, there exists another matrix 4 ' with dis-
tinct characteristic roots'® such that | |4 — 4 ’|| <€, where €is
any positive real number that can be made as small as possi-
ble (but not zero). This justifies the assumption that 4 has
distinct characteristic roots.

Let the absolute thermodynamic equilibrium state be
defined by the absolute Maxwellian distribution function
(£ is independent of ¢ and r) and the thermodynamic equi-
librium Gibbs formula Tds =dE + pdv — 2, d c,. Since
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the stationary state ¢/(s.t.) is identical to the first-order
Chapman-Enskog method, where the generalized Gibbs
formula becomes the local equilibrium Gibbs formula (17),
we can readily employ the thermodynamic stability and hy-
drodynamic stability theory of Glansdorff and Prigogine'®
tof; given by Eq. (26). If ¢/ (s.t.) is substituted into (26), then
J: can be shown to be identical to the first-order solution of
the Chapman-Enskog method. To summarize, we have the
following proposition.

Proposition 4: Suppose all characteristic roots of 4 have
negative real parts. Then the solution of Eq. (35) is asymp-
totically stable. Moreover, f; given by (29) is a linear thermo-
dynamic stable solution of the Boltzmann equation.

Next we consider the nonlinear equation in vector form

d"’ —A)+ Z.

Let f (¢) = A(¢) — R¢. Then f(@) does not contain the con-
stant nor the first-order terms. Consider the homogeneous
equation of (34b)

—"’—R¢ +10)

Wenotice that ¥ = Qis a trivial solution. Furthermore, there
exist positive constants C; and C, such that
(#) —F@)<Cil¢ — §|, where C,—0 as C,—0, and
[#] < C, 9] <Cy. Since 52| |R,(¢)[|df < oo, given |¢t,)] suf-
ficiently small, it can easily be proved® that ¢ = 0 is an as-
ymptotically stable solution of the homogeneous equation if
all characteristic roots of 4 have negative real parts. As a
matter of fact, |¢|—0 exponentially. The general solution of
Eq. (34b) can be written as

b=y + f Y ()Y ~Ne) (i) + Z (1) 1dn,

If Z (¢ )0 at least as fast as ¢ ~2 for large ¢, then ¢(t }—0 as
t— o0, and the solution of Eq. (34b) is asymptotically stable.
Consequently the solution of Eq. (34) given by Eq. (27) is also
asymptotically stable. Moreover, f; approaches the absolute
Maxwellian distribution function as t— .

It would be interesting to generalize the thermodynamic
stability and the dynamical stability theory of Glansdorff
and Prigogine to the nonlinear thermodynamic solution giv-
enby Eq. (27) and the generalized Gibbs formula (25) togeth-
er with the evolution equations (2)-(8) under appropriate
boundary conditions. This will be discussed in a subsequent

paper.
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APPENDIX A: NOTATION
Vector: A,.
Tensor: ﬁ,.

(34b)
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Scalar product of vectors: A, « A,.
Tensor contraction: ﬁ, :ﬁz.

Local average of 4: (4 ) = f du, Af(r,u;,t).
Density: p;, = m;n, = (m,-),'

p= ZP:’-
Concentration: ¢, = p,/ p.
Hydrodynamic velocity: pv = 2 ({m;u;).
Internal energy density: l

PE=Y (% m;(w; —v)(u; — v)).

Mass flux: J;, = (m,(u; —v)).

Stress tensor:

i;= ZF‘ =z (mi(ui —_ v)(ui —_ v)),
F=Y#%=Y [f:'i](z)

=2 ll B +P) L BDI
=2 ' ! 3

=3 (mi [l — v)iw, — V)],

P = %(‘l_;,‘f) T unit tensor.

Traceless symmetric part of second rank tensor A:[A]?.

Heat flux:
Q=3 Q=3 (3 min—v)- o~ viw, —v)),
%= - ().

Third moment: :i»ﬂ-"’ = (m;(u, — v)[(; — v)(u, — v)]?),
& = (m,fu; — v)(w, — v)u;, —v).
Fourth moment:
B = (4 my(u, —v)* (, — V), — v)(u; — v)).

Boltzmann collision integral:

C(fif)=Cy =Jduj d®dbbg, (fif; —ff)
Collisional average:

(AC(f,.f)) = (AC,)) = (4).,,

AP = (m, [(w, — v, —v)]?),,,

AB = ([ mifu, —¥)* (w, —¥) = $ KT J(u, — V).,

AB = (A myfu, —¥) (0, — V).,

Aﬁ,’-’= (m;(w; — V)., -

Other definitions:
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j,

ZP =V — #,V v —2[& - Vv]? - 2p,[V¥]?

MGLICA BRI EARL AN

Z(h) Z(h) 5 sz(f) 5 HJ__fd_logT,
2 m, 2 m, 'dt
ZM = — VoYM —Q,V-v+p V- B p,ET+P,)

—(Q; * V)v — $:Vy,
ZV= —V+(B, ~c,B)—P-Ve,—JV-v—1J,,
ZP) = —3PV-Q, +(2/3p)J.V:P — 3#,:Vv.

APPENDIX B: REDERIVATION OF THE BOLTZMANN
EQUATION FROM THE MOMENT EQUATION

In this Appendix we rederive the Boltzmann equation
from the set of evolution equations for the various moments.
For simplicity we consider a single component system. The
evolution equations become

d

8 e V-, Bl
i pY-v (B1)
plv= _v.B (B2)
P

d

pEE= _V.-0—P:Vy, (B3)
dt

4 p v TP _§Vey—2[#:Vv]?
dt

—2p[W]? + A, (B4)
%Q= — VP _QV.y+p ' [V-B-P

+pEV-P] —®:¥v — (Q- V)v + A®), (BS5)
where

o = fdu m(u — v)[u — v)(u — v)]?f,
W"*):fdu%m(u—v)-(u—v)(u—v)(u—v)f,
P — fdu m(u — v)(u — v)(u — vjf,

A= [aumlu—via =912 (1),

A — Jdu % m{u —v)« (u— v)u—vW(f,f)

J (ff)is the usual Boltzmann binary collision integral, and e
is the traceless symmetric part of P.
Let

P; = fdu m(u; —v;)u; — y;)f,
S, = fdu mlu; — vy )y — v,){t, — v, ),

= J-du %m(u —ve(u—v)u, —vlf
Then

M. Chen 610



"P'f fdum(u — o)y — oM (£.f)
_ -;-5,., f dud(ffimlu—v)+(w—v)

a 2
- [Sur - ?Qraij

r-l

—p;Vev+ -g-*:Vv

dy;
+ — P,
rzl ax, i’]
avl' avj 2
—p| 2L 4 5.V
P [axj ™ y v]

= fdu m{u; —v,)u; — oV (£, f)

> d 2
- a_ Stjr—?Qraij]

r=1 Bx,

—pVv—8,A® + % #:Vv

c?v au,. ]
r—l axrpir
I, av
—P\— ax + a—'i ——5,17 V]
But
dp 5
£ AB) V. -——-V —4:Vy,
dt 3 ERAAN Q- v

A“”=%J‘dum(u—v)-(u—v)J(f,f).

Hence,

dP,
—ﬁ. = '[du m(u;, —v,)(u; —v))J(f, N
3
a
— —P,V+v
,Z; ax, !i’ v
[avi av] P ]
r—l axr T
or
—_—t = fdu miu; — v )u; — ;W (£ f)
3
,_13 [Ss +v,.Py]
avj
- P, P 1.
rgl axr "]
Consequently we have
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fdu miu; — v;)u; — vj)[g—f —u-Vf—J(f,f)] =0.

Similarly, by Eq. (6) we can obtain

fdu L mu—v)(u—vju—v

[— —u- Vf—J(f;f)] =0.

Except for the conserved equations (1}3), in general, by
the evolution equations we can obtain

fdug(t, u,r)[% —u-Vf—J(j}f)] =0,

where g is any tensorial polynomial in u — v. Suppose fis a
class C function. Then A =3df /3t —u-Vf—J(f,f)is a
C" function. Thus fdugh =0 for any g implies # =0.
Therefore the entire set of the evolution equations of the
moments of f'is equivalent to the Boltzmann equation.
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Fermion excitations of the nonlinear Schrédinger field in the attractive case
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The recent inverse scattering method analysis by L. Martinez Alonso [J. Math. Phys. 25, 1935
(1984)] is extended to demonstrate that the Bose quantized (attractive) nonlinear Schrédinger
field in 1 + 1 dimensions, admits fermion excitations in its (quantum soliton) spectrum.

I. QUANTUM SOLITON EXCITATIONS
The nonlinear Schrodinger field in 1 + 1 dimensions

i) = — Y + 2cP*PY (1)
is quantized according to Bose statistics
[#(x), ¥* ()] =6(x—)),

2)
[¥(x), ()] _=0=[¢*x), ¥*(»]_,

since the choice of Fermi statistics would cancel the interac-
tion term. Hence, a priori there is no room for fermions in
this model, except for the specialized c— oo regime in the
repulsive (¢ > 0) case. Then, indeed, the Bose model exhibits
a metamorphosis into the free Fermi model, see, €.g., Ref. 1,
which is accompanied by the collapse of the (Bose) Fock
space # into its proper subspace (of Fermi states) #'¢
C x5,

The state space structure in the attractive (¢ <0) case is
much more complicated” and does not reveal any apparent
fermion (Fermi states of Bose systems®) content. The in-
verse scattering method involves here a passage from the
Fock representation of the canonical commutation relations
{4, ¥*, |0)} to a countable family of independent Bose fields
{#,, 8%, |0), n>1} such that |0) is a common (cyclic vacu-
um) vector for both ¢, ¥* and { ¢,,, 6%, n>1}, while

[6.(p),d% ()] - =6,.8(p—q),
3)
[¢n(p)’¢m(q)]—=09

so that the extended Galilei group generators acquire the
following form:*

1 + oo n + o0
M=t Cawri=3 2 der s o,
2 — @ n>1 2 -

L]

H=J+wdx<¢:¢x+c¢*2¢2>

4

) 2 2
dp [P___c—w _n)] 2 2) 6, (D),
o n 12
4)
+ o0 + o
p=j ey (—ig)=3 |  doper(p) 4.(p),

nplv — o

=2

n>i v —

1 +
K= —7f dx xy*y

. + oo a
--3Z dp¢:(p)—é;¢n(p).

n>l 2 — o

* Permanent address.
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The eigenvectors of H due to [H, N]_=0, N

=f*2 dx y*(x)¢(x) in each n-particle sector have a
standard (Bethe ansatz) form

Nevertheless, as follows from (4) instead of the
{IT7_, ¥*(x,)]0)} basis, another one can be used to gener-
ate the underlying state space. Namely

[pisny; Py, 1) = $s, (P1)9% (p,)]0), (5)
n;>1, Vi
Since we have

[¢x(P) 4, (P), A ]_=0, ¥Ynk VYp,

+oo (6)
= Tdgsro so),

each operator /", commutes with the generators M, K, P,
and H of (4). Hence the single interacting Galilean (Bose)
field y*, 9 gives rise to a countable set of independent (free)
Galilean bosons ¢¥ and ¢, with H, = fdp w, ( p) ¢2(p)
Xé,(p) and , ( p) =p*/n — (c*/12)(n* — n).

Il. QUANTUM SOLITONS AS FERMIONS

Despite the fact that in the above we deal with bosons
only, the diagonal (with respect to #*, ¢, ) structure of gen-
erators (4) of the extended Galilei group, together with (6),
suggests the existence of state space vectors which respect
the Pauli principle. After accounting for the analysis of Refs.
1, 3, and 4 it would indicate that the nonlinear Schrédinger
field has Fermi states, and consequently gives rise to fermion
excitations (paralleling the boson ones).

For this purpose, let us consider the following sequence
{11,,, n»>1} of projection operators in the state space of our
Bose system (compare, e.g., in this connection the general
construction of Ref. 5):

-] 1 n n
IT, =SZ'OF > qur--a;qus [o(a, g 50,90 ]

ca =1

X@z (g1)-9% ( qs):exp[— Z fdp #% (p) ¢5(P)]:
B=1

X¢a,( ql)"'¢a, (qs)y (7)

where the (alternating) function o(a, ¢y;...; @, g,) is de-
fined as follows:
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H Pix>

1< j<k<s

a(al ql;"'; as qs) =

(8)
Pk =6ajak [6( q; —qk) —e( Gk _qj)]

T (1=8,,,)(— DT,
provided ©( g — p) = 1, ¢>p, O otherwise.

Since 0 = 0, 0 = + 1 depending on permutations of
pairs (aq) of indices, and if coinciding pairs appear in the
sequence, then ¢ = 0, and the analysis of Ref. 5 proves that
V n, I1, is a projection indeed. Moreover, if to denote 77
the Hilbert space of the nonlinear Schrodinger system (3)
and (4), then on its proper subspace #§ = I, 7, the
following fermion field operators (Fock representation of
the CAR algebra) do automatically exist®:

) 1/2 n n
bppy= § U2 3 fag 5 [ da,

s= a;=1
Xo(a, q;..; &5 4,)

Xo(Bp; @y 5.5 @ 4,) %, (4,)9%, (4;)
X:exp| — i Jdr¢;(r) ¢r(r)]:

y=1
X¢B(p) ¢a, ( ql)'"¢a, ( qs)! (9)

where 1<8<n and

[ba(P)9b§( q)]+ =5aﬂ a(p—q) nn’

(10)
[ba(P);bg(Q)]+=0, 1<a9 B(n’
while b, (p)[0) =0,b%(p)|0) =¢2(p)|0), YV a,p.

One should realize that each projection II, selects in
g, its proper subspace #°g, on which the respective Bose
variables (i.e., ¢2, 4., 1<a<n) respect the Pauli principle.
It means that the operator

Po=S N (Ne=1) (11)
a=1
has the eigenvalue O on the whole of #7%. Because of (6),
these Pauli-principle-saving subspaces, are the Galilei invar-
iant sectors in #°g, thus giving rise to the Galilean fermion
excitations in X’y .
Moreover, projections { I1,,, n> 1} form a decreasing se-

quence
Hn l-In+1=rln-+-1' (12)

But then, according to the standard knowledge: (1) there
exists a strong limit II = s-lim II,,, which is a projection on
Hg, (2) the property I, IT = IT holds true for all n, and
(3) for any vector | /)€y for which lim I1,, | /) #0, upon
setting |¢) =lmIl, |f) we Thave |$)#0 and
I, |¥)=|¢¥), Vn On the respective subspace
Il 7%y = 7 of 7y the operator
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P=3 N (Nag—1)
a=1
has the eigenvalue 0, and the generalization of the formula
(9) to n— oo is possible. Then, however, we arrive at the
conclusion that the Bose quantized nonlinear Schrédinger
field with attractive coupling, in addition to bearing the infi-
nite set of Galilean bosons, gives rise as well to the infinite set
of Galilean fermions

+ oo
nmMi=3 2 [ " aporcm b, p,

n>1

+ o p2 c2 3

n»lJ —

Xbr(p) b, (p),

+ o

NPO=3 [ dppb2(p)b,(p),

a3l J —

in (*t= a
OIKII= -3 — dpb:‘(p)gb,.(p), (13)

n>l — @

which live in the Hilbert space of our Bose system.

Since, a priori, each field ¢, ( p) can be given as a func-
tion of the primary interacting fields ¥*(x), ¥(x), it hap-
pens so in the case of fermions b *( p), b, ( p). However we
cannot present the corresponding formulas. As well, we do
not know how the primary fields ¢(x), ¥*(x) act on the
Pauli-principle-saving domain I1 %5 = 5. Nevertheless,
since

|ty g15es @ G5 ) g
=b3 (q,)b%(g0)

= a(al qi5--5 Ay qs) ¢:, ( ql)'"¢:, ( qslo)’ (14)

the analysis of Ref. 2 apparently can be applied to determine
the scalar products

1 .
_(xp---’ xn Ial ql;"'; as q: )F’

Jn!
n=n;+ - +ng,
[X150es X, ) = 0% (x1)¥0*(x,,) |0).
(15)

It is, however, quite transparent that unlike our previous
investigations>* the property [ H, IT1] _ = 0 does not suffice
to convert the Bose Hamiltonian H = H(y*, ¥) of (4) into
the (Fermi) Hamiltonian A = I1 H II, where the primary
bosons ¥*, ¥ are simply replaced by the respective fermions.
In the present case, the fermion content of the model be-
comes manifest on another level of the theory. Albeit, the
basic (boson—fermion unduality) mechanism
Hy=PHy P +(1—P)Hy(1—P),PHy P=Hy isstill
the same as previously, see Refs. 1, 3, and 4. A more detailed
study of the issue in connection with the boson and fermion
Fock space unification can be found in Refs. 6 and 7.
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Axially symmetric soliton solutions for self-dual SU(X) gauge fields on Euclidean four-
dimensional flat space are found using an extension of the Belinsky—Zakharov solution generating
technique. The new solutions depend at most on N — 1 arbitrary solutions of the usual Laplace
equations in cylindrical coordinates. The inverse scattering method using the chosen seen solution
reduces to the computation of at most NV — 1 quadratures. The n-soliton solution is written in a
determinantal form. Three particular cases of one-soliton solutions for the SU(5) group are

exhibited.

I. INTRODUCTION

The self-dual Yang-Mills equations are more conve-
niently described in the R gauge, first introduced by Yang’
for the SU(2) case and subsequently extended by Prasad,’
Ardalan,® and Brihaye et al.* to the SU(N ) group. For this
group the self-duality equations are

O¢(g: &™) +9z(8,87")=0, (1.1)
where the subscripts £ and { denote partial differentiation, g
isan N X N Hermitian matrix with unit determinant, and &
and { are complex coordinates related to the four-dimen-
sional Euclidean-space Cartesian coordinates by

E=(IA2)x+iy), &=(1/2)z—ix,). (1.2)
Here and in the sequel the bar operation denotes complex
conjugation.

A number of authors® have studied the self-dual equa-
tions (1.1) using different methods. In particular, the present
author® extended the Belinsky—Zakharov solution generat-
ing technique™® (BZSGT) used in general relativity to in-
clude the axially symmetric SU(2) case. In a similar manner
Papadopoulos® studied the SU(3) case.

The purpose of this paper is to generalize the BZSGT in
order to include the SU(NV ) case and to present explicit pure
soliton solutions (1.1). This generalization is studied in Sec.
IL. In Sec. I1I we study the equation for the “wave function”
Y, associated to the particular “seed solution” g, that is a
solution to (1.1) built with solutions of Laplace equation in
cylindrical coordinates. For this particular seed solution the
solution of the inverse scattering problem reduces to quadra-
tures. In Sec. IV we present a determinantal form of the n-
soliton solution associated to the particular g, previously
described. Finally, in order to visualize the solution, we ex-
hibit three different one-soliton solutions of the SU(5) gauge
theory (Sec. V).

Il. THE SOLUTION GENERATING ALGORITHM

If we restrict the matrix g to be a function only of
r=2££)"*and z = (¢ + £)/2"?, we find that (1.1) reduces
to

d,(rg,g” ")+ 3.(rg.87 "), (2.1)
Also, we have
g=g', detg=1. (2.2)
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The extension of the BZ method presented in Ref. 6 can
be generalized in a straightforward manner to include the
SU(N ) case. Thus, we shall only present the results. The BZ
method for solving Eq. {2.1) is based on the fact that the
condition of integrability for the system of equations

D.y=I[(rU+AV)/(A?+ )Y, (2.3a)

Dy=1[(rV-AUY/A*+ )]y, {2.3b)
where

D, =4, + [2Ar/A*+ )9, , (2.4a)

D,=3, - [24YA*+A))9,, (2.4b)

U=rgg™', V=rg.g™' (2.5)
is just the same as Eq. (2.1). Here ¢ is an N X N complex
matrix function of 7, z, and the spectral parameter A. Putting
A = 0in(2.3), we have that {4 = 0) = g. Solutions with pure
soliton character are associated with solutions of Eqgs. (2.3) of
the form

¢=X¢O»

n R k
=1 ,
=i kgl A —p

where 9, is a solution to Eqs. (2.3) for aknown g, say g,, the
R, are complex matrix functions of 7 and z only, and the u,
are scalar complex functions of 7 and z only. The pure soliton
character of the solution is associated with the particular
form of y given by (2.7), i.e., with the existence of simple
poles’® in the matrix y. The number of poles will tell us the
number of solitons appearing in the solution. Note that let-
ting A = 0in (2.6), we get

(2.6)

(2.7)

g=(¥li-0)8- {2.8)
A condition that guarantees the fact that g = g* is
g=x(—r/Ar2)glx4r2)]". (2.9)
From (2.3}2.9) we find
NOr- N
8 = Bl = F————— (2.10)
Kl
m* Lm0
=mm _F 2.11
ki ’2 _ 'ukﬂl 1k ( )
m*).imt ’Em‘," ’(go)a,, ﬁg’ s (2.12)
N¥'=m$,(8o)sa » (2.13)
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mE=mM©), (2.14
M® =y =p, (2.15)
M =, —z+ [(@, — 27 + P2, (2.16)

The sum convention on the indices a and b is assumed; @ and
b run from 1 to N. The m{¥ and a, are sets of arbitrary
complex constants. Note that the solution (2.10) is com-
pletely determined by g,, #,, and these sets of constants.
Regardless of the fact that the matrix whose elements are
(2.10) is Hermitian, we have, in general, that det g#1. To
remedy this problem, we can define a new matrix

g" =g/(det g)"" (2.17)
that satisfies both conditions (2.2). Taking the trace of Eq.
(2.1) one can prove that the new g™ is also a solution to (2.1)
whenever g is a solution. The determinant of (2.10) can be
explicitly computed:

n

det gy =(— 117 T bul~*Jdetgo.

I=1

(2.18)

Since det g, = 1 we conclude that we can only have an even
number soliton solution associated to g, We can have an odd
number of solitons® by defining a new seed solution g;, that
satisfies (2.1) and

(26)" =85 (2.2)
Now the odd number soliton solutions constructed with g;,
i.e., g, satisfies (2.1) and (2.2).

Finally, we want to point out that in Refs. 6 and 7 a
different condition for the determinant of g, and g is used.
One can do so due to the fact that the equation satisfied by g,

J

detgi= —1.

8o = diag(n, exp ¢,, 1, €xp @,, 15 €Xp ¢3, 74 €Xp by, 75 €Xp &),

ie, (2.1), is also satisfied by §, = g, whenever a is a con-
stant.
lil. THE FUNCTIONS g, AND ¢,

We shall take as our seed solution the particular solution
to (2.1) given by

(1.€xp &, a=b=1,2,.5,

bas a=b=s+1s5+3,.,N—1,

exp (ic,), a=b-1 3.1
(80)as = § P

=5+ 1543, ,N—1,
exp(—ic,_,), a=b+1=s+2544,.,N,
W0, otherwise,

where the 7, are indicators that can take the values + 1, c,
is a set of real constants, s is a number such that (i) 0<s<N
and (ii) (N — s)/2 is an integer, and the ¢, are functions that
satisfy the usual Laplace equation in cylindrical coordinates,

Por + Pap/T+ b0z =0, (3.2)
and

a}l:,s,, —o0. (3.3)
The d;terminant associated to (3.1) is

detgo=(— 1"~ [] 7, . (3.4)

a=1
In order to visualize (3.1) we present the SU(5) case. For
N =5 we have three possible s:s = 5, 3, and 1. The corre-
sponding matrices g, are

exp ic,

7, €xp §, 0 0 0
0 7, €Xp ¢, 0 0
&= 0 0 73 €Xp @3 0
0 0 0 &,
0 0 0 exp( — icy)
7, 0 0 0 0
0 &, exp ic, 0 0
8= 0 exp(—ic) 0 0 0
0 0 0 b4 exp ( — icy)
0 0 0 exp( — fc,) 0
The function ¥, obeys the differential equations (2.3)
with g replaced by g, i.e.,
D,y = [(rUp + AVo)/(A 2 + P)1¢o, (3.8a)
D,y = [(r¥o — AU/ (A% + )¢, (3.8b)

where U, = rg,),8; ' and ¥, = rg,),8; ' - Furthermore ¢,
must satisfy the initial condition

Yoli—o =80- (3.9)
A direct verification shows that the matrix whose elements
are
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(3.5)
0
0
0 , (3.6)
0
(3.7
!
(1. exp F,, a=b=12,.;,
F,, a=b=s+1,5+3,.,.N—1,
_Jexp (ic,), a=b—-1=s+1, (3.10)
(Yodao = 4 s+3,.,N—1,
exp(_.ica_l)’ a=b+1=s+2,s+4,...,N,
L0, otherwise,

is the solution to (3.8) and (3.9) associated to the particular
seed solution (3.1) whenever the functions F, = F, (r,z,A)
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satisfy the system of equations

D,F, =(P$,, +Ard, )/ A*+ 1), (3.11a)

D,F, =(P4,, — Ard,,)/(A*+7), (3.11b)
together with the initial condition

Filico=¢.. (3.12)

In the final formulas (2.10}2.14) the matrix ¢, appears
in the form ¢, _ ,,, . Thus, to construct the soliton solutions

we only need
F¥=F, 2=y s (3.13)

i.e., the functions F, along the poles’ trajectories. These tra-
jectories obey the equations®

B =2 /(U3 +7), e, = =2/ +7). (3.14)
From (3.11}+3.14) we get

rarFSIk) —Hi azFSIk) = r¢a,r ’ (3.158)

U ,F8 +rd, F=rg,, . (3.15b)

J

IV. THE n-SOLITON SOLUTION

Thus
Fa [¢a] - 7J' L [Vl‘k.r¢a.r _”'k,z¢a,z)dr

+ (”k.r¢a,z +”k,z¢a,r)dz] . (3'16)

The existence of (3.16) is guaranteed by Eq. (3.2) and the fact
that In g, is also a solution to (3.2). Note that

Wrr /i) uy0 = 2/7, (s /)| y0 =0 (3.17)

Thus, (3.16) is compatible with the initial condition (3.12). In
other words, the overdetermined system of equations (3.8)
for the solution (3.1) is completely determined along the
poles’ trajectories; its solution reduces to a single quadra-
ture.!! Note that (3.3) and (3.16) imply that

2’: F (ak) =0,
a=1
i.e., that the number of linearly independent functions F ) is
equal to the number of linearly independent ¢, .

(3.18)

In the general case the elements of g™ for n simple poles can be cast in the following determinantal form:

det[zZ; i T — (80)as 'NON |

ah =r——2n/N( “ m 2(1—N)/N)
& I el
for (gO)ab #0’ and for (gO)ab = 0’

detI"

Moy |l |? det T —det [&, pi Ty + NYNE

(8oas» (4.1a)

g.:: — r—2n/N( ﬁ |ﬂm |2(1—N)/N)

m=1

(4.1b)

detT"

In deriving (4.1) we have made use of (2.10), (2.17), and the identities

M
det(k,k; + D) = [1+ Y kik (DY), |detD,

=1

det(k,k,D,) = (kykyky)?* det D,

4.2)
4.3)

which are valid for a nonsingular A/ X M matrix D and an arbitrary vector k.
The expressions (4.1) are particularly useful in the study of the general properties of the multisoliton solutions.!? To
compute the different quantities that appear in (4.1) we need first to compute M) and m*) as (2.10) and {2.11) indicate, we find

(7, exp(—F{P), a=b=1.2,..s,
expl(ic, ), a=b-1=s+1s54+3,..N-1,
(M®)y={ —F,, a=b=s+2s5+4,.N, (4.4)
exp( —ic,), a=b+1=s5s+2544,..,N,
L0, otherwise,
and
Mo mg;:)exp( —F (bk ))’ b <,
mi) = {mby), | exp(—ic,), b=s+1s+3,. .N—1, 4.5)
—m&FE) | 4+ m&)_ | explic, ), b=s+2s+4,.,N.
Then, we get
7,mi; expld, — F§), b<s,
N = Imb) +m), (@, — F¥exp(—ic,), b=s+15+3,..N~1, (4.6)
msy), b=s+2s+4,.,N,
617 J. Math. Phys., Vol. 27, No. 2, February 1986 Patricio S. Letelier 617



and

s _ N—1 -
Ty=0r+pm™! Lz miy)my) explg, — Fi) — F') + Z "mly) G gy — FY) —FY)
=1

N—1
(k) &

S [, | explicy) + ml), 7l exp(—fc,,)]],

b=s+1

where X' indicates asumonb=s+ 1,5 + 3,...,.N— 1.

An interesting feature of the solution (4.1) is that it is
equivalent to solving the stationary, axially symmetric Ein-
steinN — 2)}-Maxwell field equations.'®

V. SU(5) ONE-SOLITONS

To illustrate the previous results we shall compute the
one-soliton solutions associated to the particular SU(5) seeds
solutions (3.5), (3.6}, and (3.7).

For the diagonal case (3.5) we get

Gor =1, /1|7 PA " exp(g, ) [i21/r|*A
— (1 + /7)), |* expd, — 2 Re F)],

(5.1a)
when g = b, and for a#£b,
8o = — a s [7/pa|**(L + |01/71*)G9s
Xexplg, + ¢, —F — F), (5.1b)
where
5
A=Y |g;|*explg, —2Re F}), (5.2)
b=1
g, =mi). (5.3)
Note that in this case we must have
5
IM7=-1 (5.4)

a=1
For the case (3.6) we get, when a,b< 3, similar formulas
to (5.1), but now

A =2 Rel(g.gs exp icy) + |gs|*($s — 2 Re FY)

+ 3 lao[espld, —2Re FY) (55)
and 7,7,m; = — 1. Fora<3 and b = 4 we have
o = — M|t/ ¥+ |uy/r|)AT
X [§aq4 explds — F )
+G.qs\bs — F)explg, —F —ic,)],  (5.6a)
and fora<3and b =35,
g = — a|r/p|*P(1 + |1 /7| )A T 1G,g5
X explg, — FY). (5.6b)
Also,
gee = /[P |py/r*Ads — (1 + |ua/717)Igs
X exp ic, + gsids — FU)1*], (5.6¢)

B = |/, ¥ A~ {|u,/r|?A expic,
— (1 + |y/71*) [Gugs
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b=s+1
(4.7)
r
+ 195> (84 — F{)exp( — icy) ]}, (5.6d)
gt = — |r/py[*PATN (L + |y /7P |gs (5.6¢)

The non listed components can be obtained from the proper-
tyg=g".
And for the (3.7) seed solution we obtain

gt = — |r/p AT iy |PA + (P + |1a]Dga)?),
(5.7a)
gn=— |r//‘1|8/5A_l(1 + | /r?)
X (4192 + §.195(¢, — Fylexp( — ic,)], (5.7v)
g = — [/ [PPATHL + |y /71 (5.7¢)
gt = gh; (2 4,3-5), (5.7d)
gis = gh(3—-5), (5.7¢)

8 = |’//‘1|8/SA_1[|#1/’|A¢2 — {1+ [ﬂl/"lz”%
X exp ic, + gsl, — FY)|*], (5.79)
g = |r/p, [¥PA " {|uy/r*A expic, — (14 |uy/r]?)

X [qzqs + |q3[2(¢2 - F'(z”)exp icz] }, (5.7g)

2= = I/ PPATI A+ /)

X [@2 + §5(6, — FJexp ic, |
X [94 + g5y — FJexp( — icy)], (5.7h)

g = — e/ [*PATHI 4 |y /1))
X [G295 + Gx95(¢2 — F{exp ic,], (5.74)
g =g (1-3), (5.7j)
P — g (13,2 4,355), (5.7x)
gt = ghr (1-3,3-95), (5.7)
gh = ghr (2— 4,3-5), (5.7m)
b =g (2— 4,355), (5.7n)
gt =gii (3—9), (5.70)

where g™ (2—> 4,3—5), etc. means that we let 2— 4 and
3—5in the expression (5.7b), etc. For this case, A is given by

A =|q:)* + |g:)*(¢, — 2 Re FY) + |g|*(¢s — 2Re F )

+ Relg,q; exp ic, + 9435 exp icy). (5.8)
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The equations in compactified Minkowski space that describe SU(N) Yang-Mills fields
minimally coupled to Dirac spinor fields transforming under the lowest-dimensional
representation(s) of SU(XN) are reduced by the action of an SO(4) subgroup of the conformal
group of space-time. The reduced systems can be interpreted as Hamiltonian systems with
symmetry constrained by a condition on the associated moment maps.

I. INTRODUCTION

In a previous paper,’ we considered the reduction of the
SU(n), SO(n), and Sp(n) Yang-Mills equations under the
SO(4) subgroup of the conformal group of space-time C (3,1).
This work was based on an earlier study? of the geometric
formulation of invariant gauge fields under smooth group
actions. These methods have also been applied to derive the
dimensional reduction procedure,® to reduce and solve
gauge* and matter-coupled gauge systems,> and to deter-
mine invariant spinor fields with gauge freedom.’

Our purpose in the following is to extend these investi-
gations to the case of coupled Yang-Mills-Dirac equations
on conformally compactified Minkowski space with mass-
less Dirac spinor fields transforming under the lowest-di-
mensional representation(s) of the gauge group SU(N). For
N =2, reductions under certain compact subgroups of
C(3,1), including SO(4), have already been done and invar-
iant solutions found.®® Here, we consider higher-dimension-
al gauge groups.

In Sec. I1, we give the characterization of SU(V ) gauge
fields and Dirac spinors invariant under the SO(4) action.
Such actions are generally characterized by a homomor-
phism of the isotropy subgroup of SO(4} into SU(V ), but for a
large class of homomorphisms, either no nontrivial invariant
Dirac spinor fields exist, or, as shown in the Appendix, the
field equations force the invariant spinors to be zero. Thus,
only particular homomorphisms allow Yang—Mills systems
coupled with one lowest-dimensional multiplet of spinors,
and we consider some of these in Sec. III. More precisely, we
Iook at the reduction of the SU(2n) Yang-Mills—Dirac equa-
tions on the manifold S * X .S * with Lorentzian metric (diffeo-
morphic to the compactified Minkowski space) for typical
SO(4) embeddings. In a convenient gauge, the reduced sys-
tems are seen to be interpretable as Hamiltonian systems
with U(n) symmetry constrained by the condition that the
SU(n) part of the moment map (i.e., the associated conserved
quantities) vanishes. Assuming that either one of the two
Weyl components equals zero, we further simplify the resid-
ual systems by use of this constraint to obtain a set of one-
dimensional systems interacting via inverse square poten-

> Address after 1 September 1985: Department of Pure and Applied Math-
ematics, Stevens Institute of Technology, Castle Point, Hoboken, New
Jersey 07030.

620 J. Math. Phys. 27 (2), February 1986

0022-2488/86/020620-07$02.50

tials. Finally, we present a nontrivial invariant solution to
the SU(4) coupled system, the solution on the compactified
space being expressible as a solution on Minkowski space by
an appropriate transformation.%°

il. SO(4) INVARIANT FIELDS

First, we summarize some of the notations given in Refs.
1-6 that will be used in the following. Let M be the confor-
mally compactified Minkowski space, identified with the
group U(2) and, for simplicity, let us work on the twofold
covering U(1)xX SU(2), identified as S'xS?, with points
P = (e"¥v), €¥eU(1), and veSU(2).

We also consider the following natural group actions on
U(1)XSU(2): (a) left action of SU(2); L,: (e",vp—(e*.gv),
where geSU(2); (b) right action of SU(2); R, : (¢",v}—(e",vg),
where geSU(2); (c) left action of SU(2) X SU(2): L ,; (¢",v)
—(e", g'vg™"), where g,g'eSU(2); and (d) left action
of the diagonal subgroup SU(2),=(SU(2)XxSU2))p;
D, : (€Y, vp—(e", gug~"), where geSU(2)

In terms of the Cartesian coordinates {x *}, the injection
of the Minkowski space (M ) in its compactified version M is
defined by

V=u+ i’ and u=u'—iv'o, (2.1a)
(f = 1,2,3), with {0, } representing the Pauli matrices, where
ﬁf_’ v (14+x, x*) W= (1 —x, x*)

T 27 27

ul = ,

(2.1b)
and 7= [x3 + }1 —x, x#*]'/2 Its (singular) inverse is
given by

(€ o) {xt = u"/ (W' + ud)} . (2.2)

The subgroup SO(4) CSO,(4,2) ~SU(2,2)/Z, (where the
subindex O specifies the identity component) acts on the
(u',u?u’u®) subspace, and its twofold covering
SU(2) X SU(2) is the corresponding subgroup of SU(2,2). The
isotropy subgroup SU(2)xSU(2) at the reference point
Po = (€"¥,1,) is the diagonal subgroup SU(2),, and the orbits
are the S3 corresponding to fixed ¢.

On U(1) X SU(2), there exists a natural SO(2) X SO(4) left
invariant Lorentzian metric, denoted g, which is conformal
to the Minkowski metric g:

g=ﬁ§=¢2(0°ee°—za‘®0‘). (2.3)
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The one-forms 8 ° and 6 are defined as left invariant forms
and they constitute a global set of orthonormal coframes on
S 1% S3. Explicitly, they can be expressed as

°=dy and 6'=}('dv)’ [veSU(2)]. 2.4)

We denote the associated dual frames {e, }. Since these are
orthonormal, the linear generators {y*} of the Clifford alge-
bra are just the ordinary Dirac matrices. As in Ref. 6, we use
the following representation:

N I
YO—[@ 0l’ v= 0,0; o I’

r=irrrr=[¢ °]

and (2.5)

A. Invariant SU(V ) Yang-Mills fields

It follows from the result of Ref. 2 that each equivalence
class of principal bundles P(M~S'X[(SU(2)XSU(2))/
SU(2)p], SU(NV)), admitting a lift of the group action of
SU(2) X SU(2), is characterized by a conjugacy class of homo-
morphisms (1) of the isotropy subgroup SU(2), into the
gauge group (structural group) SU(NV ). Since SU(2) isasimple
and simply connected group, the problem of determination,
up to conjugacy, of its homomorphisms into SU(N ) is equiva-
lent to the classification of the su(2) subalgebras into su(NV ).
Mal’cev'® and Dynkin'! have solved this for all semisimple
Lie subalgebras. In the case of su(2) Csu(V ), these classes are
in one-to-one correspondence with the systems of highest
weights (spins) of (nontrivial) su(2) irreducible representa-
tions constrained so that the sum of their associated dimen-
sions is less than or equal to V.

Among these classes, we shall mainly be interested in
homomorphisms, which we shall call “homogeneous.” For
m,N, and N /meN (natural numbers), these correspond to
SU(2) subgroups formed from N /m identical irreducible
SU(2) representations D ‘(g) of (highest) weight j = (m — 1)/
2

A: (g, 8)eSUQR)p— 1y, ® D (g)eSUIN), geSU22). (2.6)

The explicit calculation of the SO(4) invariant gauge
fields for these classes of bundles is given in Ref. 1, and we
recall the results below. The invariant connections (i) ob-
tained are

o) =H'(¥)eD/(1,)6'+T (¥ &1,6°, (2.7)

where H ‘e’ (N /m), the space of N /m X N /m Hermitian
matrices, I'(¥)esu(N/m), {r,=o0,/2i}, and ¢eS'. The
' () component may be thought of as a gauge potential on
S ! with respect to the residual gauge group. This may, of
course, be gauged to zero. However; for the purposes of
Euler-Lagrange variations, it is preferable to retain this
gauge freedom.

The “nonhomogeneous” homomorphisms may in gen-
eral be written as embeddings of the type
A:( 8 g)GSU(z)D

rry/m, ®D Io( 8)) @ (1a/m, eD(g))

® = ®(lpm ®D( g))esu(i M,,), (2.8)
k=0
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where j.=(m, — 1)/2, M, eN, Vke{0,1,...,n}. A calcula-
tion shows that the resulting invariant fields correspond to
an uncoupled direct sum of each homogeneous invariant
field except for every pair of weights (7, / + 1), which in addi-
tion produces “off-diagonal” contributions. For example, if
the embedding A is

A: (g, g)eSU(2)p
—(lp 243 8D i+ g))
® (141 @D 7(g)eSUM + M), (2.9)

the most general SO(4) invariant gauge field has the simple
form

H, eD'*' (1))
—Kte Q'(1,)

Ko Q(r,)

i ]
H, oD (7)) 0 +c(¥)6
(2.10)
where H,,e72M /2j + 3), Hy, €M '/2j + 1), Kisa M/
2/ + 3XM'/2j + 1 complex matrix, the {{}(r;)} stands for
(2/ + 3)X(2f + 1) matrices, which are expressed in terms of
Clebsch—Gordan coeficients for the coupling of jand j + 1
to 1, and the element c(1) belongs to the centralizer of the

image 4, (su(2),) in the gauge Lie algebra su(M + M').

o) =

B. Invariant SU(N ) Dirac spinor fields

Let us define W¥eC* X C" as a massless Dirac spinor field
transforming under the fundamental representation of
SU(N), denoted D. With respect to our choice of Dirac ma-
trices and orthonormal coframes, the SO(4) invariance con-
dition reads (for details, see Refs. 6 and 7)

D |1/2,0)( g) 0
0 D (1/2,0)*( g)

eD(p~'((&, &) PV (p), (2.11)
V(g', g)eSU(2) X SU(2) and peU(1)xSU(2), where D /%0
and D ®'/? (equivalent to the complex conjugate of D (/%)
are basic representations of SL(2,C). The “transformation
function” p~!(( g, g), p), which characterizes the group ac-
tion on the principal fiber bundle (see Ref. 2}, may be chosen
independent of the point p since the homomorphism A ex-
tends smoothly to an homomorphism (A) of SU(2) X SU(2)
into SU(N ). In fact, we may define

p (8.8 P)=Alg.8)=4(g 3. (2-12)

Consequently, the Dirac spinor field must satisfy the
following linear isotropy condition at the reference point
Po = (¢",1,) for any homogeneous homomorphism:

0 .
¥l =[5 O] ¥ritm oD 10N,

VgeSU(2), YeC**~. However, Schur’s lemma forbids the ex-
istence of nontrivial invariant Dirac spinor fields unless the
highest weight j equals . In that case, the corresponding
invariant spinor takes the form

T

wp =[5 Wee],
7 ¥el,

where £,7€C"<! are functions of yeS' .

We remark that spinors transforming under any repre-

sentation of the gauge group will have nontrivial SO(4) in-

variant fields if the restriction to 4 (SU(2) ;) of the represen-

V(L g P) =

(2.13)

(2.14)
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tation contains at least one irreducible j = § component. For
example, the reduction by SO(4) of simple super Yang—
Mills systems for any homogeneous homomorphism is equi-
valent to the sourceless Yang-Mills case since these embed-
dings do not provide any nontrivial invariant spinor field in
the adjoint representation of SU(N).

Il SU(2n) YANG-MILLS-DIRAC EQUATIONS

In the orthonormal basis {6 #} defined above, the pseu-
do-Riemannian connection of g (T'},) is derived from the
Maurer—Cartan structure equations:

d6°=0 and df'+e€yu0/A0*=0. 3.1

This implies that the only nonzero components of I'/;, are

F;k == Gijk » (3'2)
for
de*+Th 6°N6"=0.
Thus, we can write the canonical spin connection® as
0=5,0 " =}[y*yIT,,.0° =4viv* le.0'. (3.4)
It follows that the action ( &) on U(1) X SU(2) with or-
thonormal basis {6 #} is given for the Yang-Mills-Dirac
system by

(3.3)

,q{=f [—Ltr( FA»F) +—£— [tr(¥y*(e, + 5,V
" 2k 2

+ Uy»¥D( A,)T) — Hermitian conjugate] V] .

(3.5)
Here V=0°A0'A62A0% is the volume -element,
F=Do=1F;, T,0"A\@" is the curvature associated to
the gauge field w = 4 ; T, 6 *, and *F represents its dual rel-
ative to the metricg. The { T, } forms a basis of the gauge Lie
algebra such that tr(T, T} = k6,,, and k may be any nega-
tive real constant.
The Yang-Mills-Dirac equations determined from &
are (i) Yang-M ills,

sDsF=1J, (3.6)

which possess a one-form spinor current with values in the
gauge Lie algebra

J=itr(Wy,¥TDH6 “T, ; 3.7)
and (ii) Dirac,
r*[le, +,)¥ +¥D(4,)"] =0. (3.8)

A. Reduction

Inserting the explicit forms (2.7) and (2.14) for the re-
spective SO(4) invariant gauge and spinor fields in the action
(3.5), we arrive at the reduced action

o g =J Fr6°, (3.92)
Sl

where

ZLr=trj[(ZH) — (1 — HY]
— ik 3)[DEEY + D' — £(DEN — 0 D))
—2k (' —€ENH 1}, (3.9b)
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is the reduced Lagrangian density written in terms of a resid-
ual gauge element (I} of zero curvature, a set of ““scalar com-
ponents” (H ), and spinor remnants (£ and ). The “covariant
derivatives” with respect to the residual component I are
defined by

DH=H+[T,H], (3.10a)
DE=E +TE, (3.10b)
Dy=n+Tny, (3.10c)

where the dot indicates the derivative of the variable with
respect to . The variational equations consist of

DDH)—2H(1 —H)= —2%kh’, (3.11a)

[H,DH] =4k /3) hy, (3.11b)
and

DE + (Bi/QHE=0, (3.11c)

Dy —(3i/2)Hy =0, (3.11d)

where 'esu(n), H'=H + 1,77 (n), h, is identified as the
traceless part of h=yn' + ££7, and h'=yn' — £E1. We
can check that the reduced Lagrangian density (. ) and
the corresponding equations are left invariant by the gauge
transformations UeSU (n):

r-U'TU+U'U, (3.12a)

H-U'HU, (3.12b)

&-U, (3.12¢)
and

n—U'y. (3.12d)

We shall now choose a gauge in which the residual com-
ponent I vanishes, and thus the Egs. (3.11) simplify to

H—2H(1-HY)=2kh', (3.13a)

(HH] = (4ik /3) ho , (3.13b)
and

&+ (3i/9HE =0, (3.13¢)

7 —(3i/2)Hn =0. (3.13d)

Note that if this gauge had been fixed before the Euler—
Lagrange variation (in /), Eq. (3.13b) would not be ob-
tained. Substitution of the invariant fields in (3.6) and (3.8) in
the gauge I' = 0 also produces (3.13a}3.13d), as the SO(4)
reduction derived for a multiplet of spinors transforming
under the contragredient fundamental representation D *.

From the equations (3.13a), {3.13c), and (3.13d), it fol-
lows that the anti-Hermitian matrix,

I=[HH)— (4ik/3)h, (3.14)
is conserved. This constant is related to the invariance of the
system under the U(n) transformations: H—~UHU ', {—UE,
and 7—Un(UeU(n)). The second Yang-Mills-Dirac equa-
tion, Eq. (3.13b), may be recognized as the vanishing of the
traceless (su(n)) part. Moreover, taking the trace shows that
the quantity |£ |*> + || must be a real constant. Note that /
is the sum of two terms coming, respectively, from the
Yang-Mills and Dirac spinor fields.
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B. Hamiltonian system

In the following, we formulate the above as a Hamilton-
ian system with symmetry constrained by a condition on the
associated moment map.

Consider #°(n) and C" as spaces with the respective
Hermitian inner products (H.H') =tr(HH'),
H,H'e% (n),and (£,m) = 37_ | & ‘r’™*, £,meC". Correspond-
ingly, we define on #° X # X C" X C" the symplectic struc-
ture

Q(H, P.&n) = tr(dHAdP)

— 2 3 (dgndg +dn'nan®),
= (3.15)
where (H, P.£ )’ XH X C* X C".
On this space, the Hamiltonian
=4tr( P2+ (1 — HY?) + 2k ((Hn,n) — (HEE))
(3.16)
gives rise to the following (Hamilton) equations:
H=P, (3.17a)
P=2H(1 - H?—2k(nm' — £"), (3.17b)
and
E= —(Bi/2QHE, E*T=(3i/26*"H, (3.17¢)
=(3i/2)Hy, 7*T= —(3i/2m*"H, (3.174)

which are equivalent to the three reduced equations (3.13a),
(3.13c), and (3.13d) of the Yang-Mills-Dirac system. The
U(n) action defined by

U: (H, P,é',é’ ‘»77»77*)
—(UHU, UPUUE,U*E *,Un,U*n*) ,
is symplectic and preserves the Hamiltonian. Its moment
map'? i
I(H, P,§,§ %) =[H,P] - (4ik /3)(7]77T + §§ *)eu‘(n)
(the dual U(n) Lie algebra) . (3.18)

Adding the condition that the su(n) part (I — (1/njtrI)
equals zero, reproduces the entire system (3.13a) — (3.13d)
interpreted as a constrained Hamiltonian system. We also
have the real constant |£ |*> + ||, which remains free.

C. Additional reduction

If we suppose that one of the two Weyl components
vanishes, that is, either 7 = 0 or £ = 0, we can further reduce
the Yang-Mills-Dirac equations with the help of the rela-
tion (3.13b). Let us assume that 77 = 0, the trace of the mo-
ment map / then implies that

£P= 3, lEr=5

where C is an arbitrary real constant. However, since H is
Hermitian, it can be diagonalized with a ¥-dependent trans-
formation in Uln):

(3.19)

A
a0 = v = .

with UeU(n). We also define

A (¢)] ) (3.20)

623 J. Math. Phys., Vol. 27, No. 2, February 1986

P=UPU", (3.21a)

E'==UE, E™=U*E*. (3.21b)
The constraint I (3.18) now reads

A, — AP, = (4ik /3)& ] £)% — C8,), (3.22)

where /, j takes the values 1,...,n. For C #0, it follows that
A;#A; for i#j. Substituting Hamilton’s equation (3.17a) in
the relation (3.22), we get an expression for the element
u()=UU" of the Lie algebra u(n) of U(n): (i) if i#j,

u, = 4kE] E%/3A, — A0, (3.23)

and (i) if / = j, the terms u,; are left undetermined since they
correspond to the elements of the centralizer of H,, in u(n),
and hence can be ignored.

Upon substitution of (3.23) in the two remaining Yang~
Mills-Dirac equations, we derive from the diagonal terms of
(3.13a) that

32k2C?

Ao+
,;9(,1 —A)

—24,(1—A%) —2kC=0,

(3.24)
for every i = 1,...,n; while the off-diagonal contributions are
automatically satisfied. Finally, Eq (3.24¢) reduces to
., 4ik
H- S CS otivy AEI=0,
for every i = 1,...,n. Setting £ = 0 instead of 7 leads to a
similar set of equations.

We remark that the system (3.13) can be regarded as a
set of n one-dimensional systems with quartic potentials and
Calogero type interaction.’®'* Once solved for the eigenval-
ues {A,}], £ is determined by quadrature and the solution
U (¢) from the definition of u. In the case of vanishing Fermi
fields, we have £ =0, 7 =0, and C=0in Eq. (3.24). It is
then found that U is a constant and (3.24) decouples giving
the general solution in terms of elliptic functions as in Ref. 1.

We have not been able to integrate (3.24) in general, but
in the next section, a particular solution to (3.13) is present-
ed.

(3.25)

D. SU(4) solution

As noted above, the moment map splits into the sum of
two parts, corresponding to the gauge field and spinor field
contributions. We shall derive a specific solution for the case
where not just the sum, but each term separately vanishes.
That is, we assume

(HH]=0
and

7"+ &6 =€ + [nV/n] 1, . (3.26b)
However, Eq. (3.26b) can only be satisfied by nontrivial &
and ifn = 1 or 2. Then n = 1 case corresponds to the SU(2)

Yang-Mills-Dirac system, which has been solved in Refs. 6
and 8. For n = 2, (3.26b) implies that

(3.26a)

g'p=0, (3.27a)
and

€12 =1m>. (3.27b)
Let wus suppose for simplicity a normalization
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|€ |2 = |5|* = 1, and initial conditions that respect the con-
straint (3.27a):

o[£ = n-2]

with real numbers ¢,¢’. We can thus express & () and 7{¢) as

§W)=Uso and 7)) =V ¢no, (3.29)

where U,VeU(2) depend on the parameter ¢S'. Conse-
quently, the relation (3.26b) becomes

Uo,Ut— Vo,V =0, (3.30)
and the first Yang-Mills-Dirac equation takes the form
H—2H(1 — H?) =2kUo,U*. (3.31)

However, (3.26a) requires that H(¢¥)=hY)l,
+ h3Y)Uo,U?, where h° and h > are real functions of ¢.
From the Dirac equation, it then follows that (3.31) is solved

(3.28)

by
Ay O ]
H(yY) = [ , 3.32)
W=1"0 o (

where A and w satisfy, respectively, the equations

A—24+424%-2=0, (3.33a)
and

&—20+20°+2k=0. (3.33b)

The solutions to (3.33) can be expressed in terms of elliptic
functions and correspondingly, the Dirac spinor solutions
are given by

e exp((3/2i)f},A d'/’)] (3.34a)

§(¢)=[ 0

and

0
) = LW exp(( — 3/2i)% da/z)] : (3.34v)

For a different choice of initial condition g&,and g7, with
g a constant element of U(2), the solution can be written as

g€ (¥), gn(¥), and gH (g’

IV. SUMMARY

In this work, we have examined the reduction by SO(4)
symmetry of SU(NV ) Yang—Mills fields minimally coupled to
massless Dirac spinor fields transforming under the lowest-
dimensional representation(s) of SU(¥). We showed that
only a restricted class of homomorphisms characterizing the
SO(4) invariant SU(N ) gauge fields allows nonvanishing in-
variant Dirac spinor fields. These homomorphisms are
specified by sets of consecutive spins (highest weights) in-
creasing by one unit and starting with value 1. We also expli-
citly reduced the SU(2n) Yang-Mills-Dirac systems corre-
sponding to the “homogeneous” homomorphisms with
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spin-}. An interpretation of these systems in terms of Hamil-
tonian systems with symmetry constrained by a condition on
the associated moment maps was formulated. This condition
requires the vanishing of the traceless part of the conserved
quantity, which is composed of the sum of contributions
coming from the gauge and spinor fields. In the case where
each contribution of the traceless part equals zero, the spinor
fields is trivial for every n > 2 and the solution to the corre-
sponding sourceless Yang—Mills systems is presented in Ref.
1. For the gauge groups SU(2) (n = 1) and SU(4) (n = 2), the
coupled systems can be completely solved in terms of elliptic
functions, with nontrivial spinor solutions. Finally, setting
one of the two residual spinor components to zero, we were
able to further reduce the SU(2#n) Yang-Mills—Dirac systems
to derive a set of one-dimensional systems interacting via a
Calogero-type potential.
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APPENDIX: NONHOMOGENEOUS HOMOMORPHISMS

We discuss here the reduction of the Yang-Mills-Dirac
equations by nonhomogeneous homomorphisms of SU(2).
Specifically, we find from the field equations that the homo-
morphisms that may lead to nonzero SO(4) invariant spinor
solutions are consisting of a sequence (2.7) with
Jo=hji =%, j» =4+ n(n>1). Tosee this, we consider
the 6 ° component (or constraint component) of the Yang-
Mills equations with spinor sources.

Let us write any homomorphism A as a sum of homo-
geneous parts associated with disjoint sets of consecutive
highest weights:

{hdd + 13O L + L fb + 1)
& w0 Ubjl+ il +n7  (n'.n’, IENUOD)

ne

1 .a .
A: (88)SUQ)p—> Y 3 @(l,.8D° ()

a=0i=0

(Al)

] n

eSuU ( D Z M ;’) ,
a=0i=0

with j@ =4, M{=[(2j5 + 1) + 2i]m{, m{, n°eNu{0}.

In a convenient gauge, we know that the 8 ° contribution
to the SO(4) invariant gauge field can be made to vanish.
Corresponding to the homomorphism (4.1), the invariant
field @ is expressed as the direct sum of overlapping sums
(associated to each disjoint set) of contributions (2.10). For
instance, if / = 0 (i.e., one set of consecutive weights with
jo=4 M, =M}, m, =m] and n = n°), then
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(A2)

6’

G 1 @Q("_ /2,8 — 1/2)(Ti)
Hn @Dn+ 1/2(1.')

Hn—l ®D"_1/2(Ti)
_ GI—l e Qi+ 1/2,n—1/2)T(Ti)

G ) ® ﬂ("_ 1/2,n — 3/2)(1..)
n— 1

Hn-—z ®Dn——3/2(,r‘)
_ G:—2 @Q("_ l/2,n—3/2)1'(7.i)
0

G, & QW21
H,eD**(1;)

=
=
.S
- o
® 2 )
o
< G
+~0
1G]
|
L - |

o(Y) =
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where H,€77(m,), G, are complex matrices, and the matrices
QU+ 14(r,) are expressed in terms of Clebsch—Gordan coeffi-
cients coupling j + 1 and j to 1. We add (direct sum) to the
right-hand side of (A2) a similar matrix expression for each
supplementary disjoint sequence.

As we recall from Sec. II, only the j = } homogeneous
part of the embedding allows a nontrivial contribution to the
SO(4) invariant spinor field transforming under the funda-
mental representation of the gauge group. Explicitly, we get,

AXZ M}
for YeC """ 1,

_[E7e 4 ] A3
W('p"[n"mz a=o, (A3)

where AeCoM M'=3"_ M, +3._, =" ,M? and
EmeCmox!,

We now insert the invariant fields into Eq. (3.6) and
evaluate the § ° component of each member. The 9 ° part of
the spinor current ( J) is found to be
I g0 = ie|n]* + |€ [} — (1/Mo)lp, @ (1/M')1,,.) 6°,

(A4)
where a = ( — kMM '/(M, + M)} is a constant.

We also compute the part #D »F |, of the Yang-Mills—
Dirac equation (3.6). However, each disjoint sequence is as-
sociated with a different element [i.e., matrix of type (A2)] of
the direct sum in the expression for the invariant » and the
field equations do not mix the components of different ele-
ments. Thus, let us consider the element corresponding to
the sequence of highest weights beginning with 1
{13, j» = } + n}. Taking the trace on each side of the §°
contribution of (3.6), we derive that

() [3/Qin+1] .1 =ila/M)n]* + |€ P, ,
(2<i<n) [32jwsr—i + DW= Furii+ Fni)
= ila/M'M|n* + 1§ Py _i

+1) 39,=ialn?+ €1, (43
where by definition

9, =t(G,G -GG ), (A6)
fori=1,.,n+1.

From these (n + 1) relations, it follows that

M, =

e 2 P+ 181 = (il + £ 7). (A7)

But this is only satisfied if either (1) m? = Ofor everya>1and
every i€{0,...,n°}, or (2) [5]* + |€ |* = O, which implies that
§=7=0.

We thus conclude from the reduced field equations (9°
part) that only those ‘“nonhomogeneous’” homomorphisms
associated with the sequence of spins of SU(2): {1,3,...,4 + n},
may lead to a coupling with a nontrivial SO(4) invariant low-
est-dimensional multiplet of spinors. All the other nonho-
mogeneous homomorphisms require that £ =% =0 and
hence reduce the problem to Yang-Mills systems without
sources.
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Two-loop Feynman integrals in the physical light-cone gauge
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The feasibility of doing multiloop calculations in the noncovariant light-cone gauge ,4 2 =0,
n? = 0, is investigated by evaluating various Feynman integrals ansmg in a two-loop Yang—Mllls
self-energy. Application of a consistent prescription for (¢ - n) ~! is essential.

I. INTRODUCTION

Old-fashioned perturbation theory, with its emphasis on
Feynman diagrams, continues to play an essential role in
quantum field theory. The success of the perturbative ap-
proach depends to a large measure on the accurate evalua-
tion of multiloop Feynman integrals.' There exist, of course,
many varieties of these integrals, but here we shall only be
concerned with the distinction between covariant-gauge and
noncovariant-gauge Feynman integrals. As the name im-
plies, covariant-gauge Feynman integrals occur in theories
that are quantized in a covariant gauge, such as the Landau
or Feynman gauge, while noncovariant-gauge integrals arise
whenever a noncovariant gauge is employed, such as the
axial and planar gauges,” or the light-cone gauge.> It is no
secret that noncovariant-gauge integrals are much trickier to
handle than their covariant counterparts, which may ex-
plain, in turn, the absence of detailed calculations beyond the
one-loop level, both in quantum chromodynamics (QCD)
and supersymmetric theories. (For multiloop covariant-
gauge Feynman integrals, we refer to Ref. 1).

The purpose of this article is (1) to demonstrate the feasi-
bility of performing accurate two-loop calculations in the
noncovariant light-cone gauge and (2) to highlight some of
the technical difficulties symptomatic of this peculiar gauge.
Specifically we shall evaluate the two-loop Yang-Mills (YM)
self-energy in Fig. 1, having overlapping divergences.

ll. REVIEW OF LIGHT-CONE GAUGE

The light-cone gauge is specified by n,4, =0,
¢ = 0,1,2,3, where n,, is a constant vector with n* =0 and
Ay is the gauge field with a the group index. The propagator
in this gauge reads

@ (q) = —i5* ( _n.g, +n.4,
(¢* +i€) n-q

we use a (+, —, —, — ) metric and employ dimensional

regularization in a space-time of 2w dimensions. Our pre-

scription for the (g - n) ' term in the resulting Feynman inte-

grals is*

). e>0; (1)

1 — lim g-n*
g-n e0g.ng-n*+ic’

€>0,
2)

np = (nOsn)’ nz = (no, - n)’

leading to well-defined, local momentum integrals that re-
spect naive power counting.
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ll. TWO-LOOP YM SELF-ENERGY

The amplitude for the two-loop self-energy shown in
Fig. 1 reads

a dgdk k
mn* )
Giﬁ(.ﬂ -k —q)Gf’f;(k)Vt'.'j;‘;’v ,
(3)
dg=d*q, dk=d?*>k,
where
V% = igz[fabefcde(a,‘aalp - 5pp5/1¢r)
+ face fbde( 6/&/1 sap _ 5#,, 640)
+f adef Cbe(‘spa'alp - aiulaap)] (4)

denotes the four-gluon vertex of zero-loop order. Substitut-
ing (1) and (4) into (3), shifting the variables of integration,
and simplifying the resulting expressions, we get

—3ig*N%(20 — 3)

() = =28 T =25 A( )8, ~ B (P,
+B,(p)n,)—n,n,C(p)], (5
where N = 3 for SU(3), and
dg dk
A =
(p) ff e —r (6a)
dgdkq
B = £
WP ffqzk’(p—k—q)zq-n' (b

dgdkk-q
Clp)= f f .
(7 Tk p~k—qPqg-nk-n
The remaining portion of this paper is devoted to a systema-
tic study of integrals 4 ( p), B, ( p), and C ( p).

(6c)

1/6 x X I A

b,A et

FIG. 1. Two-loop Yang-Mills self-energy.
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A. The integral A(p)

Evaluation of the integral (6a) is unproblematic and
leads to’

A(p)=i(—m)TQ2—0)B(wo—lw—1)

dq
dl
q2[(q _p)Z]Z—w

= —(—m)*T3-20)Bw—1l0-—1)
XB(w — 1,20 — 2) (p?)** 3,
A(p) = — (—m)*T(e)R, e=4— 20, @))
R=Q(3-2)"'Blow—1lw-—1)
X B(w — 1,20 — 2) ( p2)* 2.

B. The integral 8,( p)

This is a typical noncovariant-gauge integral. Since the
k-integral is covariant, it can easily be integrated to give

Bﬂ(p) =i(—m)TQ2—-w)Blow—1lw-—1)

dgq,
xf . (8)
q2[(q _p)2]2—(uq en

_ i(—m)*T(oc+1—w)nt
T'(o)n.-n*

aq 9, _
¢[(g—p)’1%g-n

2(—-m)T(o+2—w)p-n*p,

To evaluate the g-integral we proceed as follows.
(1) Perform a Wick rotation to Euclidean space and use
prescription (2), replacing (g - n) ™! by*

1 N —(q-n+in0q4)'

9
g-n  (a-n)?+niq; ¥
(2) Exponentiate all propagators via
P b
— = daa¥~!ex A4), A>0.
27 TW) p(—ead), 4> (10)
(3) Write d **qg = d >~ 'q dq,; this separation is neces-

sary since (9) is not Lorentz invariant; finally, integrate over
44- and g-space by employing the basic formulas*

f: dg, exp( — ag; + 2bq, p,) = (%)m eXP( ° ;Pi )
(11a)
fd""“qexp[ —aq’+28q-p—y(qg-n)?]
_ (#/a)°” al? [ﬂ _yB*(p-n)’
(@t " ala +m?) ’(llb)

with additional formulas listed in Appendix B.
These three steps enable us to write the g-integral (in
Minkowski space) as®

1
dedyyw—sz—a—l
(4]

T'(o)n-n*

21(—1r)“’F(0+2 @)p-np-n*n}

1
J‘dJ\:dyy“’_IH“""‘2

[(o)(n-n*)?

2(—mT(o+2—)(p-n*)n

fdxdyxy" 'He—o-2

(o) (n - n*)?

”fdxdyxy‘”"H"""", (12)
(0]

with H = (1 —y) p> + 2xpp-np - n*/n - n* and o a complex number. Substitution of (12) with o = 2 — w into (8) yields
the following answer for the divergent part of the double integral:

(—m)*T (€)

4 p-nt)

B,(p)= (p ny—2p-n*p, +

2n .- n*
which is seen to possess only a simple pole.

C. The overlapping integral C( p)

2p-np-n"‘
n.n*

— nﬂ), 02, (13)

The integral (6¢) is particularly challenging, due to the propagator [( p — k — ¢)?] ~' and the light-cone gauge-related
factors (¢ - n) ~!and (k - n) . There are several ways of attacking this difficult integral, but here we shall only concentrate
on two distinct methods. The first method, presented below, is probably the most direct approach; a second method is

summarized, for comparison, in Appendix A. Consider
dkdgk-q

C = . 6c)
(P Jfk’f@—k—q)zk-nq-n (
_ dkk, dqq, ’ (14)
k*k-n) @p—k—q)q-n
@ —_ @ *
C(p) = i(—m)T(2—w) dkk n* J' dxdyy®—H*~? + 20—m)T3—w) (dk(p—k) -n*k-(p—k)
n.n* n-n* k%k-.n
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2(—7m)T(3—w)

dk(p—k)-n(p—k) -n*k.n*

1
xf dxdyy” 'H® 3 —
(1]

_2(— m)°I'(3 —w)

(n-n*)?

dk [(p — k) - n*]”

1
J dxdyxy”'H®3,
0

1
d d —le—S
K’k-n J(; xdyxy”

(15)

(n-n*)? k?
with
H=(1—-y)(p—k)+2xy(p—k)-n(p—k)-n*/n-n*
Thus
4
C(p)= 211: (16)
i=1
where
. © 1
I=l(—'ﬂ') F(Z—'w)f dk(P k) n fd —JKw—l_ 1_ k2 m—l’
1 2o 1) (p—K)(p—k) -nk-nk-n*J yye N [(1—y)k?]°~'} (17a)
. » 1
I=l(‘-‘17’) F(3—w) dk k. (p—k) fd Y ge—2_ 1— k2 w—2
2 a)-—2 (p—k)zk-n(p—k)-n b y}’w { [( J’) ] }a (17b)
. » 1
I =l(—11') r(z_w)f dk(P—k)'n‘ J d _ZK‘D_2—I,
: n-n* (p—Kk)X(p—k):n <4 ! (17¢)
. @ P 1
I =’(—1r) r(2_w)j dkk'ﬂ* J- d —2Ka) 2 ( ) r(l_w)f dk f —-3pw-1
4 n-n* (p—k)k-n 24 + 2 (p—k)2(k-n)? odyy‘” K
_i(—ﬁ)”F(l—w)F(a)—Z)F(a))J' dk(k?)=~! (17d)
2T (20 — 2) (p—K)2(k-n)?’
where
Kk, y)=(1 —p)k*+2yk-nk-n*/n-n*.
Adding the integrals (17a)-(17d), we obtain
i | T2—0) f _2J' dk(p—k)-n‘K"’" raG-— w)J‘ _J‘ dk k-(p—k)
=K ”)[ b ) o= T w—p b ) G-t

x{K*=*—[(1

dkK“~!

w—2
Y 2 2}+____r(2 “’)fdy‘" fdkk LA S

rd —we)
k)k-n 2

(18)

1
d —3f _
Xfo V) =ik

The remaining k-integrals can all be evaluated by following
the procedure outlined between Egs. (9)-(11) and using the
identity’
1 1 1 1

k-n(p—k)-n p-nl(p—k)-n k n
The most important of these are listed in Appendix C; other,
related integrals can be found in Ref. 8. We shall refrain from
showing here the various substitutions and reductions. Suf-
fice it to say that C( p) reduces eventually to the form

C(p) = — (—m)*(ay/€ +a,/e + ay), (20)

where the coefficients a; = a, ( p,n,n*), i =0,1,2, are finite.
A somewhat less direct method of evaluating C( p) is dis-
cussed in Appendix A. This completes our analysis of the
overlapping integral C( p).

. (19)

IV. DISCUSSION

We have demonstrated the feasibility of performing
higher-loop calculations in the noncovariant light-cone
gauge n, A7 =0, n* =0, by evaluating in detail various

629 J. Math. Phys., Vol. 27, No. 2, February 1986

I‘(l—a))I“(w—2)I“(a))J' dk(k®)*—! ]
2I'2w — 2) (

p—k)(k-n)?)

~
Feynman integrals arising in a two-loop Yang—Mills self-
energy I12/. We find that use of a consistent prescription for
(¢ -n)~!, such as formula (2), enables us to compute all
momentum integrals unambiguously. The computation of
I1:/ is aggravated by the appearance of the vector n* and by
the presence, in one of the double integrals, of an overlappmg
divergence. The above results may not sound particularly
impressive, but it is worth remembering that none of the
multiloop techniques, developed during the past dozen years
for covariant-gauge integrals, are applicable in the case of
the light-cone gauge, the trickiest of all ghost-free gauges.
This work is a very modest attempt at analyzing and syste-
matizing the computation of multiloop Feynman integrals in
noncovariant gauges.
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APPENDIX A: ALTERNATIVE METHOD FOR C(p)

In view of the complexity of C (p) in Eq. (6¢c), we discuss
here a second method of evaluation. We begin by making a
change of variables in (6c), so that X (p) becomes

_ dgdkq-(p—k—gq)
C"”—qukz(p_k_q)zq.w_k_q).,,

=ff dgdkq-p—k—gq)
7k*p—k—qflp—k)-n
1

X[q-n+(p—k1—q)-n]’ (AT)
or
Cp)=2C,(p) —2C;(p) , (A2)
where
o[ | Gt W
co=] | (k —qﬂkdz:zq nkon’ A

Since the “four-propagator” integral C,(p) is easier to com-
pute than C,(p), we shall discuss it first. By following the
procedure for B, , Eq. (8), C,(p) can be derived in closed form.
Integration over g,, -space first, yields

H{—mfTR—w)( 2 !
Calp) = w—1 (n . n"‘)
dk (k - n* "
J| e — ptk - np =
= —(—m*[T(e)/€]lT, (AS5)
_ 2[Cw—1)]% (2p -n*\*? 20— 4
=T (n-n*) por=. (A6

Thus C,(p) possesses a double pole.

It is worth noting, in this connection, that reversing the
order of integration, i.e., integrating (A4) over k, first,
seems to lead only to a simple pole for C,(p). The line of

i — m°T(1 — )

Cl(P) = 2

fo dyy =1 -y~ (1 — 3)

reasoning in this case would go something like this. Since the
momentum integral

fdk [(g — k 'k — pPk - n]~'=F (g,pm),

g0, p#0, is finite [see Eq. (14b) of Ref. 4], the total inte-
gral

f 4 pigpn)
q-n

should at most contain a simple pole. This argument is obvi-
ously too simplistic, as can be seen by studying the purely
covariant integral

(A7)

I= J‘ J‘ dq dk
k*g — k(k — p)lg — pF
Integrating (A8) over g, first [i.e., proceeding as between
Eqgs. (A4) and (A6)], we get

I=i—m*T2 —w)Bw— lw— ”Jﬁ#

(A8)

= —(—7*T2 — o)I'4 - 20)
X[T3—w)] 'Blw—1,0—1)
X Blo — 1,20 — 3po—*. (A9)
The double pole arising from I'(2 — &)['(4 — 2w) is well do-
cumented in the literature.’

By contrast, suppose we start the evaluation of (A8) by
doing the k-integration first:

I ___j dq J’ dk
(g—p)* J k*(k—p)*(k—q)?

Since f dk[k*(k — p)*(k — q)?] " is both ultraviolet and
infrared finite, the double integral /' would appear to contain
only a simple pole, thus contradicting expression (A9).

There remains the integral C,(p) in (A3), which may
be analyzed by using either one of the following two proce-
dures.

Procedure A: Using Eq. (12) in the text with o = 1, and
simplifying we get

dk(k*+tk-nk.n*~~!

TR _ 1 . 2 . . @ — 2
+21( m)°T(2 w)J; dy y*—(1 —y)“’_3fdkk n*k?*+tk-nk-n%

n-n*

2

(—m°T2 —wBw—1lw—2) ( dkk)*
- f(p-kﬂk—n)“

with ¢t = 2y/((1 — y)n - n*). The necessary integrals are giv-

en in Appendix C, specifically Egs. (C1), (C2), and (C4).
Procedure B: Let k-q=}[k*+¢* — (k—¢)*] and

take § dg(q’q - n) ~'=0, in which case (A3) reduces to

dk dg k?
*k—pPlg—kPk-ng-n’
(Al1)

cin-Sew [

Hence C (p) in (A2) becomes
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2 —k )k ny
p—kVPk-n
(A10)
i
Clp)=(—m*[T(e)/elT + Cyp) , (A12)
where
dkdqk? (A13)

Cilp) = .
o ” lg—kP(k—pPk-ng-n
Reduction of the double integral (A 13) may be summar-

ized as follows. Express C;(p) as
dk k*F (k
Cylp) = )

T—plkn’ -
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where
Fik )Ef dqlq’lg — kPg-n]~*
= i~ 7PT(3 — @)k - n*
1
XJ dad,B,B""z(l ——ﬂ)“’—sA -2

X(k?*+tk-nk-n**"3, (A15)
t=(1-a)f/(A(1—-8)), A=a+ (1—a)n},

ni =in-n*,
so that

C)=i(—m)*B(J,—tJ,), (A16)
with

1
B=TQ3-w) f dadBB®~*(1—-B)*4~%, (Al7)
(4]

J,(p) =fdkk-n*[(k——p)2k (k2

+tkonk-n* -]t (A18)

Jz(P)=fdk(kon*)2[(k—p)2(k2+tk-nk-n*)3""’]_‘.

(A19)

The integrals (A18) and (A19) are given, respectively, by
Eqgs. (C2) and (C3) in Appendix C.
The final expression for C(p) reads
Clp)=(—m*[T(e)/e]T + Cyfp), (A20)
with T"and Cj(p) given by Eqs. (A6} and (A 16), respectively.
The result (A20) is to be compared with the form of C(p)
given in the main text, Egs. (18) and (20).

APPENDIX B: SOME GAUSSIAN INTEGRALS
1. The integrals (= _ dq,(q,)"e ™, M=a q2 — 2bq,p,

The subsequent integrals can be derived from the stan-
dard expression (11a) in the text by partial differentiation
with respect to the parameter a or b:

© B b b2p2
[ dgiqe =22 g, gy (P22,

a
(B1)

b
—~n )Eo, (B2)

_ 1
f dg,gie ¥ =\m (2a3/2
f dg,qie”

b’p;
=bpylr 2a5/2 '—7/—2— E,. (B3)

2. The integrals f d?* -~ 'q f(q)e ", V=yq2 —
+a(n-qp

The integrals (B5) to (B9) below can be derived from
the basic formula (11b) by differentiating the latter partial-
ly, either with respect to a, B, or ¥. We define
sz _aB*(p-n)’

yA

28q-p

E =exp A=y +an®. (B4)
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_ ﬂm—lll —, .
fd”“que v_ AJ’Z B(p_an: n)E,
(BS)
-172 ., 1—-w
fd’“’“qq-ne‘v="ﬂ ‘;;f" £ (B6)
fd%—quZe—V
17.‘0—1/21,—0) an
S i Gl
L ¥ [pz_ 2a(p-n)’  a’n’(p-m)’ ]E
¥ A A? ’
(B7)
[a*-ada-me
17.(0—1/27,1—(;) 2321’.n anp.n
BEEYEE [n+ ” (p_ y )]E
(B8)
fdw—|qq,nq2e—v
_m Viy-“Bpen| _ 3an®
A3/2 l + 24
2 nZ(p * n)2
B{ 2apeal ool p g

APPENDIX C: SPECIAL INTEGRALS IN THE LIGHT-
CONE GAUGE

The following momentum integrals, obtained by using
the procedure discussed in the text between Eqgs. (9) and
(11), are required in the computation of the coefficient
C(p), Eq. (18). We find, in Minkowski space,

dk(k®*+tk-nk.-n*)*-!
(@ —k)(k-n)?
_4(—mT(4—-2w)
T T(1—w)(n-n*)?

(p-n*)?

1
Xf dudv(1 —u)v=°(1 —0)*~%(1 + uvtn?) 3
0

_ _ 2 R . n* 20— 4
x[up2+2(1 v)(—u+uvtnid)p -np n} ’
(1 + uvtnd)n - n*
(C1)

J‘dkk-n*(k2+tk~nk-n“)“’_2
b—kyk-n
_ 2(—7)°T4 — 20)p - n*?
- T2 —whn-n*

1
Xf dudvuv' = (1 — v~ (1 4 uvtn?)~3
(V]

% [vpz + 2(1 — o)1 —u+uvtnd)p-np- nt]Zw—4’
(14 uvtnZ)n - n*
(€2)
fdk(k'n*)z(kz-i-tk-nk.nt)m—s
p—k)
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_{=m°T{4—20)p- n*)P

TG — o)
1
XJ dvv® =1 — v~} + vtnd)~?
0
x{p2+ “‘""*”'””'”']M—A, (C3)
1+ vtn
and
dk(k?)» !
@—Kk?2k-n)?

— 4i( —m)°T'(4—20)(p- n*)?
(1l —w)(n-n*)?

1
Xf dudv(l —uw)v—2(1 —p)>*-2
0

— —_ . nkj2e—4
X[vp2+2(l w)(l—v)p-np-n } ’
n-n*
(c4)
where ¢ is an arbitrary parameter. Note that the last integral
may be obtained from (C1) by setting £ = 0.
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Determination of coexistence wave functions from two-neutron-transfer

data
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An analysis of wave functions in a generalized two-state model for a series of even—even nuclei is
presented here. With minimal assumptions, necessary and sufficient conditions for consistency in
obtaining these from data on (p,f) and (¢,p) cross-section ratios are exhibited.

I. INTRODUCTION

If W, represents the jth physical state of a system and
(D1, D3y B3y, 5.} @ set Of basis states, then we may write

]

Wj = z Cji¢i
i=1
with the usual orthonormality conditions, i.e., (¢, |#,) = §;
or

-]
L J—
z cich = Oy

i=1

In general, the set of eigenstates is infinite in number.
An example of such a system would be the 0" levels in an
even—even nucleus. Each physical level can be represented as
a linear combination of basis levels. In general, all 0* levels
can interact with each other requiring an infinite number of
basis levels needed to describe the physics. If, however, a set
n of these states, { §,,6,,0s,....d,, | are related strongly to each
other and only weakly with any state outside of the set, then
this particular set of physical states may be described “al-
most” completely by a finite number of (suitably chosen)
basis states {@,,¢5.@s,....8, }. This circumstance is referred
to as an n-state model configuration of the physical states.
An example of such a situation is again found in the 0™ levels
of an even—even nucleus, 0,%, 0,5, 0;+,...,0,".

For the purpose of this paper, we want to focus on a two-
state model. We assume in an even—even nucleus that the
lowest 0 basis state, labeled g, mixes with only one other 0+
level, labeled e, which usually is, but need not be, the first
excited 0" above g. If we let ¥ (g.s.) and ¥4 (0*') repre-
sent the physical ground state and excited 07 state in nucleus
A and ¢7 and #7 be the basis levels, then because of the ortho-
normality in ¢} and ¢/ for each 4, we can write for ¥4 (g.s.)
and W4 (0™*') the most general two-state model wave func-
tion as

Y(gs.) = a, by +Bade,

VA(0") =B, 8y —a,éi, (1)
witha? + 82 = 1.

In a series of even—even nuclei, it may be that the proper-
ties of the basis states ¢ and ¢ change slowly and smoothly
with 4 whereas the physical states exhibit more complicated
behavior. If this hypothesis is to be tested, then the test must
involve a process that can connecta0* in 4 toa 0™ level in

A’ in a simple, direct way so as to involve only ¥4 (g.s.),
P4 (0*'), ¥4 (g.s.),and ¥4 (0*'). The (p,¢) and (¢,p) re-
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actions are ideal for this purpose. We therefore wish to inves-
tigate the degree to which (z,p) and (p,?) cross-section data
on a series of nearby nuclei can be described in such a model,
with as few assumptions as possible.

Throughout the analysis, we assume that all kinematic
effects, etc., have been removed, e.g., by dividing experimen-
tal cross sections by distorted-wave Born-approximation
(DWBA) cross sections, calculated for the appropriate kine-
matics and standard form factor. Then, for the (p,? ) and (t,p)
cross sections, we write

o 2X (p,t) X (g.s.) = (P (g.s.)| (0,2 )| ¥ *+ *(g.s.)) %,
o+ 2X (p,t) X (0*')) = (W4 (0™')|(p, )| ¥ +*(g.5.))?,
o'X () 17X (g.5.) = (¥ +(g.s.)|(12)| ¥4 (g5.)) 7
o(*X (8,p) “2X (0™") = (W1 +3(0")|(1,0)| ¥ (g.5.)) .

Putting in Eq. (1), we get for each cross section
o(**?X p,t) X (gs.)) =filasa, ., + 2B, +254

+ay 2Bury +BaBas Ry,
o 2K (pt) X (O =f3B4Qu 12 +BaBa s 254

— 20,7 — @By R,
o("X (1tp) "X (gs.)) = fLla, a, v2 T By 254

tay 2Bata +BiByi2Ry P,
ol"X (t,p)“ T2X(0™") =13 (@4Bas2+BaBai2ra

—a,,,a,5, —B.a, . R,),
where f%,7,,5,,and R, are measures of the basis states 2n-
transfer overlaps and are given schematically in Fig. 1. To

eliminate /% from the analysis, we consider the cross-section
ratios

ol X (p,t) “X (0*")
ot "X (p,t) "X (gs.))

2
_ [ Xa1254 —X4Xq4 274 —X4R, ]
- ’

XyXqp2+ X4 2Ta +%45, +R,

(2)

(3)
o*X (t,p) 1T X (0™"))
ol*X (t,p)* "X (g.s.))

2
_ [xA FTy =X X425, _xA+2RA]
- ’

XyXg, 0 +X4,204 +x45, +R,

(4)
where
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FIG. 1. Basis state definitions of ., 5,, and R,.

xy =a,/B,s (5)
and hence
ay =x3/(1+x3)=1-8%. (6)

We shall denote these ratios as P2 and 72, respectively, and
call these the calculated values of the (p,t) and (z,p) cross-
section ratios. The experimental ratios and their uncertain-
ties are denoted by P5 , T% , AP} , and AT . The goal of
this and any empirical model is to minimize the expression

-8 [T
X (n A=ZA' AP,Z{,, ATin

with as few parameters as necessary. Here, n is the number of
data points fitted minus the number of degrees of freedom.

Ifweallowr,,s,,and R, to vary arbitrarily with 4 then
we have more parameters than data and everything can be
fitted exactly. The problem is overdetermined and informa-
tion deduced from such a model tells us almost no physics.
We therefore make the first assumption about the basis
states ¢7 and ¢7.

Assumption 1: We assume the basis state 2n-transfer
overlap ratios are independent of 4, i.e., 7, =#,5, =S5, and
R, =R are all constants with 4. This assumption may be
too restrictive in some cases, €.g., in nuclei in which a single
orbital is dominant. However, we would normally treat
those cases in a totally different manner.

With this assumption P% and 7% become

P,24=[xA+2 +s'_xAxA+2r_xAR:|2’ (Ta)

X4Xqi12 +Xqp2r+ X485+ R

Tf,=[xA +r_xAxA+2s_xA+2R]2' (7b)
XgXgyr +HXqi2r+X45+R

At this stage, we have two major concerns: (1) What are
the calculated values of 7% and P2 that give the best fit to
the data T3 and PJ with their uncertainties AT and
AP2 ? (2) What wave-function probabilities @ and 85
would produce this fit via Eq. (7)? We shall answer question
J

(2) first and in the process we shall also develop a procedure
for answering question (1).

Todeducea? and B % from T2 and P2, we need merely
invert Eq. (7) for each value of 4. Such a process is simplified
by considering T, and P, instead of their squares. This
would introduce sign ambiguities but these will turn out to
be not much of a problem and will be considered later. The
equations to solve are then

Xq42 T85— xR

b
X X490+ X4,,r+x,5+R

XqXyq 427 —

P, = (8)

X, +7r—
XXqi2+Xaior +X5+R
Solving these equations for x,, , , yields
(r—T,R)+(1 —T,s)x,

X = s 10
T R4 b+ T, (1o

XaX4 4285 —X4,,R

T, = (9)

and
(s—P,R)— (R +P,s)x,
Kasr = . (11)
(Par— 1)+ (r+Pyx,

Equating these yields the following quadratic equation for
X4t
[Pi(14 %)+ T4(R —rs)+ (r + Rs)]x;

+ [(R>+7)+2P,(r+sR) — (1 +5)]x,

+ [Py(R*+ )+ TR ~rs)—(r+sR)] =0. (12)
If we then take Eqgs. (8) and (9)for T, _, and P, _
each for x, _,, then we have

r=T4_>R)—R+rT,_,)x,
Xy4_2 = (13)
6Ty =) ++T,_,)x,

, and solve

and
(s—Py_R)+(1—rP,_,)x,
X4_,= . (14)
(SPy_2 +R)+(r+P,_,)x,
Equating these gives another quadratic equation for x ,,
[Ti_,(1+P)+ P,y _,(R—rs)+(s+rR)]x%
+ [(R?+57) + 2T, _,(s +rR) — (1 + )],

+ [T _(R*+5)+P,_,(R—rs)—(s+rR)] =0.
(15)

Solving Egs. (12) and (15) simultaneously for x, and x% and
setting (x,)? equal to x% leads, after much algebra, to an
expression involving only 7, s, and R, along with the 7, ’s and
P ’s given as follows:

IR — 12+ (s + r1{(R — rs)(R + 17 [Br4(R — r5) + Boy((R + 17 + (s — r)]
+ (s —HR + D[Bsa(R — 15 +Boa(R — )R>+ 77+ 5 + 1)+ Bs (R + (R — 1 + (s +1)%)]
+ (s — 1P [Boa(R — 1P + Bra(R —rs)R* + P 4+ 5* + 1) + By (R + (R — 1 + (s +7))]
+ 65— PR+ DBoy [R—17+ s+ 7’1 + (s = 1'Broa (R =12 + (s + 11} =0, (16)
|
where Boa =Ty _, — PPy _, —T,) (17b)
Bia=(T, T, —P, P, +(T, Bsy=MT,_, —P,)T,_,P, +T,P,_,) (17¢)
+ T, ,—P,—P,_,), (17a) Bia=2T,_, —P)NT,_, T, +P,P,_;) (17d)
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Bsa= —(Ty_2 —P,) (17¢)
oa =(Ty_2T,4 +PAPA—2)2+(PA—2 + TA)Z
+(Ty_z + P +4T5_,P%, (171)
Bra=(Ty_s +Py)Py_, +T,)
+2T, ,P,(T,_,T,+P,_>P,) (17g)
BSA=(TA—2_PA)2_(1+TA—2PA)’ (17h)
B9A=(TA—2_PA)(1+2TA—2PA)’ (171)
BIOA=TA—2PA(1+TA—2PA)‘ (17j)

An immediate solution to Eq. (16) is for
(R—12+(s+r=0,ie,R=1ands= —r. When these
are put back into Eqs. (7) we get P% = T3, the purely sym-
metric situation. As such a situation is uncommon, we shall
assume that (R — 1)* + (s + 7)*#0 and proceed. Equation
(16) divided by this quantity holds for all values of 4 for
which data exist. We shall refer to this equation as the con-
straint equation and each such equation represents a surface
inther, s, R space and these equations represent the intersec-
tion of a set of such surfaces. To simplify matters consider-
ably, we now make our second and last assumption about the
basis states.

Assumption 2: We assume symmetry in the basis state
2n-transfer overlap ratios, i.e., 7 =s. (The general R, r, s
problem with r#s is left for later development.) Of course,
the special case s = r can always be transformed, by a change
of basis, into the case r = s = 0. However, we keep the gen-
eral form with 750 because of its similarity to the 75 situa-
tion and because the “best” choice of basis states will prob-
ably have r5£0.

With assumption 2, the expressions for P, and T, be-
come

Xy + (=X X, —x,R
- X4Xq42+Xq02+x4)r+R '
T, =xA +(1—xx ,2)0r—x4,,R ’
XXqp2+Xap2 +x4)r+R
and the constraint equation [Eq. {(16)] becomes
(R— YR+ 1)[Bia(R — ) + Boy(R + 1] =0. (20)
Equations (12) and (15} become
[Pi(1+7P) + TR —P)+rR +1)]x5
+ [R+2P,r—1](R + 1)x,
+ [PR*>+P)+ T,R—7)—rR+1)] =0

P,

(18)

(19)

(21)
and
[Ty—21+7)+ P, (R —P)+ 1R+ 1)]x}
+ [R+2T,_,r—1](R + I}x,
+ [T4_2lR*+7P)+ P, _1,(R—P)—rHR+1)]=0.
(22)
If R +1=0, these equations give
(P, — T,)(1 4+ #)(1 + x%) = 0, which is again the purely
symmetric situation P2 = T%. If R — * = 0, these equa-
tions give A+AAP,—T,_,)(x, +r)?=0.
Since x,+4+r=0 (with R=r*) would yield
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o(*X(tp) 4**X(gs.)) =0, we are led
toP, =T,_,, again a very symmetric situation. Both of
these special cases are actually covered by the single equa-
tion B,,(R —*) + B, (R + 1)? = 0. Therefore, we can
reduce Eq. (20) to the constraint equation,

P=R+K,R+1), (23)
where
K, = (T,_, _PA)(PA—2 -1/

[(TA——zTA _PAPA—2)2

+(Ty_,+T,—P,—P,_,)]. (24)

Requiring » and R to be constants automatically re-
quires K, to be independent of 4. We can thus test assump-
tions 1 and 2 for the basis states 2n-transfer overlap ratios.
When written as

K,=(P—R)/(R+13 (25)

the equation relates the basis states 2n-transfer overlap ratios
rand R to the physical state 2n-transfer overlap ratios, 7,
P,,T,_,,and P,_, and can serve as a starting point for
constructing the basis states ¢ and ¢7 because it relates their
overlaps to experimentally determined quantities in K,.
Since it is wave-function overlaps that are directly measura-
ble, we can continue with the analysis even though we do not
have explicit expressions for 7 and ¢7. Equations (23) and
(24) represent necessary conditions for the existence of solu-
tions x, to Egs. (18) and (19) for all 4. The A independence
of K ,, however, is not a sufficient condition for solutions x ,
to exist. To determine a sufficient condition on the T, and
P,’s, it will become useful to make the following definitions:

z,=(T,—P,_,)/(T,_,—P,), (26)

w, =K,(1+2,), (27)

v, =K, (T,+P,z,). (28)
Then,

K,=—z,/[(T, +PAZA)2+(1+ZA)2]' (29)
These parameters are all related by the identities

K, =0} +wy +w, (30)

K,z, +v% +uw% =0. (31)

The mathematical and physical importance of each param-
eter will be discussed later.

To continue with the derivation of x ,, we take Egs. (21)
and (22) along with Eq. (23) to deduce the simple results

R+w,R+1)  —r—u,(R+1)

x, = = R (32)
—r+v,R+1) 1+w, (R+1)
leading to
o = -(1+2w,)+2v, + (R+ 1D (1 +w, +2K,)
4 (R+1)(1+4K,) '
(33)

For a given R value we can calculate 7 via Eq. (23) and then
a% (andhence % = 1 — @?) viaEq. (33). These equations
represent all necessary conditions for consistency in Egs.
(18) and (19). They are all based on the premise that X, is
independent of 4. We still must obtain a sufficient condition
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for Eq. (32) or (33) to represent solutions to the 7, and P,
equations. To find this condition we go back to Egs. (18)
and (19) and rewrite them as

xg+r x4 +P4,

= (34)
rx, +R l—x, ,P, ,
and
X +r =xA+2+TA . (35)
m,+R 1—x,.,T,
Equating these gives
Xg_a =04 _2%4 +1)/164_2—x4) (36)
or
X444 = (044 2%4 — D/, 2 + X4 (37)
where
8, =(1+T,P, ) )J/(Ty—P,_,) (38)

Equations (36)—(38) are really special cases of a more
general result. Using Eqgs. (30), (34) and the fact that
K, =K,. for any 4 and 4, we arrive at the more general
result

X4 — X, Wy —W, Uy —Uy
Ve + U, 14+w,+w,
an expression that can be evaluated from the experimental
]

= . (39)

€a40 =
14+ Xx,x,.

—Z442

quantities without knowing the value of R. If we incorporate
this result with the previous expressions for x,, then after
much algebra, we arrive at the condition

Wy +Tyv)+2z4wey2+Tyv0,,+1)=0 (40)

Solving this equation for 7, , , and using the fact that Eq.
(29) can be written as

1+2K,(1+ P, T,) _ —Ka[Z(L+P3)+(1+T3)]
z, - z ’
Eq. (40) reduces to
L,=1, (41)
where
Ly=z,,,(1+T3)/z,(1+P}). (42)

Having K, independent of 4 doesnotimply L, = 1,but
L, = 1does yield K, independent of 4. For proof, we write

(T + PazgP + (1 42,7

K,
—_ _ZA
1+ Ty +Z0+P)+22,(0+P,T,)
Putting in Eqgs. (41) and (42), which give
z,=24,.,(L+TLV/(1+P%),
we get

K,

— 2442

T+ T+ A0+ PA) + 2,1+ BTN [(1+ PAAL+ T3)]

T+ T2+ A [0+ PR/ + T2)] + 22, (1 + P, T,)}

—Z442

—Z442

{(1+P,24)+Zi+2(l+T,24)+22,4+2(1+PATA)} B (P, +TAZA+2)2+ (1+ZA+2)2‘

But by definition of z,,z, ,, =(T, ., —P,)/(T,
—P,,,), 80

Pi+Tyzy r=T4 2 +Pyi22442>
hence

—Z442

C(Taar +PyiaZa P+ (1 +24,,)

K, =KA+2‘

Therefore we can replace the necessary condition K,
independent of 4 by the condition L, = 1. The advantage
hereis that L, = 1is also a sufficient condition for solutions
to Egs. (18) and (19) to exist. As proof, it is best to consider
the summed {#,p) and (p,? ) strengths
S, (tp) =o(*X(tp) *T2X(gs.)) + o(*X (2p) 4 *2X(0™)),

(43)
Sypt)=0(" "X (p,t) “X (gs.) + o' T X p,r) "X (077))
which becomes
S tp) =[P+ 1+ (R*—1)8% +2a,B8,fR+1)] .
(44)

Using the fact that @, 8, = x,/(1 + x5 ) and Egs. (32) and
(33), we get
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@B, = v R+1)—Hl +2w,)—2v, . a5)
(R + 1)(1 + 4K )

Finally, if we put this and Eq. (23) into Eq. (44) we get the
surprisingly simple result

S tp)= — 2z, K, S5 (R + 17 (46)
By definition of 7%, we can also write
Sa(tp) = [o'X (1p)* T ?X (gs)](1 + T%)
= [o"X (t,p)* X (O )1+ T %)

leading to both
o'X (tp)* +?X (gs.)) = — 2z, K f5(R+ 17/(1+T7)
(47)
and
o X(tp) AT X0 ) = — 2z, K, TAf 3R+ 1/(1+T%),
(48)

showing that the solutions deduced from Egs. (23), (32), and
(33) will give

o(*X (p)* X (0 )" X (1p) * * X (gs)) =T ,
for any value of R, that is, the solutions will work. If the same
calculation is done for the (p,f ) summed strengths, we get
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Supit)= —24. K of 3R+ 17, (49)
SO
A+2 4 _ —2, K, o fAR+ 1)
(50)
and
A2 Avintm . ZA+2 A+2P,24f,24(R+1)2
o T X (p,t) X {0") = 11 PY) ,
(51)
yielding

o 42X (p,t) “X (0% )V/o" *°X p,t) “X (gs.)) = P,

again independent of R. The only condition which needs to
be satisfied is the result o{“X(z,p)** %X (gs.))

= o(***X(p,1)*X(g.s.)), which is true as long as L, = 1.
Remember we are using kinematically reduced cross sec-
tions, always. So L, = 1 is both necessary and sufficient to
guarantee that the wave functions of Eq. (33) with Eq. (23)
do reproduce the T, and P, ratios used to deduce them for
any value of R! We have therefore an infinite number of
solutions to Eqs. (18) and (19) all described in terms of the
one parameter R.

The beauty of the preceding discussion is that it not only
answers question (2) from the introduction, but also question
(1). To find the best fit to the data 7% and P we need only
look at T, and P, and minimize

2_i & TAo Ao
X‘nm-{[ AT, ] [ AP, ” 52

subject to the restriction that L, =1 for A=4"'+2,
A ' +4,. A" —2.

This calculation will produce the best fit calculated val-
ues T, and P, which are then used to find @% and 82. In
addition, the selection of yZ,, as a function of sign combina-
tion will aid in choosing the best sign for the quantities 7',
and P, in a chi-squared sense. If, after looking at all sign
choices, we find there is no satisfactory y2,, (i.e., yZ;. > 1),
then we conclude that a two-state model will not fit the exist-
ing data under assumptions 1 and 2.

Il. THE MINIMIZATION TECHNIQUE

The problem of minimizing y? subject to the L, =1
constraint is itself a very interesting mathematical problem
with many properties. In discussing these properties, we
consider the string of isotopes from (4 — 2) to (4 + 4) as
shown in Fig. 2. Changing the signs of all the 7’s and P’s

(both calculated and experimental), gives K,—K,,
+ + + +
03 0; 0; 0;
Pa-2 Tz Pa Ta Fas2 Tas2
g.s. g.s. g.s. g.s.
A-2 A A+2 A+ 4

FIG. 2. Schematic representation of the ratios , _,,P,,P, ,,,T,_,,T,,
and T, ,.
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K,,,—K,,,,L,—L,,andhence 2, —¥ %, . Soachange
in sign of all experimental and calculated numbers leaves
K., K, ,, L,,andy?, invariant. The transformation
P,_,—P,_,,

P—»-P,

PA+2_’PA+2

T, ,—»—-T,_,,
T,-T,,
Tyi2—— T,.2

(or its negative) in both the experimental and calculated
points leaves L, and y2,, invariant but changes K, insucha
way that 1 + 4K ,—(1 4 4K, ) ™7, as can be seen by writing

1+4KA =(TA——2TA “PA—2PA)2

+ Ty —Ty+Py_, —P,)
X[(Ty_2Ty —Py_,P,)
+(Ty_2+Ty—P,_, —P, ] (53)

Because of this result, we can arbitrarily choose that sign
combination which sets 1 + 4K, <1 (or just K, <0) and not
affect the goodness of fit in a chi-squared sense. In addition,
Eq. (53) requires 1 + 4K, >0 so we need only consider

—1<K,<0. (54)

This result is especially appealing from a physical point of
view as K, <0 gives <R [from Eq. (23)]. Since » measures
the “nonorthogonality” of the basis state 2n-transfer overlap
ratio between ¢ and ¢ * 2, we would expect it to be small or
at least smaller than R which measures the 2n-transfer over-
lap between ¢Z and ¢2 +2.

The y?2,, for various sign combinations should therefore
occur in groups of four with each group given by

UTa 2 bITa b Ty 2 1Py 2 [ 1Pa L Pa 2|}
—'TA—ZI”‘|TA| _lTA+2|

— Py _sls = |Py], = |Pa |1
_'TA—zl’lTA|’—|TA+2|’|PA—2|7_‘PA|’|PA+2|}’
{lTA—2|’-|TA|’|TA+2|’-IPA—Zl’lPAli_|PA+2,}’

as choices of signs.

The calculations involved in minimizing Eq. (52) sub-
ject to the L, = 1 conditions in general are difficult because
of the nonlinear nature of L , asa function of the P,’sand T,
’s. But, since any useful physical result should have y2,;, <1
and hence calculated values not far from experimental val-
ues of the (p,¢) and (¢,p) ratios, we can expand L, as a six-
dimensional Taylor series about the experimental numbers
T, and P, . This expansion linearizes the minimization
problem and reduces it to a standard problem in multivaria-
ble calculus whose solution is unique.

We have therefore accomplished our goal in that (1) we
have a technique for determining the best fit calculated
points in a chi-squared sense; (2) we have expressions for the
solutions @ and £ % that are infinite in number and can be
described in terms of the one parameter R; and (3) we have a
necessary and sufficient condition for testing our two as-
sumptions and the two-state model. We shall apply this to
the germanium region in Sec. VII, but first we want to study
some of the properties of the preceding model.
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lll. THE CONSTRAINT EQUATION: 2 =R + K, (R + 1)?
By completing the square we obtain
R+ 1+ 1/22K,)) B 7 _
[(1+4K)/@K%)]  [(1+4K,)/(4K,)]

As 1 + 4K >0, the curvein the R vs 7 plane is a conic section
whose shape depends on the sign of K. In particular, for
K, <0 we have an ellipse, for X, = 0, a parabola, and for
K, >0, ahyperbola. Because we can always choose K, nega-
tive, the result will always be an ellipse with the mathemat-
ical restriction on R given by

IR+1+1/(2K,)|<[1 +4K,]"*/(—2K,). (56)

This restriction is appealing because physically we would
expect R to be bounded. In the same way, r is bounded by

P <[(1 4+ 4K,)/(—4K,)]'"2. (57)

Physically we can require x, >0 for all 4 as a choice of basis
phase, and so we may restrict the value of R even more. If no
value of R can be consistent with both x, >0 for all 4 and Eq.
(56), then a two-state model with assumptions 1 and 2 is not
adequate to fit the (p,?) and (¢,p) cross-section ratio data. As
x, can have singularities {see. Eq. (32)], it becomes more
convenient to study, in place of x,, the mixing potential in a
two-state model. This potential is given by

Uj=—EaB,, (58)
where E, is the energy separation between the two physical

states (and is a positive number). In terms of x,, this be-
comes

Us= —E, ;x,/(1+x3), (59)
and since E , is positive, the sign of — U, is the same as that
of x,. In addition, if we use Eq. (45) we can write

-U, v R+1)—rl+2w,)-2,
E, (R +1)(1 +4K,) ‘

1. (55)

(60)

IV.PROPERTIES OF THE FUNCTIONS o3, B3, x4, and U,

We had shown earlier that the best fit chi-squared solu-
tions occur in sets of four. We now show that the functions
ak, B3, x4, and U, also occur in sets of four. Table I lists
four solutions which all have the same yZ,, and K, value.
These four solutions, however, are not all independent in
that sets 2, 3, and 4 in Table I are all related to set 1. To see
this, we use the full functional notation for a2, 8%, x,, and
U,. We therefore write Eq. (32) as,

R+w R+1)  —r—v,R+1)

x,(rnR;P,, T )= =
4lRRPLT) —r+u,R+1) 14w, (R+1)

TABLE 1. Four sets, all with the same y* min, L, =1, and — }<K,<0.
Here (P, T,) represents a set of P, and T, values as defined in the text.

Set § r (P,,T,)
1 + P,,T,)
2 - P,,T,)
3 + (=P —T,)
4 - (=P, —T,)

638 J. Math. Phys., Vol. 27, No. 2, February 1986

where P, and T, represent the set of P, and T, numbers. It
is clear from this expression and Eq. (23) that

x4 —~rR;—P,, —T,)= —x,(nR;P,T,), (61)
and
x(—nrl/R;P,T,)= — l/x,(r,R;P,,T,), (62)
where — P, and — T, mean change the sign of all the P,
and 7, numbers. So sets 2 and 1 are related by
x,(—rRP,T,)= —1/x,(r1/R;P,,T,)
yielding
Set 2 Set 1
o (—rR;P,T,)=8%(r1/RP,,T,)
Bil—rRP,T,)=ai(r1/R;P,,T,),
U —=rRP,T,)= —U,rl/R;P,T,).
Sets 3 and 1 are related by
x,(rR;—P,,—T,)=1/x,r1/R;P,,T,)
yielding

Set 3 Set 1
a(r,R;-P,,—T,)=B%(r1/R;P,,T,),
BirR; —P,, —T,)=aj(rnl/R;P,,T,),
u,rR;—P,,—T,)=U,(r,1/RP,T,).

Sets 4 and 1 are related by
x(—nrR;—P,, —T,)= —x,(nR;P,,T,)
yielding
Set 4 Set 1
af,(—r,R;—PA,— A)=ai(r9R§PA’TA)!
Bi(_’,R;—PA»_ A)=B,24(7’R;PA»TA)’
U—rR;—P,,—T,)= - U,r,R;P,,T,).

In essence, physically, sets 1 and 3 (and sets 2 and 4) are
related by just interchanging the nature of ¢; and ¢7. Thus,
only one set of these four is independent and could be used to
describe the wave functions. Of course we should choose
that set yielding — U, >0, as we can physically require
x,>0forall 4.

From the constraint equation (23), if we take d /dR of
both sides, we get

dr  1+2K,(R+1)

—= (63)
dR 2r
Equations (33) and (60) then produce
2
U
da; _ P ’ (64)
dR E,AR+1)

showing that the critical points for a% correspond to the
zeros of U,. Solving for the critical points, R(4 ), yields
U, (R (4))=0or

R )= —(1+ws)*". (65)
The corresponding r.(4 ) values are then obtained from
réd)= tvdRF4)+1), (66)
and the values a% (R *(A4 )) are
(- (14+w /) E)y=(111)2. (67)
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V. SIGNIFICANCE OF THE PARAMETERS: w,, v,, L,,
Z,,AND K,
A. The parameter w,

Mathematically, w, gives the location of critical points
for @ . Physically, since U, (R * (4)} =0, w, also gives a
measure of the physical region for R in the following way.
Since we can always choose — 1<K, <0, then from Eq. (30)

(we +17+0v5 =K, +} (68)
would give

(wA + %)2 + v,24 <£ s
showing that the allowed values of w, and v, in the w,v,
plane lies inside a circle of radius } and center ( — 4,0) and

that — i<v,<}and — 1<w,<O0. If we choose the 7> O set,
then we can define
M= min {—(1+w; ")}
{4|vy<0}
and
m= max {—(1+w; )"},
(4 |v,4>0}
then — U, >0 for all 4 in the region m<R<M. For any
other set (e.g., 7 <0) we can use the results of Egs. (61) and
(62) to get the physical bound on R. If we couple this with the
mathematical limits of the ellipses

—(14+2K,) +1+4K,

2K,
—(1+2K,) —1+4K,
<R<
2K,
we get the physical bounds on R given by

max[ —(1+4+2K,) +1+4K, ,m]

2K,
_(1+2KA2;<—,/1+4KA ’M]. €9)
A

If these restrictions cannot be met, then the two-state model
with assumptions 1 and 2 will not fit the {p,?) and (z,p) cross-
section ratio data for any value of R.

’

<R<min[

35 3476

[o* stotes 3350

3204 3139

30 2.90i
B 2862 290l

2.617
25
222

94
20F — I’ 1911

I

!

(2.326)
2.229 —

E, (MeV)

15+ \ 1.486 1846

\i2te !
\ /

\ /
069155 |

- 66Ge  8Ge  70Ge  72Ge  ™Ge  76Ge  8Ge

FIG. 3. Low-lying 0™ states in the even germanium isotopes.
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e- INTRUDER STATE
g- BASIS GROUND STATE

A-4 A-2 A A+2 A+4

FIG. 4. Schematic representation of the basis ground state and basis intrud-
er state in a string of isotopes.

B. The parameter v,

We have seen that the parameter w, gives a measure of
the physical region of R. The parameter v, gives the choice
of which critical point occurs depending on whether the 750
or r<0 solution is chosen. In particular, from Egs. (65),
(66), and (67), if the >0 solution set is chosen, then for
v,>0 we have Rf(A)=—(1+w;/H*" and
ai(RF(4)=1 while for v,<0, we have
R(A)=—14+ws"H™ "' and (R (4))=0. The
signof v, gives a measure of whether & isOor 1 atits critical
points. In particular, using >0 shows that for @ (R, (4)) to
give 1, weneedv, >0and & (R (4)) givesOwhenv, <0.So
v, can be a measure of whether the physical state will favor
¢ or ¢7. We shall elaborate later when we look at the meth-
od applied to the germanium isotopes.

C. The parameter L,

The significance of the parameter L , is that it serves as a
test of the entire model mathematically in that L , = 1 serves
as the necessary and sufficient condition. Physically, L, =1
is just the statement that

ol X (tpy' T2 X (gs.)) = ol** X (p,t) “X (g5.)),
assuming, of course, that all kinematic corrections have been
divided out.

D. The parameter z,

Equation (46) gives S, (t,p) = — z,K /% (R + 1)* show-
ing that the ratioz,, , ,/z, is the ratio of S, , ,(z,p) t0 8, (t,p),

TABLE II. Experimental 0% cross-section ratios in the germanium iso-
topes. Here E, is the excitation energy of the excited 0% state.

A E, o(* *2Ge(p,t) *Ge(0))
(MeV)  of**2Ge(p,t)* Ge(g.s.))

a(*Ge(s,p) “+2Ge(0))
o(AGe(t,p) 4+ 2Ge(g.s.))

68 1.753 0.0058 + 8%
70 1.216 0.068 + 4% 0.0020 + 20%
72 0.6915 0.280 + 3.5% 0200 + 5%
74 1.486 0.010 + 80% 0.025 + 10%
76 2.901 0.0167 + 8%
78 2.326
M. Carchidi and H. T. Fortune 639



TABLE III. DWBA 0™ cross-section ratios in the germanium isotopes.
Here E, is the excitation energy of the excited 0’ state.

A E, of*+’Ge(p,) “Ge(0*)) of*Ge(t,p) **>Ge(0))
(MeV) o*+*Ge(p,t) *Ge(gs.)) of*Ge(t,p) 4*°Ge(gs.))

68 1.753 0.8198 + 2%

70 1.216 1.0040 + 2% 1.0230 + 5%

72 0.6915 1.0450 + 3% 1.0110 + 3%

74 1.486 1.1370 + 2% 0.9660 + 3%

76 2.901 0.8780 + 2%

78 2.326

i.e., physically, z, is a measure of summed (t,p) and (p,¢)
strengths.
E. The parameter K,

Finally, the parameter K, provides the connection
between the physical state 2n-transfer overlap ratios repre-
sented by P, and T, and the basis states of 2n-transfer over-
lap ratios r and R. In addition the parameter K, along with
the critical points R (4 ) given by Eq. (65) can give a mea-
sure of the physical (but unmeasurable) cross-section sum

Q,(t,p) given by

Q,(tp) = o"X (0™")(t,pY' *°X (g:5.))

+ o*X (0*')(t,p)* *2X (0)) .

We could now easily show that

S4(tp)+ Qultp) =f3(1+ 27 + R?), (70)
which is just the condition that total flux is conserved. Put-
ting in Eqgs. (23) and (46) gives

Qutp) (1+w,)+K, K,+(R-4)+ 1)~

Salep) K HRIA) )T
giving the 4 dependence of @, /S ,.

K,—w,

VI. A SIMPLE LIMITING CASE
If K,— —}, Eq. (23) yields R—1 and »—0. Equation
(53), rewritten as
144K, = (T, +PAZA)2 +(1 _ZA)z ’
(Ty+ Pz ) +(1+2,)
shows thatz,—1and T, + P,—0, for all 4. In addition, we

getw,— — Land v,—0. Such a result is an important limit-
ing case as previous models of this type' have assumed R = 1
and r = 0, which is equivalent, via Eq. (23}, to K, = — i-As
K, = —\}ifandonlyif P, + T, = 0, we have an immediate
test to whether such a naive model (r = 0, R = 1) will work.
The quantity 1 + 4K, is then a measure of the deviation
from the simple model.

VIl. EXAMPLE: APPLICATION TO THE GERMANIUM
DATA

In many regions of the periodic table, there exist chains
of nuclei in which an intruder state (or more than one) is
obviously present. A signature of such a state can be found in
the low-lying energy-level spectra. For example, in the ger-
manium isotopes (Fig. 3), we notice a parabolic dependence
in E, (the energy of the 0;" state) with 4. Such a pheno-
menon is interpreted by saying that the ground state and the
physical 0"’ state (usually the O," state, but need not be)
result from mixing between the basis ground state and a basis
0" excited intruder state. These basis states mix or interfere
with each other and can therefore “switch” positions as we
move from lighter mass to heavier. This situation is shown
schematically in Fig. 4. These nuclei, for which an intruder
state exists, are somewhat collective, but not strongly de-
formed. From Fig. 3, we see that the place where the basis
0," and basis ground state of germanium “switch” position
occurs at the minimum in E,—ie., around N =40
(4 = 72). There exists in the literature' a staggering amount
of data for the germanium region, all of which also indicates
a change in structure occurring at N = 40. Many models
have been proposed' to try and explain the origin of this
transition, all with limited success. We shall show that the
generalized two-state model developed above will not only
account for the Ge(p,t) and Ge(t,p)o(0*')/o(gs.) ratio
data, but also present a possible explanation for the existence
of this transition between the lighter and heavier mass ger-
manium isotopes.

We shall use the Ge(p,t) and Ge(t,p)o(0*")/o(g.s.} data
measured®'? in the literature. These are summarized in Ta-
ble II. In the above model, all {p,t) and (¢,p) 0*'/g.s. cross-
section ratios must be corrected for Q-value effects. To com-
pensate for Q-value effects, DWBA calculations were
performed with the code bwuck,'' using optical-model pa-
rameters from Ref. 9, and a two-neutron bound-state (B.S.)
wave function of the form

TABLE IV. Q-corrected 0" cross-section ratios and calculated ratios using the sign combinations given in Table VI in the Ge isotopes. Here E, is the

excitation energy of the excited 0™’ state.

Q-corrected ratios Calculated ratios
EA
A (MeV) P’ P} T
68 1.753 0.0071 + 0.0007 0.0071
70 1.216 0.0680 +- 0.0040 0.0020 + 0.0005 0.0680 0.0020
72 0.6915 0.2700 4 0.0160 0.2000 + 0.0160 0.2740 0.1950
74 1.486 0.0090 4 0.0072 0.0250 4+ 0.0034 0.0060 0.0250
76 2.901 0.0190 + 0.0020 0.0190
78 2.326
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TABLE V. The sign combinations in the P,’s and T,’s that give the best fit
chi-squared. Also given are the corresponding K, values.

set Py P, P, Ty 7, T K,
1 - - -+ o+ o+ —0.2452
2 — + — - + — 12.7519
3 + - + + - + 12.7519
4 + O+ o+ - = - —0.2452
Vys.(2n)
—N 2 N 2
=——A1gy )0 + ——1fs2)0
V2(9/2) + 1 v2(5/2)+ 1
N N 2
+ ———(2p3/2)(2) + ———(2p112)0 »
v2(3/72) + 1 v2(1/72) + 1

where N = 0.992 for normalization.

To reduce Coulomb effects, calculations were per-
formed for all beam energies at which experimental numbers
were measured. Ratios of the DWBA cross-sections are
summarized in Table III. To investigate configuration de-
pendences in the DWBA calculations, we also ran the code
DWUCK for two-neutron bound-state wave functions of pure
(1g5,,)% and pure (2p, ,)3 and used these results to estimate
uncertainties in the DWBA ratios. The final Q-corrected ra-
tios, along with their uncertainties to be used in this analysis,
are summarized in Table I'V. Note that in the above data and
DWBA calculations, we are using the 0;* state as the phys-
ical excited state in °®7*Ge, and the 0;" state in ’%"8Ge. This
is because from Fig. 3 we see that from **Ge to 73Ge, each
isotope has a 0 state at about 2.22 MeV as indicated by the
solid horizontal line. These states at about 2.22 MeV could
be inert for all the germanium isotopes and not mix with any
other O™ states. If that is the case, then for "5Ge, the next
candidate to consider with the ground state in a two-state
model would be the 0;* state at 2.901 MeV. For "8Ge, the 0,"
state at 3.350 MeV would seem too far away from the ground
state and the 0, state at 1.546 MeV seems to contradict the
parabolic trend in £, with 4. Although the 0;' state at 2.326
MeV would want to fall into the possible “inert” state cate-
gory mentioned above, we shall choose the worst of three
evils and assume that the 0;" at 2.326 MeV in "3Ge is the
excited 0+’ mixed state. Since "*Ge represents an “endpoint”
in the germanium isotope chain, the particular choice of
state here will not affect any of the calculations for 7¢Ge.
The reason is because data exist for enough nuclei (four) to
calculate one L, viz., L., and so the cross-section ratio in

TABLE VI. The sign combinations in the P,’s and 7', ’s that give the best fit
chi-squared. Each set has K, = — 0.2452.

set r Pry Py, Py, Ty T T
a + - - - + + +
b - - - - + + +
[4 + + + + - - -
d - + + + - - -
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TABLE VII. Calculated values of the parameters X, , v,, w,, and 2, for Ge.
These are calculated using set a of Table VI, Pis <0, and T > 0. (Note that
v, changes sign as 4 goes from 70 to 76.)

A K, vy wy z,

70 —0.2452 + 0.0629 —0.5292 1.1583
72 —0.2452 + 0.0502 —0.5438 1.2342
74 —0.2452 —0.0141 —0.5679 1.3159
76 —0.2452 —0.0314 —0.5618 1.2912

76Ge(t,p) "®Ge will not be involved in the best fit minimiza-
tion procedure. In fact, in that procedure, we need only mini-
mize

R e N

6/ 4<% AP, AT,,

subject to the one condition L,, = 1. The results of this cal-
culation show that the “best” fit in a chi-squared sense oc-
curs for four sign combinations in the P,’s and T,’s. These
are given in Table V along with the K, values. Each calcula-
tion gives y2;, ~0.068 and K, values which are related via
14 4K,—(1 + 4K, ) ! as promised earlier in the model-
developing sections above. Also as promised, we can always
choose the negative K, value leaving us with only two sign
choices. As for the constraint equation [Eq. (23)], we also
have two choices of sign for r, leaving a total of the four
possibilities given in Table V1. These all have been shown to
be related in Table I and so only one of these four needs to be
considered. Using set @ in Table VI and assuming that
Pge <0and T,4> 0 allows one to calculate the unmeasurable
ratios T and P, so that L,, and L., are equal to 1. Knowl-
edgeof P, and T, for A = 68 to 76 allows us to calculate the
parameters K ,,z,,w,,and v, (for4 = 70, 72, 74, and 76),

1.5 T T T T
T2,
+/
10r —
05K —
——
0.0 R S — VA
+ + + + Ky
0.5 + -
———— e+ W,
-10 1 I | ]
70 72 74 76
A

FIG. 5. Plots of z,,, w,, v,, and K, vs A for the germanium data.
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FIG. 6. Plots of @, and — Uy {in MeV) versus R for *Ge. (The solid curve
is for >0 while <0 is given by the dashed curve.)

|
13 14

which are summarized in Table VII and plotted versus 4 in
Fig. 5. Note that v, changes sign as we move from lighter
mass to heavier suggesting a change in structure occurring in
the sense that the value of @4 (R * (4 )) flips from O to 1 or
vice versa. The quantities @ and — U, (in MeV) For
A = 68 to 78 can be calculated using Eqs. (33) and (60) and
are plotted (for both »>0 and r<0) as functions of R in Figs.
6-11. Notice, as predicted by the v, parameter, the flip in
structure from lighter 4 to heavier. As indicated earlier, we

(@]
n
T

-06F - .

-0.8F n

I I i L
10 U 12 13 14

R

t 1
08 09

FIG. 7. Plotsof a2, and — U, (in MeV)vs R for °Ge. (Thesolid curve is for
r>0 while r<0 is given by the dashed curve.)
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FIG. 8. Plotsof a3, and — U, (in MeV) vs R for ?Ge. (Thesolid curveis for
r>0 while 7<0 is given by the dashed curve.)

need only consider, say, r>0 (i.e., set @ of Table VI). The o
and — U, (in MeV) resulting from these are all plotted on
one graph as shown in Figs. 12 and 13. (Note that the plots
for @ and — U, for 4 = 68 and 78 are dotted indicating
that the signs of Pgg and T, are chosen as negative and posi-
tive, respectively, and are not determined by the chi-squared
minimization process.) Each of the @ will produce fits to the
data which are summarized in Table IV and plotted in Fig.
14 for any value of R. The only limits on R are given by Eq.
(69), which for the germanium data given is 0.889< R <1.282.

T
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T

-02r-

-0.8+ -

68 09 10 1 2 13 14
R

FIG.9.Plotsof a2, and — U,,(inMeV)vs R for *Ge. (The solid curve iis for
r>0 while r<0 is given by the dashed curve.)
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FIG. 10. Plots of a%; and — Uy (in MeV) vs R for *Ge. (The solid curve is
for >0 while <0 is given by the dashed curve.)

Especially evident in Fig. 12 again, is the change in structure
between the lighter and heavier Ge isotopes with the transi-
tion occurring between "°Ge and *Ge. Therefore the origin
of the transition in the Ge isotopes is due to the drastic
change in mixing (a% ) from the lighter mass to the heavier.
Notice also in Fig. 13 the congestion occurring between
R = 1.06 and 1.26, suggesting that in that region of R, the
perturbed two-state Hamiltonian causing the mixing is slow-
ly changing with 4.

The valueof K, = — 0.2452 4 0.0009 shows that K, is

051

T
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! 1 L L L ]
08 09 10 11 12 13 14

FIG. 11. Plots of a%; and — U, (in MeV) vs R for "*Ge. (The solid curve is
for >0 while <0 is given by the dashed curve.)
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FIG. 12. Plots of @ vs R for the germanium data with r>0.

very close to its minimum value of — } but is still five prob-
able errors away from this limiting value of — }. This result
implies that previous choices' of ¢ and ¢ assuming R = 1
and r = 0 and hence K, = — } are incorrect. The nonzero
value of 7 in the physical range shows some “nonorthogona-
lity” between ¢/ and ¢7 * %. This nonorthogonality probably
arises in the process of constructing particle-hole states of
good isospin, and must be considered in the construction of

#7 and ¢7.

VIIl. CONCLUSION

We have shown that a two-state model can be used to
describe the o{0*')/0(g.s.) cross-section ratioin (£,p) and (p,? ).
We have determined necessary and sufficient conditions for
such a model to work based on two simple assumptions.
Although we do not describe 47 or ¢7 in terms of any shell-
model basis or similar type descriptions, we do give starting
points by describing how the basis state 2n-transfer overlaps
must behave via the constraint  equation,
=R + K,(R + 1)? and Eqs. (46) and (49). The quantity
K, is an extremely sensitive measurement of the 2n-transfer
overlap ratios and in the case of the germanium data, is suffi-
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-POTENTIALS
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-03r 7 \ 4

o7 1 L I 1 1
076 086 096 106 116 126 136
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FIG. 13. Plots of — U, (in MeV) vs R for the germanium data with 7>0.
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FIG. 14. Experimental and calculated o(0*’)/o(g.s.) ratios for the Ge
data.

ciently far from its minimum value of — } that the simple
models previously applied cannot work. We have been able
to fit the 0*'/g.s. state (p,¢ ) and (z,p) cross-section ratio data
almost exactly and the results of the fits exhibit the change in
structure between the lighter and heavier masses.

The solution of the present germanium data problem
allows one to use the resulting wave functions to predict
other observables. We have shown these wave functions to
be consistent with 1f;,, proton occupation numbers in the
4 Ge ground states,'? with (d,5Li) and (°Li,d) cross-section
ratios leading to “Ge (see Ref. 13), and with BE2 ratios from
2,5, 2%, 10057, 0;F, states in "°Ge and *Ge (see Ref. 14).
With very few assumptions, we have been able to fit much
data and we still do not need to specify any value of R, so that
we continue to have flexibility in fitting even more data.
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We have done a survey of this analysis to (£,p) and (p,?)
data for all nuclei (total of 15) from calcium to uranium and
have found the present model successful in every case. The
detailed results of this work will appear in a later publica-
tion.

Other possible special cases of Eq. (16),i.e, R +1=0
and R — rs =0, have already been considered by us and
these results will appear in a later publication. We are also
working on the general solution to Eq. (16) for any values of
r, s and R.
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The one-dimensional magnetotelluric (MT) inversion problem is well known to be ill posed and
nonlinear. This paper seeks an understanding of the mappings underlying the nonlinear

relationships. These properties are used to study the validity of some exploration aspects of the
problem that are essential for the practical use of MT as an exploration tool. This study has two
major segments—results in response space and results in geologic space. In response space, the

existence of optimal admittance curves has been proven. In the case of continuous data,
uniqueness has been established. For discrete data, a relationship between alternative optimal
solutions has been derived. In geologic space, the results are extremely significant to MT’s
applicability to exploration. A class of conductivity functions ¥, which contains all possible
natural geological conditions, has been used as a framework for the study. Over this class ¥, the
one-dimensional magnetotellurics problem has been proven to be uniquely invertible from the
admittance curves. This precludes the possibility of two different geologic models yielding the
same complete data. As a result, the path is now clear to generate a description of a unimodal
statistical distribution of feasible inversions to the real-world exploration problem with finitely

sampled noisy data.

I. INTRODUCTION

Many investigators have contributed to the theory of the
one-dimensional magnetotelluric (MT) inversion problem.
This survey will be intentionally brief and touch only the
more significant recent results. For a related problem, Bai-
ley! proved that the inverse was unique, given complete data
on the surface of a stratified sphere provided the model space
is restricted to nonzero, bounded, infinitely differentiable
functions. (Bailey studied the ratio of the externally generat-
ed magnetic field to the internally generated magnetic field.)
The next major advance was in a paper by Weidelt? in which
an actual inversion algorithm was presented. This proce-
dure, an application of the Gel’fand—Levitan theory, gener-
ates continuous conductivity profiles when the data curve
corresponds to a continuous conductivity profile. However,
it is not clear that the procedure will recover the same o as
that which generated the data.

The practicability of the inversion was greatly expanded
by Sabatier.? Sabatier demonstrated the application of linear
programming to finite-dimensional approximations of the
global problem. More recently, Parker*> has modified and
enhanced these techniques to yield conductivity profiles that
will fit noisy finite data (arbitrarily close to the optimal pos-
sible fit).

il. PRELIMINARIES

This paper will follow the notation and terminology of
Parker* where possible. The basic equation describing a
horizontally polarized electric field of radial frequency
diffusing into a conductive body is

J%E(z .

E2E8) _ ionotalE o), (1)
where o1z) is the conductivity profile for z < 4 (h very large)
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and is assumed to be a constant g, > 0 when z<0. The lower
boundary conditions will be E (0,w) = 1 and (JE /9z)(0,@)
= (1 + Noweoo/2. The ratio
cl) = —2100)__ @
(OE /d2)(h,w)
is defined to be the admittance curve. The more familiar
apparent resistivity is p, (©) = Jou,|c(@)|% We will con-
sider the inverse problem both where c(®) is known at a
finite number of frequencies and also on an interval.
The problem will be formulated in terms of geologic
models
(0,00,h) , (3)
where o(2) >0 for z € [0,h], 0(2) = o, for z<0, and A > 0.
Parker* demonstrated that the admittance curve ¢(w)
corresponding to a geological model can be represented as

0

1 —iwd
db(A), 4
A +iw “) )

where b,>0 and b(4) is monotone increasing. It can be easi-
ly observed that the following formulas hold:

by =Re(c(1)),

0TV (d) = —Imle(1))< w0, &)

bo> f Adb(A).
0

If we further require 0 <7< p, (@)<R for all w, we obtain,
respectively,

bozf,tdb(,i) (R),
| (6)

J:—da—(/”—= w0, €>0 (7).

© 1986 American Institute of Physics 645



In particular, (6) implies that if db(A) is a fine delta comb
corresponding to a model (0,0,4), thenlim,, ., p, (@) =0
alld 00 = 0.

To establish notation, define
___ EGw)
czw) = (OE /3z) (z,0)

Then

de(z,0) _

¥

Now that some notation has been established, let us give a

schematic of the mappings to be studied (see Fig. 1). Under

very general settings, f; and £, will be well defined and nicely

behaved. The difficult questions concern the behavior and
existence of mappings f,;~ ' and f; ..

1 —ipgwo(z)c?(z,0) . 7

lll. RESULTS IN RESPONSE SPACE

Here the relationships between c(w) and b(A) are ana-
lyzed in greater detail. In the case where a finite number of
data values are available (as in real experiments), let the
data be given by d = (d,,d,,...,d, ), where d; is the complex
data for frequency we W = o, <w,< - <w,. If data is
available on [a,u], it is given by d(w) € € [a,u]. Define
gle(w)) = (c(@y),...,.C(®, }) € C". Throughout, the norm in
C" can be modified to reflect statistical knowledge or
weightings as in Ref. 4 without affecting results. Let Trepre-
sent the set of all admittance curves which can be represent-
ed asin (4) and (5).

Theorem 1: Let d = (d(@,),d(®,),...d(®,)) be given
and S be a convex subset of 7. Then there exists a closed
convex subset Q of T'such that ¢, € Q implies || g(c,) —d |,

= min. || g(¢) — d||, and each member of Q is a pointwise
limit of a sequence from S. Moreover, if ¢, and ¢, € Q, then
¢ (@;) = cy(w)), whenever 1 < p< o (j=1,..,n).

Proof: Let @ =min, s || g(c) —d||,. Choose ¢, €S
such that || g(c,) —d |[,—a.

Claim 1: {b, } is a bounded sequence in NBV [0, ). To
see this, note that when ¢, € 5,

A1 —0?)
¢y (w) = by + Jo mdb(ﬂ)

oo 2
—i f L"’?db(l) _
0

Altw
If A<w, then
oA+ 1)/(A*+0*) > 1/20.
If A > w, then

A2+ 1)/ AP+ P> w/2.

b(A)
fa] I £
f
(000, ) T/ (@)

£
g

(c(w1),... c{wn))
FIG. 1. Schematic of mappings.
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Thus, letting ko = min,_, , {1/2w,, ®,/2} >0, one has for
all b:

* 1 [ 0o(A2+1)
db(A)< — | =2 T2
J; ( )<k0 s S db(A), forweW.
Thus,

1611 <(17k) min [ ~ Imic, ()]

<(1/ko) min [[c, (@,)]] -
J

Now for some N, and all 13N, ,
lgle,) —dl, <a+1.
Thus,
lgtea) ll, <a+ 1+ fld]f,.
Now
llea (@pll <l glea) ll, <a+ 1+ | df], .
Thus,

leull= [ db, (<< @+ 1+ [0
0 k()

Now, {b,} being a bounded subset of NBV [0, ) means
that {b, } has a weak-* convergent subsequence {,, }. Let
b * denote the weak-* limit of this sequence so that

r fdb(Ay=tim [ fdb, (A),
0 k— o Jo

feC[0,0) and fbounded.
We can further require that {by,, } is convergent. For any c,

|Refc(@,)) — Refe(1))]
= |Refc(@,)) — bo|<|max flo)| || b ,

where fis the real part of the integrand in (4). Thus, for
n>» N, in the original sequence, we know that {b,,} is
bounded.

Let ¢* correspond to the limits (b 3,b*(4)).

Claim2: || g(c*) —d |, = .

This follows immediately from the observation that

@* w*

b, — b*, by, — b¥ imply

c*(w) = lim ¢, (@)
for each w.

Now put Q = {c(w)| || g(c) —d||, =a}. Then Q is
convex. The final statement of the theorem follows immedi-
ately from the strict convexity of the norms in /,,
l<p < w,forC"

Note that S may equal 7" Thus the existence of globally
optimal fits has been established. Moreover, once S has been
selected, the values of admittances for the optimal solutions
agree on the observation frequencies if an appropriate norm
is chosen. In Ref. 4, p. 4426, Parker claims without proof
that in this global setting Q will consist of a unique b(4),
where db(1) is a positive finite delta comb. We find this
result unlikely.
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Theorem 2: Let 1< p< 0, d: [a,u] —>¢, deL,(a,u]
(the data curve) be given, S be a convex subset of 7, then we
have the following.
(a) There exists a convex subset Q of T such that ¢, € Q
implies

lh(e) —d |, = minjiace) —d|l, = a,

where
h(c) = X (ou)(@)c(@)

and y/,., = characteristic function of [a,u]. We require
members of @ to be the pointwise limit of a sequence from S.

(b) The optimal solution is unique if 1 <p < .

Proof: (a) Choose ¢, € SD||h(c,) —d|,—. As be-
fore, {b, } is bounded and, hence, has a weak-* convergent
subsequence {b,,k } with limit & *. Because of (4), the uniform
bound on ||b, (1)||, and

c*(w) = klun Cs,, (w),

we have

a(c*) —dll, =a,
and the existence of optimal solutions has been established.
Put Q= {c: ||h(c) —d||, = a}. Then Q is clearly convex.
Uniqueness of c¢*(@) in the case 1 <p < o follows again
from strict convexity coupled with the analyticity of c(w).
The uniqueness of b *(A4) follows from Theorem 3.

Corollary: If 1 < p < «, there exists a unique global opti-
mal solution.

The previous theorem relies on the relationship of c(@)
to b(A) expressed in the next theorem.

Theorem 3: The admittance curves c(w) and the
associated {be,b(A)) are related by the
equations m(y) = [(A?+ 1)b(1)] and c(w) = m(iw)
+ (bo — S&A db(A)), where .7 is the Stieljes transform. By
assuming b € NBV[0, « ), % is uniquely invertible. A simi-
lar result is available with the Hilbert transform. [ Remem-
ber that for our purposes in (4), by > 574 b(A), although
that is not required in this theorem.]

Proof’ See Sneddon,® p. 233. The uniqueness at discon-
tinuities comes from the assumption that b € NBV{0, ).

This section has been based on Parker’s most general
model setting (Ref. 4, pp. 4421 and 22) and contains the
finite-dimensional subspaces of (A1) [where db(A) consists
of finite positive delta combs] in which he performs his opti-
mization calculations.*> These correspond to delta comb
conductivity models terminating in a perfect conductor
basement. Several times Parker seems to imply that the opti-
mal solutions are always in this limited class [for instance,
“In addition to optimal models, which always consist of del-
ta functions, two other types of model are examined.” (Ref.
5, p. 9574)]. Consider data from a continuous conductivity
model (o, ,0,,/#) and the corresponding b, (db. is not a fin-
ite delta comb.) Then (o, ,04,/) and b, are clearly optimal in
the finite data case for any finite set of observation frequen-
cies Wy . We are not aware of any proof showing that the
optimal set (5 ’s or conductivity models) must contain any of
Parker’s delta comb o’s and corresponding b ’s. We suggest it
is unreasonable to expect that result in either the pure data or
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noisy data cases, and see no proof to substantiate the claims
in either Ref. 4 or Ref. 5. However, one can readily prove a
weaker result that is sufficient to support all of Parker’s nu-
merical work in both the noise-free and noisy data cases: if @
is the optimal 1-D fit to the data in a given metric and € >0,
then there exists one of Parker’s delta comb conductivity
models with a fit better than o + €.

These theorems have yielded results relating to the exis-
tence and uniqueness of optimal admittance curves. The real
geophysical interest, though, must lie in the implications of
these results to physical models.

IV. RESULTS IN GEOLOGIC SPACE

The following theorem treats the existence of optimal
data fits with typical restrictions on the geological model.
Note that the common assumption that 1/7>0(z)>1/R is
covered.

Theorem 4: Assume that discrete data d is available for
we Wy. Select f,FeL,(0,h) with 0< f(z)<F(z). Let
V={o(z) e L,[0,h]: f(2)<0(z)<F(2)}. Using the I,
norm in C%¥, 1<p<w, there exists an optimal solution
(o(2),04) € V X [m,M], where m > 0.

Proof: It should be noted that this theorem only estab-
lishes the existence of optimal solutions to the constrained
optimization problem. We do not establish uniqueness.

Consider the set of all ¢(w) which correspond to all
(0,0,) € V X [m,M].Select aminimizing sequence {c, (@)}
such that

lim ||g(c, (#)) — d|| = min = a.

Consider the sequence {(o,,00, )}. The sequence {0, } is
bounded. Select a subsequence which converges to o,70.
From this subsequence of {(0,,00, )}, one may select an-

other subsequence such that 0,250 in L,[0,k]. The exis-

tence of such a ¢ is guaranteed by the theorem of Alaoglu,
which proves the weak compactness of the unit ball in dual
spaces.

Now g(x)<F(x) a.e. If not, assume o(x)>F(x) + €,
forx e 4,e>0,m(A4) >0. Let y, be the characteristic func-
tion of A. Then

h h
f X4 (x)o(x)dx>em(4) + J X4 (x)F(x)dx
0 (4]

h
>em(A) + J X4 (x)o,, (x)dx,
0

for all n. Clearly, this precludes {0, } from having a subse-
quence which converges weak-* to o. Similarly, o(x) >f(x)
a.e.

Let us write the base differential equation (1) as a pair
of first-order equations:

() = ey 0 &) ®
2 - ipwo(z) O 2 ’
where 0<z<A, X,(0,0) = 1, X,(0,0) = \iugwa,, where o,

is the basement conductivity.
Define

0 1
4(2) = (i/.towa(z) 0)'
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Then the transition matrix for (8) is

o= ) )

A
+ f A(A)dA
0

h A
+ f A(/t)f ACp)du dA + .
0 0

Select w > 0. Since o, 2, g, it is straighforward to see that

®,,[0,A]>P,[0,h], where @, corresponds to (a,0,),
®,, to(c,,0,, ). Thusc, (w)—c(w), the admittance curve
for (0,04). In particular, ||d —g{c(w))||<||d — glc, (@))]|
for all #. Thus the pair (o,0,) is optimal

Corollary: The  results  remain
V ={o(z) € L,[0,h]: ||| <N}.

Proof: The proofis identical to that of Theorem 4, except
that we must show ||o||<N. Assume [lo|| =N + €, €>0:

valid if

h h

(N +€)? =f o, (x)dx = lim

0 n—o Jo

ag(x)o, (x)dx

<lim ||o|| |lo,||< (¥ + €)N.

Theorem 5: Assume that continuous data d(w) is avail-
able for w € [a,u]. Select f, F, and V as above. Then there
exists an optimal solution (o (z2),0,) € V X [m,M] withm >0
in the sense that if c(w) corresponds to (0(z),0,), then
lle(@) — d(w)]|, is a minimum.

Proof: Formulate the proof as in Theorem 4. The result-
ing (a,0,) corresponds to c (@), which is the pointwise limit
of {c, (»)}. By combining (4) and (5), one can prove that
¢, (w)—c(w) uniformly on [a,u],

lle(@) — d(@)]|,<[lc(@) —c, (@)]|, + I, (@) —d(@)]],-
As n—»o0,
lle(@) — d(@)]|, <0 4+ minimum

= minimum.

Theorems 4 and 5 yield nice results in that the con-
strained geological problems do possess optimal solutions.
However, it is unfortunate that uniqueness need not follow.

In attempts to prove the invertibility of the 1-D MT
problem (Theorem 7), a related result of interest was
proved.

Theorem 6: Assume (7,,04,, /1;) and (0,,04,,h,) yield
the same admittance curve. Then o, = 0, and the zeroth,
first, and second moments of ¢,(z) and o,(z) are equal on
[0,4], where A = max{A,,h,} and the functions are aligned
to put z = A at the Earth’s surface.

Proof: This result can be proved by writing formulas for
¢,(w) and ¢,(w) using the transition matrices for the two
systems. Using expansions of both in terms of  yields the
result.

The next theorem discusses f ;! as in Fig. 1.

Theorem 7: Let c(w) be generated by (o(z),04h),
where 0(z) € C* [0,h], 0(2) >0, o(h) >0, and o is the re-
striction of an analytic function to [0,2], 0> 0, 2> 0. Then,
within this class, (0(z),0,, #) can be recovered from c(w)
when 4 is minimal.
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Proof* o, can readily be obtained since o; !

= lim iugwc* (). The remainder of the proof is based on an
w—0

argument suggested by Bailey for a related problem on a
stratified sphere. This concept has been adapted to the MT
problem for a flat earth, and the final arguments have been
strengthened to permit weaker hypotheses (both here and in
Bailey): we do not assume o(z) >m > 0, but only o(4) >0,
0> 0, and c(z,w) is analytic in the lower half of the complex
o plane. When || is large and o(z) > 0, one can argue that

|llim ' (zw) = )llim (1 — iugwo(z)*(z,@)) =0
with the error behaving as y/Jw. This results from the
aysmptotic behavior of ¢(z,@) for large w, which is

1 1 o)

czw)= — 4+ —

k 4 o(2)k? + 0k,

where

k =iou.o(z). (9)

Formula (9) can be derived using the WK B approxima-
tion for E and JE /Jz. Select the contour C. By the Cauchy
integral formula (for @ in the lower half-plane, and using the
contour in Fig. 2)

@ (zw) = J_f_l ______ac(z,m) do'.
Jz 2riJew —w Oz

The portion of the integral over the curved bottom of C goes
to zero as R— o0 . Thus,

% () = = lf L %e@e) 4. (10)
oz 2l ) w0 — @ oz
Let us analyze what happens as o—0. Using Parker®,

dc o(z)
~ 90 = 1 - ’
Jz (20)

o
in the limit. Allowing w—0 in the right side of (10) yields

1— o(z) _ -1 _1_ de(z,0") o',
a, T Jow @ dz
where = _ indicateslim,__ f~¢ + §Z, the Cauchy prin-
cipal value. Now let us integrate the modified differential
equation

w' Plane
-R +R
Contour C
-IR
FIG. 2. Contour of integration.
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1 defzw’) _ . 1 T
pow' 0z ipo’
§m 1 delz,w) do’ = § .da)'
—w g’ Oz — o @
—f o(z)P(z,0'Mdw'.
The second integral is zero. Substituting for the first yields
1(1 _ ”(—z)) - ff . izl (11)
Ho Jo —
or
7/
olz) = Ho

/pug0e + $= . lzw)dw
Cpy= Mo §” z,wdco(z:—l-).
P(2) =po 27 jg_ I €2(z0) p(2) o(z)
Since ¢(z, — w*) = c*(z,w), (11) may be rewritten
/o

. (12)
/o0 + 25§ Re[P (z,0) |dw

o(z) =

[Equation (12) yields lim
tinuous. ]

Using (12), one may obtain values for o™ at the sur-
face, n =0,1,2,.... Moreover, due to (7), o' can be
uniquely determined from ¢ (-, ) at the surface (@ > 0). The
C*> portion of o(z) may now be reconstructed uniquely by
power series, S(z). Using S(z), ¢(z,0) can be obtained from
(7) starting at the surface. This c(z,0) can then be plugged
into (12) toobtainlim, ,  o(z — €). Then A is recovered as
the depth where S(z) separates from lim o(z—€). At
this depth, ¢(-,@) = 1/Viuwo,.

Consider a partition {a,} of [0,4] such that 0 = gy <a,
<=<@,=h. Assume that when aq;_, <x<a;,
o(x) =f;(x)>0, where f; € C* [a; _, 4;1, f; (a;) >0, and

J; is the restriction of an analytic function to [a; _,,a;]. Let
Y, be the class of all such functions o. Then Y, includes all
the layered earth models, all piecewise polynomials, and all
piecewise finite trigonometric-series functions.

o(z — €) when o is not con-

€ — o0

€ —>0
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Theorem 8: In both the flat earth and spherical earth
cases, ¢(w) can be inverted uniquely over the class Y}, 4> 0.

Proof: This is almost a trivial but significant extension of
Theorem 7 and of Bailey, respectively. The » + 1 layers can
uniquely be reconstructed by » applications of the procedure
in Theorem 7.

Y, isa very broad class of expected geological models. It
would be nice to extend the result to the positive cone in
L?[0,h], but all attempts have failed. Nonetheless, ¥, is a
sufficiently broad class that Theorem 8 makes it reasonable
to expect a unimodal distribution of solutions to the finitely
sampled noisy data inversion problem.

V. APPLICATIONS

The theorems stated earlier can be applied to a variety of
the iterative inversion techniques in use today. As an exam-
ple, the techniques of Parker*? fit the general framework of
Theorem 1. He selects b(4 ) from ever-expanding subspaces
in NBV][0, ) which consist of finite delta combs. In the
limit when the functionals are restricted to
S(Aw) = (1 —iwd)/(A + iw), where € Wy, these sub-
spaces are weak*-dense in the positive cone of NBV{0, o0 ).
If one studies the set { f (4,w): @ € Wy}, one observes that
most of the “action” takes place over a rather small A range.
Thus one would expect the rapid convergence to a small y>
value experienced by Parker*’ and Sabatier.’
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Perfect fluid models of Bianchi type-Vl, in modified Brans-Dicke cosmology
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The spatially homogeneous and anisotropic Bianchi type-VI, cosmological solution for
barotropic fluid in the context of modified Brans—Dicke theory is obtained. The general behavior
of such an anisotropic homogeneous model has been discussed.

I. INTRODUCTION

The Brans-Dicke (BD) theory' was proposed more
than 20 years ago with the aim of incorporating Mach’s prin-
ciple into general relativity. An enormous effort has been
made since then in exploring the gravitational as well as cos-
mological consequences of this scalar-tensor theory. The
role of the cosmological constant A has been discussed by
various authors in agreement with modern ideas of funda-
mental particle interactions. Bergmann® and Wagoner have
suggested that the cosmological term should be a function of
a scalar function. Following the work of Endo and Fukui,*
Banerjee and Santos® have obtained cosmological dust solu-
tions for a Bianchi type-I homogeneous space in the modi-
fied Brans-Dicke cosmology. Recently spatially homogen-
eous and anisotropic Bianchi type-I cosmological solutions
of the modified BD theory containing barotropic fluid have
been obtained by Singh and Singh® by the condition of the
cosmological term A (¢4). Since Bianchi type-I models are a
very special set of spatially homogeneous models, the pres-
ent author has presented anisotropic homogeneous Bianchi
type-VI, cosmological dust solutions in the context of this
theory.” However, Lorentz® has presented Kasner-like per-
fect fluid solutions of the BD theory of gravitation for the
Bianchi type-VI, geometry.

In this paper we obtain spatially homogeneous and an-
isotropic Bianchi type-VI, cosmological solutions of modi-
fied BD theory containing barotropic fluid. The possibilities
of dust-filled universes, radiation-dominated universes, and
superdense universes are explored. The general behavior of
such anisotropic homogeneous models is discussed.

ll. FIELD EQUATIONS

The field equations for the modified BD theory with the
introduction of A(¢) are*

Gyv +gyvA = - (k /¢)T;tv
- (w/¢2)(¢,y. ¢,v - igpv ¢,a ¢,a)

- (1/¢)(¢,[LV —guvD¢) ’ (1)
¢3_A_A=LT_MD¢, 2)
d¢ 2¢ 2¢

Here T, is the energy-momentum tensor for a perfect fluid
given by

T;w = (p +p)Vp Vv —pgyv ’ (3)

where p and p are proper pressure and energy density, re-
spectively, and V # is the four-velocity of the fluid. We as-

650 J. Math. Phys. 27 (2), February 1986

0022-2488/86/020650-03$02.50

sume the coordinates to be comoving so that

Vi=pVi=V3*=0, Vi=1. (4)
We number the coordinates x, y, z, and t as 1, 2, 3, and 4,
respectively. Here a comma and a semicolon denote ordi-
nary differentiation and covariant differentiation, respec-
tively.

We further assume that the matter and the scalar fields
are related through®

O¢ = kuT /20 + 3), (5)
where the constant u shows the deviation of this theory

from that of BD theory and w is the coupling constant. Sub-
stitution of (5) in (2) yields

aA O¢
A—p—=a—", 6
¢ 2 5 (6)
a being a constant defined by
a=[Q2w+3)2((1/u) —1). (7)

If A is a function of ¢ only, Banerjee and Santos® have as-
sumed that (¢ = m@", where m and » are arbitrary con-
stants. Substituting for (¢ in (6) and integrating the result-
ing equation, we obtain

A=[am/2—n)l¢"" '+ Do,
and

A= —amlog¢+ Db, n=2, (9)
D, and D, being integration constants.

n#2, (8)

Il. SOLUTIONS OF FIELD EQUATIONS

The line element for the spatially homogeneous Bian-
chi-type VI, can be written as
ds’* =dt* + A*t)dx*

+ B*(t)e ¥ dy? + C*(1)e** d22, (10)
where A4, B, and C are cosmic scale functions, and ¢ is a
nonzero constant. The nonzero components of the field
equations for (10) are
B, , Cu , B, g
= —_— —_— + —_
B + C + BC 47

__A_kp o (8. A O
=—A y 2(‘»)+A¢+¢, (11)
A44+C44 A,C, qz
A  C AC  4*
— a_te_w (b B 08
=4 é 2(¢)+B¢+¢’ (12)
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Ay By | AB, i
A+B+AB A?

- A__"L_ﬂ(ﬂ)’+%+m¢ (13)

AB, | B, AL,
AB  BC = AC 4°?

)+ B8, (14

Za o, (15)

where the subscript 4 denotes ordinary differentiation with
respect to 1.

From the conservation equation 7'/, = 0 we obtain
A, , B, C4)
44+ 2 4+=2)1=0. 16
p4+(p+p)(A + 3 + C (16)

Equation (15) readily gives B = ¥C, ¥ being an integration
constant. Without loss of any generality we take y = 1.
We now consider the equation of state

=1 -1)p, 1<4AL2. (17)
Then from (16) we obtain
p=c/(AB?*, (18)
where c is a constant of integration. Also we have
T=3p—p=(34—-4)p. {19)
Equations (5), (6}, (18), and (19) give
1/(ABY = —(m/d)¢", (20)

where
d=kuc4—-34)/20+3).

We observe that then we can write the density (18) in terms of
the scalar field

p= —(mec/d)p". (21)

In order to treat Eqgs. (11)}-(14) we introduce new varia-
bles a, 5, and 7 by

A=ée"=, B=e¥, dt=AB%dr, (22)
and differentiation with respect to 7 is denoted by a dash.
Then Eq. (20) gives

e+ 28) — —(d/m)p—". (23)
Making use of (22) and (23) we can express (¢ = m¢" by
2
p=—L g 24
m

Substituting (8), and (22){24) into Egs. {11){14) we obtain
the field equations as

28" +3AB”7 + (2n+2) B'(¢'/9) + (§*/A)e**

[ e
D,d gon—n_ ;(2 +n) (%)z (25)
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2

—B”+3/1B’2+(2n—1)ﬁ’%—%e‘”
=[_ ad? k(A —1)cd
Am(2 —n) Am
_d_______ (n+ 1)
+/1m ]¢
B )]
Am2¢ A\ 6/’ 26)
! 2
3Aﬁ’2+2nﬂ’%+q7e“ﬁ
- ad2 kcd]a(,,+l)
Am(2 — n)
_Dﬁ‘an—n_i(ﬂ )(¢')’
+== ¢ /{2+n?. (27)

Subtracting (25) from (24), we obtain

’ 2 d2 -
38” 43 :ﬂ ﬂ 44 _ NG~ 1) 28
8" + 38 st = Ta? (28)

Elimination of £ " from (24) and (25) yields
2

31 2 2 :ﬂ_Q_ 4A8
B”+2npB p YN

=[_ ad? +k(/l—1)cd

Am(2 —n) Am
4> 2 nd® g+
Am 3 Aim

_M‘un—l)_i(ﬂ )(ﬂ)z 29
am® * FACIAVAVYR 29
From (27) and (29) we find that
3 D, d

q2e4Aﬁ_P¢(n+l)+ 2 ¢(2n—l) (30)
where
=i 2ad? ked __(!_i
4 Lm@R2—n) m m
+_2_ nd? k(A - l)cd] .
I m

Due to the nonlinearity of the field equations, it is very
difficult to obtain a solution in its generality and, therefore,
we have to make some simplifying assumptions to derive
useful results. The assumptions are motivated either by
physical considerations or by mathematical convenience.
We consider the case D; = 0. Then (30) reduces to

qzeuw — P¢'5<n+ y (31)
Differentiating (31) we get
== (%)
= — ], 32
B i \g (32)
,=n+1(ﬂ)2 (n+1)d?, .0
o 41 \¢ T m ¢ ’ (33)

Equation (28) is satisfied if
8AmP=(n—3)d?>. (34)
Substituting (31)33) into (29), we find that
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(AR 35

where
2
—1—=16[ —ad +3k(/l——l)cd
Q? 2m(2 — n) 4m
id_z ked ndz]
4 m 4m 2m

X[A%3 + 8w + 14n — 5n)] . (36)
Integrating (35), we obtain
¢= [(n + l)(/17'+E) 2/(n+ 1)
2Q
where E is an integration constant and may be chosen such

that at 7 =0 one has ¢ = 0. From (23) and (31) we finally
have the solutions for @ and B as

) (37)

o6 — q_’: [t M £ E) ”;'g +E7, (38)
1 2 —2(n—1)/n+1
o= L (g [t e ) o

Also, a and f can be expressed in terms of the scalar func-
tion ¢ as

2
eua=%(ﬂ) ¢—(n—l)’ e4AB=£;¢—(n+1). (40)
m q

The cosmological factor given (8) with D, = 0 is
A=[am/2—n)]¢"". (41)

The density and pressure can be written as a function of the
cosmological factor

p= —(mc/d)[2 - n)/am)Ay”\" =Y (42)
and
= —(mc/d)A — V(2 — n)/am]A]/*" ~ u, (43)

We now consider the cases of the dust-filled, radiation-
dominated, and superdense stages of the universe.

Case (I) Dust-filled universe: This case corresponds to
the distribution of incoherent matter for which p = 0. Put-
ting A = 1in (37)-{43) we get the model for incoherent mat-
ter. This case has already been discussed by the present au-
thor.”

Case (II) Radiation-dominated universe: Putting A = 4§
in (17) we get p = 3p. In this case of radiation dominated
universe we obtain, from (19), that T = 0. Then, from (5), we
have O¢ = 0, which implies that m = 0. Therefore (42) and
(43) give p =0and p = 0. Thus for p = 3p no solution will
exist and the model reduces to the vacuum one.
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Case (III) Superdense universe: Choosing A =2 the
equation of state (17) becomes p = p. This equation of state
for stiff matter has been widely used in general relativity to
obtain stellar and cosmological models for ultradense mat-
ter.® Therefore, inserting A = 2 in (37)443) we arrive at the
model for ultradense matter in modified BD theory.

Finally observe that for ¢ = 0 the line element (10) re-
duces to a Bianchi type-I metric and consequently we get
plane symmetric Bianchi type-I models for a perfect fluid in
modified BD theory.

IV. CONCLUSIONS

In Sec. III we obtained a perfect fluid solution of Bian-
chi type-VI; in modified BD theory. The general behavior of
such an anisotropic model is analogous to that of the zero-
curvature Robertson-Walker model of Endo and Fukui,*
the Bianchi type-1 perfect fluid model of Singh and Singh,®
the Bianchi type-VI, dust model of Ram,” and the Bianchi
type- VI, perfect fluid model of Lorentz® in BD theory. From
(37), we observe that ¢ is an increasing function of 7, if n < 0,
and a decreasing function for » > 0. The later case is of no
physical interest as it contradicts the choice of initial condi-
tion. For an expanding universe the spatial volume increases
with time for negative values of #; in which case ¥— 0 and
p— oo at the epoch ¢— 0. In course of time the model ex-
pands and attains infinite volume V—o and p— 0 as
¢— 0. Solutions obtained in this paper are of considerable
interest and may be useful to study the large-scale dynamics
of the physical universe.
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