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Spin ideals of Clifford algebras over quadratic spaces of any rank are constructed through 
contractive limits of suitably deformed classical spin ideals of nondegenerate Clifford algebras. 
The deformation of the algebraic structures, including the standard Witt basis for the quadratic 
space, results only from a deformation of the underlying quadratic form. It is shown that a 
contractive limit of deformed twistor spaces, considered as spin ideals of the Dirac-Clifford 
algebra, provides a decomposable representation space for the Galilei-Clifford algebra. The limit 
spin ideals of degenerate Clifford algebras are then decomposed into indecomposable Clifford 
modules. 

I. INTRODUCTION 

In the theory of spin representations of Clifford algebras 
generators of spin (minimal left) ideals are usually construct­
ed through a Witt decomposition of underlying quadratic 
space. l

-4 In particular, each spin ideal is generated by a 
primitive idempotent. 5,6 The spin (left regular) representa­
tions of Clifford, Pin, and Spin groups can then be naturally 
considered in such ideals viewed as Clifford modules.7

•
s 

However, the existing theory is limited to algebras over vec­
tor spaces endowed with nondegenerate quadratic forms and 
cannot be directly applied to algebras (called here degener­
ate) when the quadratic form is degenerate.9

•
10 The degener­

ate Clifford algebras studied in this paper provide yet an­
other generalization of classical Clifford algebras enjoying a 
revived interest among physicists. 11-14 

It is well known that in the category of Z2-graded alge­
bras a degenerate Clifford algebra is isomorphic to a graded 
tensor product of a Clifford algebra and an exterior algebra 
associated with the orthogonal complement of the underly­
ing quadratic space. IS Instead of adopting this point of view 
we rather consider a two sided nilpotent ideal (the Jacobson 
radical) contained in such algebra and generated by the 
complement. We construct the spin representation and spin 
ideal for the Clifford algebra of quadratic form of arbitrary 
rank. This construction seems to be novel in that it utilizes 
suitably defined (see Sec. II) deformation and contraction of 
a Witt basis in a nondegenerate quadratic space. In fact, we 
have a continuous family of isomorphic Clifford algebras 
and associated algebraic structures. 

In Sec. III we study deformed classical spin ideals and 
spin representations. It is shown that every generator of a 
deformed spin ideal has a nonzero contractive limit and that 
the set of these limits provides a basis for a limit spin ideal 
(space). In an example, a spin ideal of the Galilei-Clifford 
algebra is viewed as the limit of a family of deformed twistor 
spaces. Using well-known structure theorems on Clifford 
algebras1

•
4

,IS the spin representation is then decomposed 
into indecomposable components. 

In Sec. IV we examine structure of the limit ideals of 
degenerate Clifford algebras for arbitrary rank. It is shown 
that such ideals can be decomposed into direct sums ofsim­
pIe Clifford modules invariant under nondegenerate Clifford 
subalgebras. 

II. DEFORMED WITT BASIS AND ITS CONTRACTION 
We review first several definitions and state Witt's de­

composition theorem for an arbitrary quadratic space. IS Let 
( V,Q) be a finite-dimensional quadratic vector space over a 
fieldK (char K :1= 2) and letB be the symmetric bilinear form 
associated with Q. Form Q is said to be nondegenerate (or 
regular) (resp. degenerate), if B(x.)') = 0 for every y in V 
implies x = 0 (resp. if there exists a nonzero vector x orthog­
onal to the entire space). We say that a nonzero vector x in V 
is isotropic if Q(x) = 0, and say that x is anisotropic other­
wise. The quadratic space (V,Q) is said to be isotropic if it 
contains a (nonzero) isotropic vector, and is said to be aniso­
tropic otherwise. It is totally isotropic if all vectors are iso­
tropic. A direct sum of totally isotropic spaces orthogonal to 
each other is again a totally isotropic space. Thus a set of 
totally isotropic subspaces of (V,Q) ordered by inclusion 
contains a maximal totally isotropic subspace. It is well 
known that all maximal totally isotropic subspaces of a non­
degenerate quadratic space have the same dimension called 
the Witt index of Q. Finally, a two-dimensional nondegener­
ate isotropic quadratic space is called the hyperbolic plane 
and an orthogonal sum of hyperbolic planes is called a hyper­
bolic space. 

Theorem 2.1 (Witt Decomposition): Any quadratic 
space (V,Q) splits into an orthogonal sum, ( Vt, Qt ) 1 (Vh, 
Qh ) 1 ( Va' Qa ), where V, is totally isotropic, Vh is hyper­
bolic (or zero), and Va is anisotropic. Furthermore, the iso­
metry types of Vt, Vh , and Va are all uniquely determined. 

Corollary 2.2: Let Fbe a maximal totally isotropic sub­
space of ( V,Q) of dimension r. 

(i) There exists a maximal totally isotropic subspace F' 
suchthatFnF' = {O}, and Vh is isomorphic to the direct sum 
FCDF'. 

(li) For every basis {fJ of F there exists a basis {fj} 
of F' such that B(f;,fj) = ~;j (Kronecker delta), B(f;, 
f J) = B(f;, fj) = 0, i,j = 1, ... ,r. 

The basis elements {f;, f j} of F CD F' together with an 
orthogonal basis of Va form a Witt basis of V /V1 associated 
with its decomposition into the hyperbolic and anisotropic 
components only. [Here. V 1 denotes the orthogonal com­
plement of ( V,Q) itself.] 

We limit our attention to real and complex vector 
spaces. Throughout this work Rd,p,k denotes a real space of 
dimension n = d + P + k endowed with a quadratic form Q 
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of rank p + k and signature (d,p,k) (that is, dim ker Q 
= dim R 1,p,k = d, and the diagonalized form of Q contains 

k plus l's and p minus l's), whereas the universal Clifford 
algebra over Rd,p,k is denoted by Rd,p,k' We call them both 
degenerate when d =10. When d = 0, the Witt index of Q is 
equal to min{p,k } and we write RP,k and Rp,k instead of 
R O,p,k and R O,p,k' respectively. (It is also assumed th:t k<p.) 

Let {el, ... ,en } bean orthogonal basis in V = RP' and let 
Vh 1 Va be its Witt decomposition. Then, following Refs. 1 
and 2, a Witt basis for V can be represented, for example, as 

F=spanR{x; =A(e; +en-;+dJ, 

F' = spanR {y; = A (e; - en _ i+ d J, (2.1) 

Va =spanR{ek+I, .. ·,en_ k ), 

where i = 1, ... ,k and A is a normalizing factor (U 2 = 1). 
Definition 2. 3: A (d l,d2 )-deformation of a quadratic form 

Q of signature (O,p,k ) is a quadratic form (! such that 

Q E(e;) = c, i = 1, ... ,d2, 

QE(e;) = 1, i = d2 + 1, ... ,k, 

QE(e;) = - 1, i = k + 1, ... ,k + p', 

QE(e;) = - c, i = k + p' + 1, ... ,n, 

(2.2) 

where E is a deformation parameter 0< E< 1 and p' + d I = p, 
k' + d2 = k. We denote by R ;,k the (dl>d2 )-deformation of 
the Clifford algebra R p,k associated with the quadratic space 
V E = (RP,k, (!). Obviously, since all deformations ofQ are 
equivalent (that is, belong to the equivalence class contain­
ing Q), the quadratic spaces V E are isometric and the Clif­
ford algebras R ;,k are isomorphic. 

Definition 2. 4: A (d I' d2 ) -deformation of a Witt basis for 
V is obtained by replacing in (2.1) every vector e; such that 
(! (e;) = ± C with e;/E. 

Lemma 2. 5: A (d I' d2 ) -deformation of a Witt basis for V 
provides a Witt basis for the (dl , d2 )-deformation V E

• 

Proof By the remark above and Theorem 2.1 the iso­
metrytypes of FE ,F'E, and V: are the same as that ofF, F', 
and Va' Denoting now the basis elements of FEe F'E by 
{x7, yO we can easily verify that they provide a Witt basis for 
the hyperbolic component of Vorthogonal to V:. 0 

Definition 2.6: A contraction of Q is the limit form Q ° 
obtained from a (dl,d2 ) deformation (! of Q when E-<l in 
(2.2). 

NoticethatthesignatureofQois (d,p',k '),d = d l + d2 , 

that is, the form QO is degenerate. We will formally write 
(!_Q o, VE_Vo,andR ;,k-Rd,p',k' aSE-<l. In Lemma 2.7 
we show how to contract a deformed Witt basis for V E to a 
Witt basis for Va. 

Lemma 2. 7: Let VO be the contractive limit of a (d I> d2 ) 

deformation V E and let (FE eF'E )lV: bea Wittdecompo­
sition of V E

• Then there exists a contractive limit of a (dl , 

d2 ) deformation of a Witt basis of V E that provides a Witt 
basis for Va. 

Proof We consider only the case when k<dl , since other 
cases may be treated similarly. Then a Witt basis of V E is 
given by a (d l , d2 ) deformation of (2.1). We listthexE part 
and the anisotropic part below: 
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{xf =A(el +en)/E, .. ·,xd, = A (ed, +ep+k'+I)/E, 

Xd,+1 =A(ed,+1 +ep+k./E, 

... ,x~ =A(ek +ep+I/E)}, 

{ek+ I IE, ... ,ed, IE, ed, + I, .. ·,ep}' 

(2.3 ) 

Vectors {YO differ from {xO only by the sign, that is, 
YI = A(el - en )/E, etc. where n = p + k. Then we have the 
following contractive limits: 

Ex7-x; =A(e; +en_;+I)' 

EY7-y; =A(e; -en_;+I)' i= 1, ... ,d2, 

E(x7 + Y7)/2-Ae;, 

E(xf - yf)/2-Aen _;+ I' i = d2 + 1, ... ,k, (2.4) 

E(ek+;/E)-ek+;, i= 1, ... ,dl -k, 

e;-ejl i = d l + 1, ... ,p, 

where - is to remind us that certain basis vectors {e;} be­
long now to the kernel of Q 0. There are then d isotropic basis 
vectors spanning ker Q ° in Va. Also, we see that the remain­
ing vectors span a (k' + p') -dimensional nondegenerate 
subspace of VO orthogonal toker QOandisomorphictoRP',k'. 
Applying now Theorem 2.1 and Eqs. (2.1) we get 
RP',k' = (PeF')lV~, where P and P' are maximal totally 
isotropicsubspacesofdimensionmin{p',k '}and V~ isaniso­
tropic of dimension !p' - k'i. Finally, VO 
= ker Q01(P~F')lV~ and a Witt basis of VO is the con­
tractive limit of (2.3). 0 

Now we present an example of (0, 1 I-deformation of the 
real Minkowski space-time R 3,1 of special relativity, its Witt 
decomposition, and contraction leading to the Gali1ei space­
time R 1,3.0 of classical mechanics. (For a comparison of the 
Galileian and Lorentzian structures of space-time see Ref, 
16,) 

Example 2. 8: Let {e I' e2, e3, e4} be an orthogonal basis in 
R 3,1 such that Q (ed = 1 and Q (e; 1= - 1, i = 2,3,4. Then Q 
has index I and R 3,1 has a Witt decomposition (FeF'11G, 

F=spanR{x l =A(e l +e4)}' 

F' = spanR{Y1 =A(e l - e4)}' (2.5) 

G = spanR {e2, e3}' 

Then the (O,ll-deformation of (2.51 gives a Witt basis for 
V E = (R 3,1, (!I and a Witt decomposition (FE ~F'El1GE, 

FE=spanR{x~ =A(eI/E+e41), 

F'E = spanR {YI = A (eiIE - e41 J, (2.6) 

G E = spanR {e2 , e3 J, 
while (!(ed = C and (!(e;) = - 1, i = 2,3,4. Then the fol­
lowing contractive limits exist as E-<l: 

E(Xr + yr )/2_Ae I' (xr - yr 1/2-Ae4, 

e2 , e3-e2, e3 , (2.7) 

where QO(!?II = 0, QO(ed = - 1. Moreover, 
VE_VO = (R 1,3,0, QO) as E-<l and a Witt decomposition of 
VO is provided by the orthogonal sum ker Q ° 1G 0, 

ker QO = spanR {ed, and GO = spanR {e2' e3, e4 J. (2.8) 

Example 2. 9: Consider now the complexification V C of 
(R 3,1, Q I from example 2.8. Then the complexified quadratic 

R. Ablamowicz 424 



                                                                                                                                    

form (! is neutral (that is, of maximum index 2) and 
V C =FeF', 

F= spane{x) =A (e) + e4), Xz =A (iez + e3 )}, 

(2.9) 

F' = spane {y) = A (e) - e4), Y2 = A (ie2 - e3)}. 

Applying now a (O,I)-deformation of VC we get 
V"C = F" eF"', where 

F" = spancfxr =A (e)/E + e4), x~ =A (ie2 + e3 )}, 

(2.10) 

F'E = spane {yr = A (el/E - e4), y~ = A (ie2 - e3)}, 

and fIc (e l ) =~, fIc (e;) = - 1, i = 2,3,4. Then the follow­
ing contractive limits exist as E-<l: 

E(xr + yr)/2-Ael, (xr - yn12-Ae4, x~, Y~-X2' Yz, 
(2.11) 

where QOc(el) = 0 and QOc(e;) = - 1. Moreover, V"c con­
tracts to V Oc, the complexification of (R 1,3.0,Q 0) and a Witt 
decomposition of vOc is provided by the orthogonal sum 
ker QOCl(FeF')lGo, 

ker QOc = spane{e l}, Go = spane {e4} , 

F= Spane{X2 =A(iez + e3 )}, 

F' = spane{y2 = A(ie2 - e3 )}. 

(2.12) 

Notice that (F e F ')lG ° is a Witt decomposition of the com­
plexification of R 3,0 spanned by {e2,e3,e4} and considered as 
a nondegenerate part of V Oc. 

III. CONTRACTION OF SPIN REPRESENTATIONS 

In this section we discuss spin representations of a fam­
ily of deformed complex Clifford algebras {C( Q E)} parame­
terized by the deformation parameter E, 0 < E< 1. It is useful 
to continue the coordinate dependent approach developed in 
Sec. II to study the contractions of spin bases induced by the 
contractions of the associated Witt bases. We do not consid­
er here any global properties of such contractive limits in the 
way it is presented in Ref. 17 for space-times depending on a 
free parameter. 

The theory of spin representations of nondegenerate 
Clifford algebras can be found in Refs. 1, 2, 4, and 7. Recall 
that a spin representation p is defined as the regular represen­
tation in a minimal left (or right) ideal S called spin ideal (or 
spin space). The latter can then be considered as a Clifford 
module and, in the following, this approach will be extended 
to degenerate Clifford algebras. Since Rp,k is a finite-dimen­
sional semisimple algebra, there exists a primitive idempo­
tent e so that S = Rp,ke (see Refs. 5, 6, and 18). The con­
struction of e in terms of an orthogonal basis of R p.k 
possessing an isotropic subspace of maximal index is due to 
Cartan and Chevalley and its generalizations can be found in 
Refs. 7 and 8. However, we utilize the Witt basis for the 
complexification of R Ep.k to construct a nilpotent generator 
f" of S" in C(QE) (see Refs. 2 and 4 when E = 1). 

It is well known that Pauli and Dirac spinors can be 
considered abstractly as elements of the spin ideals of R ~.o 
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and R ~,l> respectively. In particular, the spin ideal of the 
latter provides also a representation space for the covering 
group of the IS-parameter group of conformal transforma­
tions in the Minkowski space-time (see Ref. 19 for the rela­
tion between the conformal Lie algebra and the Clifford al­
gebra), in which case it is then called twistor space.20

,2) The 
relation between the regular action of the covering group on 
twistors and induced projected conformal action on the 
Minkowski space-time can be found in Ref. 22. 

In the following, we write V E [resp. C(QE)] for the 
complexification of R Ep,k (resp. R ;,k)' First, let the dimen­
sion n of V E be even, n = p + k = 2r. Then SE = C(QE) f" 
is a family of deformed spin ideals, where/" = yr ..• y~ is the 
volume element in the exterior algebra over F IE in the Witt 
decomposition of V E (see example 2.9 when n = 4). Each S E 

provides a representation space for the spin representationpE 
of C ( Q E) defined as the left regular action. 

When n is odd, the spin space is defined as a left 
C + (Q E) module of the even subalgebra of C( Q E) with the 
generator f" factored as above. It is shown in Ref. 2 that 
there are only two inequivalent ways to extend the spin rep­
resentation of the even subalgebra to irreducible representa­
tions of the entire algebra. 

Let {x~,Yn,i= l, ... ,rbe the deformed Witt basis in V E. 
Then C (Q ") is spanned by the monomials {x~ylc}, 0< II I, 
IK I <r, where I and K are multi-indices, x~ = xjl"'xj" 
II 1= s, ylc = Y~I"'Y~t' IK I = t, X0 = Y0 = 1. Since/" is a 
multi vector of length r and all its factors are isotropic, the 
spin space S E is spanned by 2' linearly independent elements 
{x~ /"}. It can also be shown that when n is odd the spin 
space C +(QE)f" again has dimension 2' (see Ref. 2). 

Lemma 3.1: The dimension of S E is 2' and the set 
{x~f"}, 0<11 I<r, provides a basis for SE, r = [n/2]. 

Using (2.4) we can find a contractive limit of every gen­
erator of the spin space C1.Jlx~f"_xJF as E-<l, wherez(/) is 
the smallest posltlve integer depending on I 
such that a nonzero limit exists. For example, CfE_F, 
z = d /2 (resp. [d /2] + 1) when d is even (resp. odd) for some 
nilpotent element F in the radical of C (Q 0) (d = dim VOl). 

Definition 3.2: The ideal C(QO)Fis called the limit spin 
ideal and the limit regular representation pO of C (Q 0) in 
C(Q°)Fis called the limit spin representation. 

It should be noted, however, that the limit spin ideals 
defined above cease to be minimal and are, in general, de­
composable. 

In the following example it is demonstrated that the spin 
ideal of the Galilei-Clifford algebra can be viewed as the 
limit of twistor spaces. 

Example 3.3: Let Vbe the quadratic space from example 
2.9. Then the Witt basis of the (O,I)-deformation V" was 
given in (2.10). Thus/" = YrY~ and T" = R ~~) /" can be con­
sidered as a left Clifford module.zl ,22 The standard basis in 
T" is given by (f", xV", x~f", x~x~f"l and we have the 
following limits as E-<l: 

EfE_F = A 2e)(ie2 - e3 ), Ex~f"-Ue4F, 

(3.1) 

where {e l,e2,e3,e41 is an orthogonal basis in the complexified 
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Galilei space-time Vo endowed with the degenerate quadrat­
ic form QO, QO(e l ) = 0, QO(e;) = - 1, i = 2,3,4. We then 

have R ~~3 -R ~.3.0 as E-D. Let 
TO = spane {F, e4F, x~,e4x~ I, and we may write formally 
TE_To. Since every element of the radical of R ~.3.0 (of the 
form me I with m in R 3.0) annihilates F, 
TO = R hoF = R ~.oF, whereR ~.o is the Clifford subalgebra 
generated by ez, e3, and e4. If pE denotes the spin representa­
tion of R ~~3 in TE, thenpE-p0

, wherepo is the spin represen­
tation of the Galilei-Clifford algebra. 

Before we summarize this section let C (Q E) [resp. C (Q 0), 
C(Q'))denoteR 3~1 (resp.R ho,R ~.o).Also,let.t;,i = 1,2,3, 
4, be mutually annihilating primitive idempotents in C (Q ') 
[hence in C (Q 0) by the Lifting Idempotents Theorem of Ref. 
18J. For example, 

II = l( 1 + ieZ3)( 1 + ie4), 12 = l( 1 + iez3)( 1 - ie4), 

13 = 1(1 - iez3)(1 + ie4)' 14 = 1(1 - ie23)(1 - ie4), 

wheree23 = e2e3 (see Ref. 23). ThenC(Q') has a direct sum 
decomposition, which can be lifted to C(Qo), into minimal 
(hence indecomposable) left ideals C(Q').t;. Thus 
TO = C(Qo)F= C(Q')Fcan be written as a direct sum of 
C( Q 0) -modules C( Q 0) .t;F. In fact, we can show that two of 
these modules are indecomposable, whereas the remaining 
two are trivial. 

Proposition 3.4: Let TE = C( Q E) jEbe the twistor space 
and letpEbe the irreducible spin representation ofC(QE) in 
TE,O<£<1. 

(i) There exist limits TE_To, pE-+p0, where 
TO = C(Qo)FisalefiregularrepresentationspaceofC(Qo), 
EjE-F. The representation pO is unfaithful. 

( li) pO is decomposable into a direct sum of two inde­
composable subrepresentations. 

(iii) TO is a complex four-dimensional vector space 
spanned by the contractive limits {F, e4F, x~, e4x~} ofthe 
canonical basis in TE. 
IV. SPIN SPACE AS A CLIFFORD MODULE 

In this section we examine the module structure of the 
spin ideal of a degenerate Clifford algebra. Let P denote the 
complexification of a deformed real quadratic space R p.k of 
even dimension n = p + k = 2r (the case when dimension is 
odd will be considered later) and let {x~Jlf}, i = 1, ... ,r be a 
deformed Witt basis in V E

• If, for example, we want to con­
sider a contraction of the Clifford algebra C(QE) over V E to 
the Clifford algebra C(Qo) over V O

, dim VOL = d = 2q, we 
may modify (2.3) as follows 

{xr =A(el +e,,)I€, ... ,x: =A(eq +e,,_q+I)IE, 

X:+I =A(eq+1 +en_q), ... ,x~=A(er+er+I)}' (4.1) 

and similarly for the yE part. Then the contractive limits can 
be found as in (2.4). In particular, ~jE-F 

= YI":YqYq+ I ..• y, is the limit of the generatorjE of the spin 
idealS E ofC(QE), wherey; are isotropic vectors in the radi­
cal ofC( Q 0). Since a typical generator ofC( Q 0) has the form 
xKxJYMh,O<IJ I,lL l<q,O<IM I<r - q,theIimitspinspace 
SO = C(Qo)Fis spanned by 2' linearly independent mono­
mials {xKxJF}. 

When the dimension of VOL is odd, d = 2q + 1, vector 
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X;+I in (4.1) is replaced withx;+1 =A(eq+I/E+e,,_q) 
(and similarly for Y:+ I)' while the other basis vectors re­
main unchanged. Then, 

and a basis for SO is again formed by 2' elements {xKxJF} 
and {xKe,,_qxJF},O<IKI<r - q - 1. Notice thatthe mon­
omials {XKYM} , O<IKI, IMI<r-q (resp. {XKYM} and 
{xKe,,_qYM},O<IKI, IMI<r-q-l} provide a canonical 
basis for a maximal nondegenerate Clifford subalgebra 
C(Q') ofC(Qo) when dis even (resp. odd). 

Proposition 4.1: LetS O = C(Qo)Fbe the spin space ofa 
complex degenerate Clifford algebra C(Qo) over Va, 
dim VO = 2r considered as the contractive limit of spin 
spacesS E = C(QE)jE and let dim VOL = d, q = [d 12]. 

(i) The dimension of SO is 2'. 
(li) A basis in So is provided by the monomials 

{xKxJF} (resp. {xKxJF} and {xKe" _ qXJF}) when d is 
even (resp. odd), O<IJI<q, O<IK I<r- q. 

(iii) SOis a direct sum of2q left simple C(Q ')-modules 
M J = C(Q')xJF,O<IJI<q· 

(iv) The decomposition in (iii) is not C( Q 0) invariant. 
Proof (iii) We only need to prove that the direct sum­

mands M J are simple C(Q')-modules. It is enough 
to notice that the generator F of SO contains a factor II 

=Yq+I"'Y' (resp·/1 =Yq +2'''Y') when d is even (resp. 
?dd). In any case,fl is an (r - q) vector generating a spin 
Ideal C( Q ') It in C( Q '). Following the arguments contained 
in Ref. 2 and concerning the irreducibility of spin representa­
tions of C( Q ') in even and odd dimensions, we conclude that 
~J are simple ~(~')-~odules. (iv) N?ticethatMJ,IJI = q, 
IS the only C( Q ) -1Ovanant summand 10 the decomposition 
~S~ 0 

Corollary 4.2: 
(i) The dimension of MJ is 2,-q. 
(ii) The spin representation pO of C (Q 0) in So, when 

restricted to the nondegenerate Clifford subalgebra C(Q'), 
is decomposable into 2q irreducible 2'- q·dimensional subre­
presentations. 

(iii) The further restriction pO+ of po from part (ii) to 
the even subalgebra C + ( Q ') is decomposable into 2q + I irre­
ducible 2,-q-I-dimensional subrepresentations when d is 
even. When d is odd, part (ii) applies also to pO+ . 

Proof See Refs. 1, 2, and 4 for the structure theorems on 
Clifford algebras. 0 

Finally, we briefly consider the case when the dimension 
n of V E is odd, n = 2r + 1. Let {x7..Yr,e,,}, i = 1, ... ,r be a 
deformed Witt basis in VE. It is assumed first that the vector 
eft spanning one-dimensional anisotropic component of V E 

(see Theorem 2.1) is not deformed. We can make use of 
( 4.1) to represent the isotropic vectors in the Witt basis. 

Proposition 4. 3: LetS ° = C + (Qo)Fbethespinspaceofa 
complex degenerate Clifford algebra C(Qo) over Va, 
dim VO = 2r + 1, considered as the contractive limit of spin 
spacesS E = C +(QE)jE and let dim VOL = d, q = [d12J. 

(i) The dimension of SO is 2'. 
(ii) A basis in SO is provided by the monomials 

{XKZNXJF}, IJ I + IK I + IN I even, when d is even, and by 
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{eLxKzNxJF},IL 1+ IJI + IKI + INleven,wheredisodd, 
O<INI, IL 1<1, O<IJI<q, O<IKI<r-q (ZN =e", when 
INI = 1 andeL =eZr _ q ' when IL 1= 1). 

(iii) S O is a direct sum of2q left simple C + ( Q ') modules 
M / = C+(Q')xJF,IJleven,andM J- = C-(Q')xJF,IJI 
odd,O<IJ I<q [hereC - (Q ')denotestheoddpartofC(Q')]. 

Proof: Follow the arguments presented above and in 
Ref. 2. 0 

Notice that in the case of maximum degeneracy the con­
tractive limit of C(Q") is the exterior algebra A over 
VO = VOl, dim VO = n. The ideal AF is then spanned by 2r 

linearly independent elements {xJF}, O<IJ I<r, r = [nI2]. 
However, AF is not minimal since it contains a one-dimen­
sional space of n-vectors. 

V.SUMMARY 

The method of deformation and contraction in Clifford 
algebras developed in this paper was primarily applied to 
construct spin ideals in degenerate Clifford algebras of any 
rank. Through the classical approach of the Witt decomposi­
tion to irreducible spin spaces, the spin bases were deformed 
and contracted to obtain a spin basis for the limit spin space. 
Considering the latter as a left Clifford module over a degen­
erate Clifford algebra, it was later decomposed into inde­
composable components. The limit spin ideals, which pro­
vide natural representation spaces for Clifford, Pin, and Spin 
groups associated with degenerate Clifford algebras, are 
further studied in Ref. 24. 
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Coherent states of the real symplectic group in a complex analytic 
parametrization. I. Unitary-operator coherent states 
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) 
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In the present series of papers, the coherent states ofSp(2d,R), corresponding to the positive 
disc~ete .series irreducible ~eprese?tations (Ad + nI2, ... ,AI + n12) encountered in physical 
apphcatlOns, are analyzed In detaIl with special emphasis on those ofSp( 4,R) and Sp( 6,R). The 
present paper discusses the unitary-operator coherent states, as defined by Klauder, Perelomov, 
and Gilmore. These states are parametrized by the points of the coset space Sp( 2d,R) I H where 
H is the stability group of the Sp( 2d,R) irreducible representation lowest weight state, chosen as 
the reference state, and depends upon the relative values of AI,oo.,Ad' subject to the conditions 
AI>A2> '" >Ad>O. A parametrization ofSp(2d,R)IH corresponding to a factorization ofthe 
latter into a product of coset spaces Sp(2d,R )/U(d) and U(d)IH is chosen. The overlap of two 
coherent states is calculated, the action of the Sp(2d,R) generators on the coherent states is 
determined, and the explicit form of the unity resolution relation satisfied by the coherent states in 
the representation space of the irreducible representation is obtained. The Hilbert space of 
anal~ic.functions arising from the coherent state representation is studied in detail. Finally, some 
apphcatlons ofthe formalism developed in the present paper are outlined. In particular, its 
relevance to the study of boson realizations of the Sp(2d,R) algebra is stressed. 

I. INTRODUCTION 

The harmonic oscillator coherent states (CS), also re­
ferred to in the literature as Glauber's standard CS, or the CS 
associated with the Heisenberg-W ey I group N ( 1 ), 1.2 are 
known to be endowed with a host of properties making the 
CS suitable to various interesting applications (for a recent 
review on the standard CS and their extensions see Ref. 3). 
They may be defined in many different, but essentially equi­
valent ways. We shall mention herein only three of them: (i) 
as unitary-operator CS, they are obtained by applying a uni­
tary transformation to the oscillator ground state; (ii) as 
annihilation-operator CS, they are the eigenstates of the os­
cillator annihilation operator, corresponding to complex 
eigenvalues; and (iii) as minimum-uncertainty CS, they form 
the set of states minimizing the position-momentum uncer­
tainty relation subject to the restriction that the oscillator 
ground state be in the set. 

In recent years, many works have been devoted to the 
generalization of the standard CS (see Ref. 3). In extending 
the notion ofCS from the harmonic oscillator to other phys­
ical systems, the various CS definitions, which were equiva­
lent for the former system, lose their equivalency for the 
latter. Consequently there are many different generalized CS 
for a given system. 

In the present series of papers, we shall be concerned 
with the group theoretical generalizations of both the uni­
tary-operator and the annihilation-operator CS, respectively 
proposed by Klauder,4 Perelomov,5 and Gilmore6 and by 
Barut and Girardello.7 In both extensions, the CS are asso­
ciated with a given Lie group, assumed to be a dynamical 
group of the considered physical system. There exists, how-

• Maitre de recherches F.N.R.S. 

ever, an essential distinction between them as regards the Lie 
groups which may be treated: if the Klauder-Perelomov­
Gilmore generalization of CS is valid for any Lie group, ei­
ther compact or noncom pact, that of Barut and Girardello 
can only be applied to noncompact Lie groups, and was actu­
ally developed by these authors only for SO(2, 1), and its lo­
cally isomorphic groups SU(l,I), SI(2,R), and Sp(2,R). 

Up to now, most efforts have concentrated on the CS 
associated with compact Lie groups, for which all unitary 
irreducible representations (irreps) are finite dimensional.8 

Little work has been devoted to the CS associated with non­
compact Lie groups, whose unitary irreps are all infinite di­
mensional, except for the trivial identity representation. 
Among noncompact groups, however, the real symplectic 
group in 2d dimensions, Sp(2d,R ), plays an outstanding role 
in many physical problems. Let us mention, for instance, the 
relevance ofSp(4,R ) to a class of generalized helium Hamil­
tonians, as shown by Mlodinow and Papanicolaou,9 and the 
importance ofSp(6,R) in the microscopic nuclear collective 
model, as pointed out by Rosensteel and Rowe,lo and stud­
ied by various authors from different viewpoints. II-

28 The 
Sp(2d,R ) irreps encountered in all such physical applications 
are positive discrete series,29,30 characterized by their lowest 
weight (Ad + nI2,oo.,AI + nI2), where [AI' .. Ad ] is some 
partition, and n is an integer greater than or equal to 2d. 

The Sp(2,R ) CS were derived by Perelomov5 and Gil­
more6 on one hand, and by Barut and Girardell07 on the 
other hand. For higher-dimensional symplectic groups, a 
full analysis of the CS was only carried out for the irreps 
«(A + nI2)d), which in the nuclear collective model (where­
in d = 3) are relevant to closed-shell nuclei. For such irreps, 
the unitary-operator CS were studied by Kramer,21 while 
the annihilation-operator CS were determined by Deenen 
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and Quesne.25 The Sp(2d,R ) irreps (Ad + nI2, ... ,A.I + nI2), 
for which theA;'s are not all equal, play, however, an impor­
tant part in the description of open -shell nuclei in the nuclear 
collective model. For such irreps, some partial results for the 
unitary-operator CS were recently obtained by Rowe, 15 who 
also studied their relation with boson realizations of 
Sp(2d,R ). By the same time, Deenen and Quesne had given a 
full analysis of partially coherent states (PCS) for the same 
irreps.27 Contrary to the CS, which are specified by some 
continuous parameters, the PCS are characterized by a set of 
continuous labels as well as by some discrete indices. Both 
PCS generalizing either the unitary-operator or the annihila­
tion-operator CS were studied, and then used to analyze the 
properties of the Sp(2d,R ) boson realizations.27.28 

Since the CS corresponding to the Sp(2d,R) irreps 
(Ad + nI2, ... ,A.I + nI2), for which AI, ... ,A.d are not all 
equal, are of considerable interest for physical applica­
tions/4,16,22 it is the purpose of the present series of two pa­
pers (henceforth referred to as I and II) to analyze them in 
full detail with special emphasis on those of Sp(4,R ) and 
Sp(6,R ). Paper I deals with the unitary-operator CS, while 
paper II will be devoted to the annihilation-operator CS. If a 
complex parametrization necessarily arises for the latter, for 
the former we may choose between a real or complex one, 
both of them having some respective advantages. Real pa­
rameters can be more easily given a physical meaning, 
whereas complex parameters are useful to connect CS repre­
sentations to boson realizations. A complex parametrization 
has been chosen in the present paper because it is easier to 
deal with than a real one. 

In Sec. II of this paper, the positive discrete series irreps 
ofSp(2d,R) are briefly reviewed. The corresponding CS are 
defined in Sec. III, and their overlap is calculated in Sec. IV. 
The action of the Sp(2d,R ) generators on the CS is deter­
mined in Sec. V, and used in Sec. VI to find the explicit form 
of the unity resolution satisfied by the set of CS in the repre­
sentation space ofthe irrep (Ad + nI2, ... ,A.I + nI2). Final­
ly, in Sec. VIII, some applications of the formalism devel­
oped in the previous sections are discussed. 

After completion of the present work, it came to the 
knowledge of the author that some results similar to those 
contained in this paper were independently obtained by 
Kramer. 3 I 

II. THE Sp(2d,R) POSITIVE DISCRETE SERIES IRREPS 

As usual, let us realize the Sp (2d,R) generators in terms 
of dn boson creation operators 1];." i = 1, ... ,d, s = 1, ... ,n, and 
their corresponding annihilation operators Sis = (1];.,) t, as 
follows32: 

n 

D1j =DJ; = I 1];s1]js' l<i<j <d, 
s= I 

n 

Dij =Dj; = I S;.,SjS' l<i<j <d, 
$= 1 (2.1) 

= i 1];.,SjS + .!!-.8ij' i,j = l, ... ,d. 
s=1 2 
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They satisfy the Hermiticity properties 

Eij = (E};)t, Dij = (D1j)t, 

and the commutation relations 

[Eij,Ekl ] = 8jkEi/ - 8i/Ekj , 

[Eij,D td = 8jkD h + 8j1D ik' 

[Eij,Dkl ] = - 8;kDjI - 8i/Djk , 

[D1j,Dtd = [Dij,Dkd = 0, 

[Dij,D L] = 8;kEIj + 8i/Ekj + 8jkE/i + 8jlEki> 

(2.2) 

(2.3) 

from which we note that the operators Eij generate the maxi­
mal compact subgroup U(d ) of Sp(2d,R ). The set of genera­
tors (2.1) can be divided into three subsets of raising, weight, 
and lowering type, as follows: 

D1j,Eij (i<j); Eu; Dij,Eij (i>j), 

where the subsets are separated by semicolons. 

(2.4) 

In the above equations, n is an arbitrary positive integer. 
Ifwe now restrict ourselves to n values greater than or equal 
to 2d, we can realize all the Sp(2d,R ) positive discrete series 
irreps (A ) = (Ad + nI2, ... ,A.I + n12) in the space of boson 
states built from the dn boson creation operators 1];.,. The 
lowest weight state I (A )min) of such an irrep satisfies the 
following equations33: 

Dijl(A)min) =0, i<j, 

Eijl(A)min) =0, i>j, 

(2.5a) 

(2.5b) 

Eu I(A )min) = (Ad + 1-; + nI2)I(A )min)' i = 1, ... ,d. 

(2.5c) 
From Eqs. (2.5b) and (2.5c), we note that it is the lowest 
weight state of an irrep [A] == [AI + nI2, ... ,A.d + n12] of 
U (d), so it can be characterized by the corresponding 
Gel'fand pattern (A) min (see Ref. 34). 

The whole representation space Y(lo.) ofthe irrep (A) 
can be generated from its lowest weight state I (A) min) by 
applying polynomials in the D 1j, Eij' and Dij generators, 
written in normal form as P(D 1j )P' (Eij )P " (Dij)' From 
Eq. (2.5a), P"(Dij) applied to I(A)min) gives rise to the 
same state multiplied by an irrelevant constant. The action 
of all the polynomials P' (Eij) upon I (A ) min ) generates the 
representation space of the irrep [A], whose basis states 
I (A» can be characterized by the Gel'fand patterns (A). A 
discrete nonorthonormal basis of Y().) is therefore given 
by27 

IN;(A) = FN(Ot)I(A I), (2.6) 

where ot denotes the d Xd matrix liD 1j1l, FN(Ot) is defined 
by 

FN(Ot) = II (Nij!)-1/2[(1 + 8ij)- 1/2D1j tu, (2.7) 
;<;j 

the quantum numbersNij, l<i<j <d,runoverallnon-nega­
tive integers, and (A ) over all Gel'fand patterns of [A ]. 

In physical applications, it is convenient to use bases 
classified according to the chain of groups 

Sp(2d,R) 

(A) 

:::::> U(d) 

[h] 
:::::> SO(d). 

(k) 
(2.8) 

Underneath each one of them, we have indicated the label 
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characterizing its irrep. Such bases can be obtained by cou­
pling the polynomials in the D L generators specified by a 
definite U(d) irrep [/] to the basis states of the U(d) irrep [A ], 
both classified according to the chain (2.8), 

I([I][A ])a[h ]P(k )q) = [P[I I(nt) X I( ) ]p\Z/q' (2.9) 

Here a distinguishes between repeated irreps [h] in the re­
duction of the product representation [/] X [A ], P does the 
same for the repeated irreps (k ) in the reduction of [h ], and q 
characterizes the row of the SO(d) irrep (k). If the states (2.9) 
are orthogonal with respect to [h ],(k ),q, they are not with 
respect to [/ ],a, p. 

Having reviewed the Sp(2d,R ) positive discrete series ir­
reps and some discrete basis of their representation space 
Y v .. ) , we shall proceed in the next section to define the cor­
responding unitary-operator es, which in the subsequent 
sections will be shown to form a continuous basis of Y (A) • 

III. PARAMETRIZATION OF THE Sp(2d,R) COHERENT 
STATES 

Following Klauder,4 Perelomov,5 and Gilmore,6 the 
system of unitary-operator es corresponding to a unitary 
irrep p of a given Lie group G in a Hilbert space Y p' and to a 
fixed vector l,po) of this space, is the set of states gl ,po), where 
g runs over all the group G. If H denotes the stability sub­
group of I ,po), i.e., the set of all group elements h leaving l,po) 
unchanged up to a phase factor, then every group element 
g e G has a unique decomposition into a product of two 
group elements, one of which is in H and the other in the 
coset space G I H, 

g=kh, heH, keGIH. (3.1) 

Since phase factors are irrelevant, the es can be parame­
trized by the points k of the coset space G I H, 

Ik) = k l,po)' (3.2) 

In practice, the decomposition (3.1) is carried out by going to 
the complex extension of the real Lie group G (see Refs. 35 
and 36). 

In the present case, the Lie group G is the real symplec­
tic group Sp(2d,R), its unitary irrep is specified by p = (A ), 
and the corresponding representation space is the space 
.7(A) , spanned by the states (2.6) or (2.9). For the refer­
ence state l,po), we choose the irrep lowest weight state 
I (A)min)' characterized by Eq. (2.5). The stability subgroup 
H of this state depends upon the respective values of 
A,,A.2, ... ,A.d' satisfying the conditions A,>A2> ... >Ad >0. 

The case where A, =A2 = ... =Ad =A has been ex­
tensively studied in the literature. 2'.25.37 The irrep [A ] is then 
one dimensional, and its single base I (A )min ). The stability 
groupH is the maximal compact subgroup U(d) ofSp(2d,R ), 
hence the corresponding es exist in one-to-one correspon­
dencewith the points of the coset space Sp(2d,R )IV(d). From 
the extremal property (2.5a) of I(A )min)' it follows that the 
es can be written as 

lu) = exp(~tr U*nt)l(A )min) 

= exp [~ (1 + 8ij )-lutD ij ] I(A )min ), (3.3) 

where exp(~tr u*nt) is an element of the complex extension 
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Sp(2d,C) of Sp(2d,R ), and u = Iluij II a complex symmetric 
d X d matrix, subject to the condition that I - u*u be a posi­
tive-definite (Hermitian) matrix. Here * denotes complex 
conjugation. 

It remains to consider those cases where A " ... ,A.d are not 
all equal. The stability group H of I(A )min) is then a proper 
subgroup of U(d). For such cases, in Ref. 27 Deenen and 
Quesne introduced the so-called Perelomov pes, defined by 

IU;(A ) = exp(~tr u*nt)I(A I), (3.4) 

where u = lIuijll again parametrizes the coset space 
Sp(2d,R )IV(d), and I (A ) are the discrete basis states of the 
U(d) irrep [A ], introduced in Eq. (2.6). The success encoun­
tered in determining the reproducing kernel and the measure 
for such states suggests a parametrization of the coset space 
Sp(2d,R )I H, based upon the factorization 

Sp(2d,R )IH = [Sp(2d,R )IV(d )][U(d )IH]. (3.5) 

The corresponding es, which are similar to those considered 
by Rowe,15 can be written as 

lu,z) = exp(~tr u*nt)lz), (3.6) 

where u is the same matrix as above, and z denotes a set of 
parameters specifying the points of the coset space U(d )1 H. 
The states Iz) are U(d) [or equivalently SU(d)] es corre­
sponding to the unitary irrep [A] and the reference state 
I (A )min ). In the remainder of this section, we shall review 
such states for the cases of U(2) and U(3), and outline their 
generalization to U(d) for d > 3. 

The U(2) [orSU(2)] es, entering the definition ofSp(4,R ) 
es in the case where A, >A2, have been known for a long 
time, and are referred to in the literature as either spin38 or 
atomic39 es. The stability group H of I (A )min) is the 
U(I)XU(I) subgroup ofU(2), where the two U(I) groups are 
generated by E" andE22, respectively. The U(2) CS are para­
metrized by a single complex variable Z2' = z varying in the 
whole complex plane, as follows: 

Iz) = exp(z*Edl(A )min)' (3.7) 

In terms of the U(2) generators, those ofSU(2) can be written 
as 

J + = E 12, J _ = E21> Jo = !(E" - Ezzl. (3.8) 

The state I (A )min) is characterized by an angular momentum 
j = (A, - A2)/2, and a projection m = - j. Hence Eq. (3.7) 
reduces to the usual definition of SU(2) es, 

Iz) = exp(z*J +)Ij - j). (3.9) 

For the U(3) [or SU(3)] es, entering the definition of 
Sp(6,R ) es when A ,,A. 2,A. 3 are not all equal, we have to distin­
guish between three cases [henceforth referred to as (a), (b), 
and (c)] according as A I >A2 >A3, A I >A2 =A3, or 
AI = A2 >A3 (see Ref. 36). From the known action of the U(3) 
generators on a basis state of a U(3) irrep,40 it is easy to see 
that the corresponding stability group H is, respectively, (a) 
U(l)XU(l)XU(l), where the three U(l) groups are generat­
ed by Eii> i = 1,2,3; (b) U(2)XU(1), where U(2) is generated 
by Eij' i,j = 1,2, and U(l) by E33; and (c) U(1)xU(2), where 
U(l) is generated by Ell> and U(2) by Eij' i,j = 2,3. 

For case (a), it is advantageous to use the canonical coset 
decomposition of the unitary group,41 to factorize the coset 
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space U(3)/U(l)XU(l)XU(l) (see Ref. 36) into either ofthe 
two following products of coset spaces: 

U(3)/U(l)XU(l)xU(l) 

= [U(3)/U(2)XU(l)] [U(2)XU(l)/U(l)XU(l)XU(l)], 

(3.10) 
U(3)/U(l)XU(l)XU(l) 

= [U(3)/u(l)XU(2)] [U(l)XU(2)/u(l)XU(l)XU(l)], 

(3.11) 
where U(2)xU(l) and U(l)XU(2) are generated, respective­
ly, by Eo, i,j = 1,2, E33, and EwEo' i,j = 2,3. The corre­
sponding parametrizations of the U(3) CS will be denoted by 
x and y, the symbol z being used whenever a specific choice is 
not demanded. 

In the x parametrization, the U(3) CS are defined as 
follows: 

Ix) = exp(x!EI3 + xTE23)exp(xfEdl(A )min)' (3.12) 

in terms of three complex variablesx32 = XI' X31 = X 2, and 
X21 = X 3, varying in the whole complex plane, the first two 
parametrizing the coset space U (3) /U (2) xU ( 1 ), and the 
last one U(2) XU( 1 )/U( 1) XU( 1) XU( 1). In the y para­
metrization, they are written as 

Iy) = exp(yfEI2 + y!E13)exp(YTE23)I(A )min)' (3.13) 

where the complex parameters Y32 =Yl>and Y31 =Y2' 
Y21 = Y3' again varying in the whole complex plane, parame­
trize the coset spaces U(l)XU(2)/U(l)XU(l)XU(l) and 
U(3)/u(l)XU(2), respectively. 

The relation between the x and y parametrizations can 
be obtained easily by making use of Baker-Campbell-Haus­
dorff (BCH) formulas in matrix form.42.43 By realizing the 
GI(3,C) generators Eo, i,j = 1,2,3, by 3 X 3 matrices with 
+ 1 at the intersection of row i and column j and 0 else­

where, the Gl(3,C) group element on the right-hand side of 
I 

Eq. (3.12) is converted into the 3 X 3 matrix 

(

1 0 X!) (1 xf 0) (1 xf X!) 
01xT 010=01 xT. 

001001001 

(3.14) 

In the same way, the Gl(3,C) group element on the right­
hand side ofEq. (3.13) becomes the following matrix: 

(

1 yf Y!)(l 0 0) (1 yf Y! + YTYf) 
010 01yT=0 1 yT. 

00100100 1 
(3.15) 

Identifying the CS Ix) and Iy) now amounts to equating the 
right-hand sides of Eqs. (3.14) and (3.15). The sought-for re­
lations therefore read 

(3. 16a) 

or 
(3. 16b) 

Cases (b) and (c) can be treated by specializing either the 
x or y parametrization of case (a). For case (b), by setting 
X3 = 0 in Eq. (3.12), we obtain the following CS: 

Ix) = exp(x!EI3 +xTE23)I(A )min), (3.17) 

while for case (c), by settingYI = 0 in Eq. (3.13), we get 

Iy) = exp(yfE 12 + y!E13)I(A )mio)' (3.18) 

The discussion of the U(d) [or SU(d)] CS becomes quite 
tedious when d> 3 because there are many possibilities for 
some oftheA;'s being equal. We shall therefore restrict our­
selves here to the generic case for which Al >A2 > ... >Ad. 
The generalizations of the x and y parametrizations, intro­
duced above for U(3), are connected, respectively, with the 
factorizations 

U(d)/U(l)XU(l)X" 'XU(l) = [U(d)/U(d -l)XU(l)][U(d - l)XU(l)/U(d - 2)xU(l)XU(l)] 

x·· 'X[U(2)XU(l)X" 'XU(l)/U(l)XU(l)X" 'XU(l)], (3.19) 

and 

U(d)/u(l)XU(l)X" 'XU(l) = [U(d)/U(l)XU(d - l)][U(l)XU(d - l)/u(l)XU(l)XU(d - 2)] 

x·· ·X[U(l)X·· 'XU(l)XU(2)/u(l)X" ·XU(l)XU(l)]. (3.20) 

The corresponding CS can be written as 

Iz) = [V(z)]tl(A )min)' (3.21) 

where 

V(x) = exp(x2IE21)· . ·exp Ct~ Xd - 1.IEd - 1.1 ) 

X exp C~II XdiEdl) , (3.22a) 

V(y) = exp(Yd,d_IEd,d_I)'" (exP,tJ Y/2E'"2) 

X exp tt2 YII Ell ) , (3.22b) 
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and both parametrizations are related by 

+ ... + Yj,j-I Yj-I,J-2" 'YI+ 1,1' (3.23a) 

or 

- ... + (- 1)J-'-IXj,j_IXj_I,J_2" ·X1+ 1,1' 

(3.23b) 
Note that in the U(2) case both parametrizations coincide. 

As is well known,4-6 the CS do not form an orthonormal 
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set, and their overlap acts as a reproducing kernel in a Hil­
bert space of analytic functions. In the next section, we shall 
proceed to calculate the overlap of two Sp(2d,R ) CS, post­
poning the statement of the reproducing kernel property un­
til Sec. VII. 

IV. OVERLAP OF TWO Sp(2d,R) COHERENT STATES 

Let 
A 

K(u',z';u*,z*) = (u',z'lu,z) (4.1) 

denote the overlap of two Sp(2d,R ) CS corresponding to the 
generic case. By introducing Eq. (3.6) into Eq. (4.1), the over­
lap can be expressed as the matrix element of some operator 
between two U(d ) CS, as follows: 
A 

K (u',z';u*,z*) = (z'lexp(!tr u'D)exp(!tr u*Dt)lz). (4.2) 

In Appendix A of Ref. 27, it has been proved that the opera­
tor appearing on the right-hand side of Eq. (4.2) can be re­
written in normally ordered form, 

exp(!tr u'D)exp(!tr u*Dt) 

= exp(~tr aDt)exp(tr bE)exp(~tr cD), (4.3) 

where the matrices a,b,e are given in terms ofu' and u* by the 
following relations: 

a = U-Iu*, exp b = V-I, 
e = u'U- I, U = I - u*u'. (4.4) 

Here V stands for the transpose of U. From the Sp(2d,R ) 
commutation relations and from the definitions of the U(d) 
CS and of the lowest weight state I (A )min) given, respective­
ly, inEqs. (2.3), (3.21), and (2.5), it is obvious that the U(d) CS 
are annihilated by the generators DIj, i.e., 

DIj Iz) = O. (4.5) 

Hence, by taking Eq. (4.3) into account, Eq. (4.2) reduces to 

K(u',z';u*,z*) = (z'lexp(trbE)lz). (4.6) 

By introducing Eq. (3.21) into Eq. (4.6), the latter be­
comes 
A 

K(u',z';u*,z*) 

= «A)minlV(z')exp(trbE)[V(z)]tl(A)min), (4.7) 

where V(z) is the G1(d,C) group element defined in Eq. 
(3.22). Equation (4.7) expresses the Sp(2d,R) CS overlap 
as the diagonal matrix element of the GI(d,C) group ele-
ment V(z')exp(tr bE) [V(z)]t with respect to the lowest 
weight state I(A)min) oftheU(d) [or GI(d,C)] irrep [A]. 
In the realization ofthe GI(d,C) generators Eij in terms of 
d Xd matrices with + 1 at the intersection of row i and col-
umnj and 0 elsewhere, the G1(d,C) group element exp(bE) 
corresponds to the matrix u-I, while V(z) is realized by 
some d X d matrix Z with entries 0 and 1 above and on the 
diagonal, respectively. Hence, to the product of GI(d,C) 
group elements V(z')exp(tr bE) [V(z)]t, corresponds the 
matrix product 

W = Z'U-Izt, (4.8) 

where Z' is obtained from Z by replacing zij by zij. The CS 
overlap is therefore nothing else but the element of the 
GI(d,C) representation matrix DIA.l(W), whose row and col-

KA( , '. * *) DIA.l () ( ) u ,z ,u ,z = IA. )m;nlA. )m;n W. 4.9 

A theorem first stated by Louck44 for U(d), then ex-
tended by Brunet and Seligman45 to GI(d,C), assures that the 
elements of the representation matrix D if,IIA.) (W), specified 
by two Gel'fand patterns (A ) and (A '), coincide with the (ap­
propriately normalized) double Gel'fand states P 1!f,IIA.) (W), 
characterized by the same Gel'fand patterns and depending 
upon the d 2 complex variables Wij' i,j= 1, ... ,d. Conse­
quently, Eq. (4.9) leads to the following result: 
A 

K(u',z';u*,z*) 

= (Wdd)A.,-A.,( Wd-Id,d-Id )A.,-A.3 

X· .. X (W2 ... d,2.,.d )A.d_l -A.d( WI ... d,I ... d )A.d+ n/2, 

(4.10) 
Here W d - i + I ... d,d-i+ I ... d, I <i<d, is the minor of or deri of 
det W defined by 

W d _ i + I .. ·d,d-i+ I· .. d = L (- IjPWd _ i + I,~d-i+ I) 
P 

X Wd-i+2,~d-i+2)" .Wd,Pldl' 

(4.11) 

where the summation is carried out over the 11 permutations 
of the indices d - i + l,oo.,d. From Eq. (4.8) and the defini­
tions of Z and Z', it follows that 

WI ... d,I ... d = det W = (det U)-I. 

Hence, by setting 

Ti(u',z';u*,z*) = (det U)Wd _ i + I ... d,d-i+ I ... d' 

i = l,oo.,d - 1, 

(4.12) 

(4.13) 

Eq. (4.10) can be put into the following equivalent form: 

K(u',z';u*,z*) = (det U) -A.,-n/2 

d-I 

X II [Ti(u',z';U*,z*)(,-A.'+I. 
;=1 

(4.14) 

To obtain a detailed expression for the CS overlap, it 
remains to calculate explicitly the Ti's. Since the transition 
from the x to the y parametrization can be easily performed 
by applying Eq. (3.23a), we need to consider only the former, 
wherein the matrix Z takes the following form: 

0 0 0 
X 2I 0 0 
X 31 X 32 0 (4.15) 

X d2 Xd3 Xd,d_1 

For Sp(4,R ), Eq. (4.14) only involves a single Ti' given by 

TI(u',z';u*,z*) = UII - UI1/ - U2IZ* + U2zZ'z*. (4.16) 

For Sp(6,R), there appear two T,'s, respectively equal to 

(4. 17a) 

umn indices are both equal to (A )min, or 

432 J. Math. Phys., Vol. 27, No.2, February 1986 C. Quesne 432 



                                                                                                                                    

TI(u',y';u· ,y.) 

= UIZ.IZ - UIZ.13 Yi + Ulz.z3 (Yi + Yi Yi) 

- U13•IZ yT + UZ3.IZ (yt + YT yf) + U13.13 Yi yT 

- U23•13 Yi (yt + yT yf) - U13•Z3 (Yi + Yi Yi) yT 

+ U23•Z3 (Yi + Yi Yi)( yt + yT yf), (4.17b) 

and 

Tz{u',x';u·,x·) 

= UII - U13(xi - xi xi) - UI~i - U3I(xt - xTxf) 

- U2Ixf + U33(xi - xi xi )(xt - xTxf) 

+ Uz3(xi - xi xi)Xf 

+ U3~3(xt -xTxf) + Uz~ixf, 
or 

Tz(u',y';u·,y·) 

= UII - UnYi - U12 Yi - U31 yt - Uzlyf 

(4. 18a) 

+ U33 Yi yt + Uz3 Yi yr + U3z Yi yt + UzzYi yf, 

(4. 18b) 
where Uij.kl denotes the minor of order 2 of det V corre­
sponding to rows i,j, and columns k,l. Since Eq. (4.14) is 
valid for the generic case, corresponding to case (a) for 
Sp ( 6,R ), it follows from the discussion carried out in the 
previous section that the counterpart ofEq. (4.14) for cases 
(b) and (c) irreps ofSp(6,R) reads, respectively, 

K(u',x';u.,x.) = (det V) -A, - nlZ[ TI (u',x';u.,x.) ]A I -A2, 

(4.19) 
and 

K(u',y';u.,y.) = (det v)-AI-nIZ[Tz(u',y';u.,y.)]A, -A,. 

(4.20) 
Here TI(u',x';u·,x·) and Tz(u',y';u·,y·) are deduced from 
Eqs. (4. 17a) and (4. 18b) by setting there xi andxf, orYi and 
yT, equal to zero. This completes the derivation of the es 
overlap for Sp(4,R) and Sp(6,R). 

As a final point, let us note that if we set either 
z = z' = 0 and AI = •.. =Ad =A or u = u' = 0 in Eq. 
(4.14), we obtain, respectively, the Sp(2d,R) es overlap for 
the case where all the A;'S are equal to A, 

K(u';u.) =K(u',O;u.,O) = (det v)-A-n12, (4.21) 

or the V(d ) es overlap for the irrep [A ], 

A A d-I A A 
K(z',z·) =K(O,z';O,z·) = II [T;(z';z·)] ,- 1+1, (4.22) 

;=1 

where the functions 

T;(z';z·) = T;(O,z';O,z·) (4.23) 

are given by 

TI(z';Z·) = 1 + z'z· (4.24) 

for Sp(4,R ), and by 

TI(x';x·) = 1 +xjxT +xixt, (4.25a) 

or 
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TI(y';y·) = 1 + Yi yT + (Yi + Yi Yi)(yt + yT yf), 

and 

Tz(x';x·) = 1 + (xi -xixi)(xt -xTxf) +xixr, 

or 

(4.25b) 

(4.26a) 

Tz(y';y·) = 1 + Yi yt + Yi yr, (4.26b) 

for Sp(6,R ). 
Ifwe now go back to the Sp(2d,R) es (3.6) for the case 

where the A;'S are not all equal, we note that although they 
are defined in terms of an operator product whose factors 
only depend upon either u· or z·, their overlap (3.14) is not 
the product of a function of u' and u· by a function of z' and 
z·, since the T;'s depend on both the u',u· and z',z· param­
eters. However, provided we replace z by some new param­
eters Z, functions of both u and z, the es overlap 

K (u',z';u·,z·) = L (u',z';u·,z·) (4.27) 

can be factorized as follows: 

L (u',z';u·,z·) = [DlfL,(A)miJV)] -IK(z,;z·), (4.28) 

where D ItL,(A )min (V) and K (z' ;z·) are obtained, respectively, 
by replacing W by V, and z',z· by z',z· in Eqs. (4.10) and 
(4.22). The new parameters z are defined by 

z = (det V)-I/Z( Uz~ - UZI) (4.29) 

for Sp(4,R ), and by 

or 

XI = (UZ3.Z3)-I/Z(U3~1 - Ud, 

Xz = (U33)1/2( UZ3.Z3 det V)-I/Z 

X (U23.23X2 - U23•13 XI + U23.12 ), 

X3 = (U33 det V)-1/2(U23.23X3 - U23.13 ), 

YI = (U23.23)-1/2(U33 YI - Ud, 

(4.30a) 

Yz = (U23.23)1/2(U33 det V)-1/2(U33YZ + Un Y3 - U31 ), 
(4.30b) 

Y3 = (U33 det V)-1/2(U23.23 Y3 - U23.13 ), 

for Sp(6,R). In terms of them, the functions T;(u',z';u·,z·) 
can be rewritten as 

and 

Tz(u',z';u·,z·) = (det V/U23.23 )Tz(z';z·), 

respectively. 

(4.31) 

(4.32) 

V. ACTION OF THE Sp(2d,R) GENERATORS UPON THE 
COHERENT STATES 

When they act upon the es, the Sp(2d,R ) generators are 
equivalent to some first-order partial differential operators, 
whose explicit form will be found in the present section. For 
such purpose, we shall first deal with the generic case in 
detail, then consider the transition to the remaining ones. 

Let X denote any operator acting in Y (A)' When it is 
applied to the br~ (u,z I, it is equivalent to some partial differ­
ential operator fr with respect to u and z, 
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,A. 

(u,zIX = ~(u,zl· (5.1) 

The Hermitian conjugate of Eq. (5.1) can be written as 
,A. 

xtlu,z) = ~*Iu,z), (5.2) 
,A. 

where ~* is a partial differential operator with respect to u * 
and z*. In the next section, we shall prove that the CS satisfy 
a unity resolution relation, and therefore form a continuous 
b~is of :Tv,,). Hence, in the corresponding representation, 
~ will be the representation of X. 

In particular, for the Sp(2d,R ) generators, it directly re­
sults from the CS definition (3.6) that 

,A. 

PP = Au, (5.3) 

where Au is a d X d matrix whose elements aUf} are defined by 

a au = (I + Dij) -. (5.4) 
'J aUij 

The explicit forms of ~ and fflt can also be easily found by 
writing 

(u,zIX = (zlexp(!tr uD)X exp( - !tr uD)exp(!tr uD), 

(5.5) 
and using the BCH formula 

exp(Y)Xexp( - Y) 

00 I 
=X + L - [Y,[Y, ... ,[y,x] .. '11m' (5.6) 

m=1 m! 

for Y =! tr uD. In matrix notation, the result reads 
,A. 0 

~ = uAu + ~, (5.7a) 
A '7;J 0 

ppt = u~ + ~u + luAu - (d + 1)I]u, (5.Th) 

where ~ ij denotes the partial differential operator with re­
spect to z, representing Eij in the U(d) CS representation 
corresponding to the irrep [A ], i.e., 

(zlEij = ~ ij(zl, (5.8) 
";;J 0 r'}J 0 

and ~ is the transpose of~, i.e., ~ ij = ~jj' Note that Eqs. 
(5.3) and (5.7) have the same structure as the corresponding 
equations in the PCS representation, Eqs. (6.11) of Ref. 27. 

The explicit form of ~ ij can be found in the same way. 
By writing the left-hand side ofEq. (5.8) as 

(5.9) 

where VIz) is defined in Eq. (3.22), and by repeatedly using 
the BCH formula (5.6), we get 

~ 11 = za + A2 + n12, ~ 22 = - za + Al + n12, 
(5.10) 

~ 12 = Z(AI - A2 - za), ~ 21 = a, 

for the U(2) generators, and 

~ II = XP2 + X3a3 + A3 + nl2 = y2<'l2 + y3<'l3 + A3 + n12, 

~ 22 = xlal - X3a3 + A2 + nl2 = YI <'ll - y3<'l3 + A2 + n12, 

~ 33 = -xlal -X2a2 +AI + nl2 

= - yl<'l1 - y2<'l2 + Al + n12, 

~ 12 = X3(A2 - A3 - X3a3) + X2a l 

=Y3(A2 -A3 + yl<'l1 - Y2<'l2 - y3<'l3) + y2<'l1' (5.11) 
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~ \3 = X2(A I - A3 - xlal - X2a2 - X3a3) 

- x IX3 (A2 - A3 - X3a3) 

= Y2(A I - A3 - yl<'l1 - Y2<'l2 - y3<'l3) 

+ YI Y3(A I - A2 - y I ( 1 ), 

~ 23 = XI (AI - A2 - xlal - x2a2 + X3a3) - x2a3 

= YI (AI - A2 - y 1( 1 ) - Y233' 

~ 21 = Xla2 + a3 = 33 , ~ 31 = a2 = 32 

~ 32 = al = - Y332 + 31, 

for the U(3) ones. In Eqs. (5.10) and (5.11), a, a;, and 3; 
are abbreviated forms of the differentiation symbols a I az, 
a lax;. and a lay;. respectively. The explicit form of the 
U (3) generators in the y parametrization can be easily ob­
tained from that in the x parametrization through the 
change of variables (3.16). Finally, the expressions of the 
U (3) generators valid for nongeneric irreps are inferred 
from Eq. (5.11) by deleting all the terms containing X3 or a3 
for case (b) irreps, andYI or 31 for case (c) irreps. 

,A. ,A. ,A. t 
It can be easily checked that PP ij''ll ij'PP ij' as given by 

Eqs. (5.3) and (5.7), satisfy the Sp(2d,R) commutation re­
lations (2.3) as it should be. It will be shown in Sec. VII that 
they also fulfill the required Hermiticity conditions of the 
Sp(2d,R) generators, given in Eq. (2.2), with respect to the 
measure to be determined in the next section. 

To conclude the present section, let us point out that the 
,A. 

differential equations satisfied by the overlap K (u',z';u*,z*) 
can be deduced straightforwardly from the Hermiticity 
properties (2.2). By taking Eqs. (5.1) and (5.2) into account, 
Eq. (2.2) indeed leads to the following equations: 

,A. ,A.,A. 

[~ij - 'llfi]K(u',z';u*,z*) = 0, 
(5.12) 

,A. ,A.,A. 

[PP;/ - PPt]K(u',z',u*,z*) = 0, 

where ~ij and ffl;/ depend upon u',z', and the correspond­
ing differentiation operators. When combined with Eqs. 
(5.3) and (5.7), Eq. (5.12) becomes 

[(u'Au')ij - (u*Au• )j; + ~ij - ~fi] 
XK(u',z';u*,z*) = 0, 

(5.13) 
rv 

{u'~' + ~'u' + [u'Au' - (d + 1)I]u' - AU.}ij 
,A. 

XK(u',z';u*,z*) = 0, 

where it only remains to introduce the explicit expressions 
(5.10) or (5.11) of ~ ij' 

VI. UNITY RESOLUTION RELATION 

From the general theory of unitary-operator CS (see 
Ref. 5) it follows that the Sp(2d,R ) CS, defined in Eq. (3.6), 
must satisfy a unity resolution relation 

f dU(u,z)lu,z) (u,zl = 1u.) , (6.1) 

for some appropriately chosen measure dU(u,z). In Eq. (6.1), 
1(A.) is the unit operator in :T (A.) , and the parameters u vary 
in the domain determined by the condition I - u*u > 0, 
while each of the parameters z varies over the whole complex 
plane. The measure 
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du( u.z) = / (u.u· .z.z· )du du' dz dz' (6.2) 

is expressed in terms of a weight function /(u.u·.z,z·). 
which is a real-valued. positive function of the indicated var­
iables. vanishing on the boundary of the integration domain. 
This weight function could be derived from the invariant 
measure on the coset space Sp(2d.R )IH (see Ref. 5). The pres­
ent section purpose is to propose an alternative method for 
its determination. and to apply it in full details to the Sp(4.R ) 
and Sp(6,R) cases. A 

Let us denote by 0 the operator on the left-hand side of 
A 

Eq. (6.1). For 0 to be the unit operator in :Tv.). it is suffi-
cient that it commutes with all the Sp(2d,R ) generators. 

A t A A 

[Eij'O] = [Dij'O] = [Dij'O] =0. (6.3) 

and that the measure satisfies the normalization condition 

f dO{u.z) = 1. (6.4) 

From Eq. (6.3) and Schur's lemma within the representation 
space :T (,t) of the irrep (A). we indeed infer that 0 is a 
multiple ofthe unit operator in :T(,t). while from Eq. (6.4) 
and the relation 

(U.ZI(A )min) = «(A )min I(A )min) = I. (6.5) 

we conclude that the multiplicative constant is equal to 1. It 
is an easy matter to satisfy Eq. (6.4) since it merely fixes the 
normalization coefficient of the weight function. In contrast. 
Eq. (6.3) determines the dependence of the weight function 
upon the variables u.u·.z. and z·. and is more difficult to 
solve. 

A 

From the fact that 0 is a Hermitian operator. and from 
the symmetry and Hermiticity properties of the Sp(2d.R ) 
generators. given. respectively. in Eqs. (2.1) and (2.2). it fol­
lows that only part of the conditions expressed in Eq. (6.3) 
are independent. namely 

A t A •• 

[Eij'O ] = [D ij'O ] = O. I<J. (6.6) 

By taking Eqs. (5.1). (5.2). (5.3). and (5.7) into account. 
Eq. (6.6) can be rewritten as 

f dO(u.z) [~; - ~ ij] lu.z) (u.zl 

and 

= f dO(u.Zl[(U·4".)j; + i'; - (uA")ij - i'ij] 

X lu.z) (u.zl = o. i<j. 

f A At 

dO{u.zl[ ~t - ~ ij ] lu.z) (u.zl 

= f dO(u.zj{4". - (ut + i'u) - [uA" 

- (d + l)I]ulijlu.z) (u.zl = o. i<j. 

(6.7a) 

(6.7b) 

where we used the fact that I u.z) and < u.zl only depend upon 
u· .z· or u.z. respectively. and the latter are independent var­
iables. 

In Eq. (6.7). the first-order partial differential operators 
acting upon lu.z) (u.zl can be transferred to the weight func­
tion by integrating by parts and noting that the weight func-
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tion vanishing on the domain boundary ensures that of the 
limit terms. Hence Eqs. (6.7a) and (6.7b) become 

f du du' dz dz' { [(uA")ij - (u' 4". )J; 

+ Aij + oij ] /(u.u·.z.z*) llu.z) (u.zl = o. i<j. 

(6.8a) 
and 

f du du* dz dz* {[ ~ U;k(U4" )jk - A."t 

+Bij +bij]/(u.u*.z.z*)}lu.z) (u.zl =0. i<j. 

(6.8b) 

whereAij,Bij and oij .bij denote. respectively. the first-order 
partial differential operators and the functions coming from 
the terms containing i' or i' *. In Appendix A. their explicit 
expressions are given for the cases ofSp(4,R) and Sp(6,R). 

Equations (6.8a) and (6.8b) will be satisfied provided the 
weight function is a solution of the following system of first­
order partial differential equations: 

[(U4,,)ij - (u*4".)j; +Aij +oij] 

X/(u.u*.z.z*) = o. i<j. 

[~U;k(U4,,)jk - A.ut + Bij + bij ] 

X /(u.u*.z.z*) = o. i<j. 

(6.9a) 

(6.9b) 

We have therefore reduced the determination of the weight 
function to that of a particular solution of Eqs. (6.9a) and 
(6.9b). 

In Appendix B. it is proved that in the cases of Sp(4,R ) 
and Sp(6.R ). such a solution can be obtained in the following 
form: 
A A d-I 

J(u.u*.z.z*) = A (det u)a II [T;(u.z;u*.Z*)]Pi. (6.10) 
;=1 

A 

Here A is the normalization coefficient determined by Eq. 
(6.4). U and T; are defined. respectively. by Eqs. (4.4) and 
(4.16H4.18). where we set u' = u and z' = z. and the expo­
nents a and Pi> i = 1 ..... d - 1. are given by 

a =A I + nl2 - 2. PI = - (AI -A2 + 2). (6.11) 

in the Sp(4,R ) case. and by 

a =A I + nl2 - 2. PI = - (AI -A2 + 2). 

P2 = - (A2 - A3 + 2). for case (a) irreps. 

a =AI + nl2 - 2. PI = - (AI -A2 + 3). 

P2 = O. for case (b) irreps. 

a = Al + nl2 - 3. PI = O. 

P2 = - (AI - A3 + 3). for case (c) irreps. 

(6.12) 

in the Sp(6.R ) one. Note that for cases (a). (b). and (c) irreps. 
the variables z are. respectively. X I ,x2,x3 (or YI' Y2' Y3)' X I ,x2. 
andY2'Y3. ForthoseSp(2d,R ) irreps for which all theA/sare 
equal to A. the weight function is also given by Eq. (6.10) 
with21,2S,37 

a = A + nl2 - d - 1. PI = O. i = 1 ..... d - 1. (6.13) 
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In this case, no variables z,z* are present in Eqs. (6.1) and 
(6.2). 

To calculate the normalization coefficient A of the 
weight function, it is convenient to replace z by the variables 
Z, defined in Eqs. (4.29) and (4.30). The transformed weight 
functiong (u,u* ,z,z*) can be written in terms of the old one J; 
and the JacobianJ of the transformation, depending only on 
u and u*, as follows: 

g(u,u* ,z,z*) = I(u,u* ,z(u,u* ,z),z*(u,u* ,z*))IJ (u,u*)I. 

(6.14) 
In all the cases listed in Eqs. (6.11 H 6.13), g is found to fac­
torize into two functions g' and g", only depending upon 

* --* u,u or z,z , 

g(u,u*,z,z*) =g'(u,u*)g"(z,z*). (6.15) 

The functionsg'(u,u*) andg"(z,z*) are given by the following 
expressions: 

A 

g'(u,u*) =A '(det U)-d-IDlfL,(A)m;n(U), (6.16) 

and 
Ad-I 

g"(Z,z*) =A" II [T;(z,Z*)]Pi, (6.17) 
;=1 

A A 

respectively. HereA ' and A " are two constants satisfying the 
condition 

A A A 

A =A'A", (6.18) 

D IfL,(A )mJU) is given by the right-hand side of Eq. (4.10) 
with U substituted for W, the functions T;(z,z*) are obtained 
from Eqs. (4.24)-(4.26) by replacing z and z* by z and z*, and 
the exponentsp; are the same as in Eq. (6.10). 

A straightforward analysis, similar to that carried out in 
Appendix B, shows that provided the constant A " is chosen 
in such a way that 

f dz dz* g"(z,z*) = 1, (6.19) 

the function g" (z,z*) is the weight function ofU(d) CS, writ­
ten in terms ofz,z* instead ofz,z*. This means thatg"(z,z*) 
satisfies the unity resolution relation 

f dz dz* g"(z,z*)lz) (zl = IrA J (6.20) 

!(1 the representation space of the U(d ) irrep [A ]. The constant 
A" satisfying Eq. (6.19) is easily found to be given by 

and 

A" = 1T-
I(A I - A2 + 1) if Al >A2, (6.21) 

A 

A" = 1T-
3(A I -A2 + I)(AI -A3 + 2)(A2 -A3 + 1) 

if Al >A2 >A3, 
= 1T-

2(A I - A2 + I)(AI - A2 + 2) if Al >A2 = A3, 

= 1T-
2(A I - A3 + I)(AI - A3 + 2) if Al = A2 >A3, 

(6.22) 
for U(2) and U(3) irreps, respectively. 

I!.., now remains to determine the normalization coeffi­
cientA' ofg'(u,u*). From Eqs. (6.4), (6.14), (6.15), (6.18), and 
(6.19), it has to satisfy the following condition: 

f du du* g'(u,u*) = 1. (6.23) 
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For d<,3, a straightforward calculation, using the methods 
of Ref. 46 leads to the following result: 

A d 

A'=2- d1T- d (d+I)12 II (A;+Aj+n-i-j). 
;<;j= I 

(6.24) 
This completes the determination of the Sp(2d,R ) CS mea­
sure for d<,3. 

VII. HILBERT SPACE OF ANALYTIC FUNCTIONS 

The purpose of the present section is both to summarize 
the results achieved in the previous sections, and to reformu­
late them in the language of Hilbert spaces of analytic func­
tions. 

The Sp(2d,R) CS lu,z), labeled by a complex symmet­
ric matrix u fulfilling the condition I - u*u> 0, and by a set 
of complex parameters z, chosen as explained in Sec. III and 
varying in the whole complex plane, do form a nonortho­
gonal family of states, satisfying a unity resolution relation in 
the representation space .r (A) of the irrep (A ). Hence this 
set is complete (as a matter of fact, it is overcomplete as 
proved hereafter), and can be used as a continuous basis in 
.r (A) • Any state I"') of .r (A) can be expanded in terms of CS 
as follows: 

I"') = f dO(u,z)~u,z)lu,z), 
where 

¢(u,z) = (u,zl"') 

(7.1) 

(7.2) 

is an analytic function in the variables u, and a polynomial in 
the variables z. 

In particular, the functional images 

~N(A)(U,Z) = (u,zIN;(A) (7.3) 

of the discrete basis states IN;(A ), defined in Eq. (2.6), are 
polynomials in u and z, whose explicit form can be found as 
follows. We first note that from Eq. (6.5), the functional im­
age of the irrep lowest weight state is 

~O(A)m;.!U,z) = 1. (7.4) 

We next observe that any basis state I (A ) of the U(d ) irrep [A ] 
can be built from its lowest weight state by applying an ap­
propriate polynomial in the U(d ) generators, 

I(A) = P(A) (E)I(A )min)' (7.5) 
Hence, its functional image can be obtained by acting with 
the differential operator PeA) ( ~) on the function 
tPO(A)m;n (u,z), 

~O(A) (u,z) = P(A) (~). (7.6) 

The result is a polynomial in z, 

~O(A)(U,Z) = ~(A)(Z) = (Zj(A ), (7.7) 

that is nothing else than the U (d) CS representation of 
I (A) ). Explicit expressions of ~ (A) (z) will be gi ven in paper 
II of the present series. Finally, the functional image of an 
arbitrary state IN; (A» can be obtained by acting with the 
differential operator FN (.@-t) on the polynomial ~(A) (z), 

A ........ t A 

tPN(A) (u,z) = FN (~ )tPw (z). (7.8) 

From Eq. (5. 7b), it is obvious that the resulting function is a 
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polynomial in u and z, of degree ~j<jNjj in u. Its explicit 
form is however, quite complicated, hence of no practical 
use. This will contrast with the corresponding result for the 
annihilation-operator CS to be derived in paper II. 

A 

" The space K(,t) spanned by the analytic functions 
¢'(u,z) corresponding to the states I¢') of Y(,t)' can be en­
dowed with the scalar product 

(x,~) = f dU(u,z)[X(u,z)]*~u,z), (7.9) 

making it into a Hilbert space of analytic functions. From 
Eqs. (7.1) and (7.2), it is obvious that the scalar product is 
preserved in the mapping I¢')I-+~(u,z), i.e., 

(xl¢') = (X,~), (7.10) 
A 

and that the CS overlap K(u',z'~*,z*), defined in Eq. (4.1), 
acts as a reproducing kernel in K(,t) , i.e., 

~(u,z) = f dq(u,z)K(u,z;u'*,z'*)~(u',z'). (7.11) 

Moreover, any CS can be expanded into CS as follows: 

lu,z) = f dU(u',z')K(u',z';u*,z*)lu',z'); (7.12) 

therefore the CS are not independent and form an overcom­
plete set. 

A 

Let Xbe any operator acting in Y (,t ~ and f!l? the corre-
sponding partial differential operator in K(,t) • Then X maps 
any state I¢') in Y (,t) onto a state Ix) in the same space, 

Ix)=XI¢'), (7.13) 
A 

and the corresponding functions in K(,t) satisfy the follow-
ing relation: 

A" 
X(u,z) = f!l?¢,(u,z). (7.14) 

The function X(u,z) can also be obtained from ~u,z) by the 
integral transform 

X(u,z) = f dc7(u',z')X(u,z;u'*,z'*)~u',z'), (7.15) 

with the integral kernel 
A 

X(u,z;u'*,z'*) = (u,zIX lu',z'). (7.16) 

Equation (7.15) directly results from Eq. (7.13) when use is 
made of the unity resolution relation (6.1). The relation 

A 

between the integral kernel X(u,z;u'*,z'*) and the differen-
A 

tial operator f!l? reads 
A AA 

X(u,z;u'*,z'*) = f!l?K(u,z;u'*,z'*). (7.17) 
A 

Since the mapping from Y (,t) into K(,t) preserves the 
scalar product, the Hermiticity properties of the operators X 

A A 

in Y (,t) are transferred to their images ~ in K(,t) . In parti-
cular, for the Sp(2d,R) generators the following relations 
are satisfied: 

(7.18a) 

(7. 18b) 

It can indeed be checked that Eqs. (7.18a) and (7. 18b) are, 
respectively, equivalent toEqs. (6.7a) and (6.7b), which were 
used to determine the measure dc7(u,z). 

From Eqs. (4.14), (5.3), (5.7), and (7.17), the integral 
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kernels corresponding to the Sp(2d,R) generators can be 
easily calculated by noting that 

A A A 

A K(u'z"u*z*) =K(u'z'·u*z*)1l. InK(u'z"u*z*) 41.UI) ", , "uij , , , , 

and 

and 

(7.19) 

00 

In det U = tr In U = - L m- I tr(u*u't. (7.20) 
m=1 

The results read 

A 

= D;j (u*,z*;u',z') 

= K(u',z';u*,z*) {C2AI + n)(U-lu*)jj 

d-I 

+ L (Ak -Ak+d[Tk(u',z';u*,Z*)]-1 
k=1 

XIl. ,Tk(U',Z';u*,z*)}, 
"ij 

(7.21a) 

A 

E jj (u',z';u*,z*) 

= K(u',z';u*,z*) {(U I + n)(Uj~' - !8ij) + f;j 
d-I 

+ L (Ak-Ak+I)[Tk(u',z';u*,Z*)]-1 
k=1 

X [(u'..:1u')ij +F;j]Tk(U',z';u*,z*)}, (7.21b) 

whereFij and/;.{, are, respectively, the operational and func­
tional terms of 'if jj , and the primed symbols denote opera­
tors or functions depending upon u' and z' instead ofu and z. 
In Eq. (7.21), the first term between braces coincides with 
the result obtained by Kramer I in the case where all theA·'s 
are equal, while the summation over k can be easily evalu~t­
ed by introducing the explicit expressions of the Tk's, and by 
taking into account that 

(7.22) 

VIII. SOME APPLICATIONS 

In this concluding section, we shall outline two possible 
applications of the formalism developed in the present pa­
per. The first one is concerned with classical approximations 
to quantum dynamics, the second one with boson realiza­
tions of the symplectic algebra. 

The path-integral formulation of Klauder4.47.48 and the 
related method based upon the time-dependent variational 
principle36 make use of continuous and overcomplete sets of 
Hilbert space vectors. Among those, the families of general­
ized CS play an important role. The complex parameters Va' 

characterizing such overcomplete sets of quantum states, 
serve as classical coordinates in a generalized phase space, 
where the motion is described classically by Hamilton-like 
equations. The latter are written in terms of a generalized 
Poisson bracket 

{f(v,v*),g(v,v*)} = L (y-I)ap (a~ ag _ af a:). 
ap aua au P av P aua 

(8.1) 
In Eq. (8.1), 1'-1 is the inverse of the matrix y = !!Yap II, 
whose elements 

" a2 
A 

YaP = InK(v,v*) (8.2) aua au; 
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A. 

are defined in terms of the norm K (v,v*) of the quantum 
states. 

If we choose the Sp(2d,R) CSlu,z) for the continuous 
and overcomplete set of states, then the classical coordinates 
Va are the variables u j }' i<j, and z. It is straightforward to 
determine the matrix y from the known expression of the 
overlap, Eq. (4.14), then to invert it to get an explicit expres­
sion for the generalized Poisson bracket. In the case where 
Al = ... = Ad = A, the result reads21 

ff(u,u*),g(u,u*)} = [4(U +n)]-I)' (Ujk~l + Uil~k) 
ffol 

X [(aU~/)(aUk/ g) - (auJ)(aul'jg)] , 

(S.3) 
while in the remaining cases, it assumes much more compli­
cated forms, whose discussion we leave to a forthcoming 
publication. The functions 

A. A. 

SD1j(u,z;u*,z*), SDij(u,z;u*,z*), 

and 
A. 

~1}(U,Z;u* ,z*), 

defined by 

~1j(u,z;u*,z*) = [K (u,z;u* ,z*)] -Ii) 1}(u,z;u* ,z*) (S.4) 

and similar relations for the remaining ones, yield a realiza­
tion of the Sp(2d,R ) Lie algebra in terms of the generalized 
Poisson bracket. Their detailed expressions can be deduced 
from Eq. (7.21). The application of this formalism to the 
Sp(6,R ) nuclear collective model provides a classical approx­
imation of the theory. Numerical applications along these 
lines are in progress. 22 

Knowing the classical solution, one then has to quantize 
periodic motions. 16,48 In the calculation of the quantum cor­
rections, boson degrees of freedom appear naturally since 
the bosons are just the quantum version of the classical pa­
rameters labeling the quantum states of the overcomplete 
set. 48 Because of this, and because they are quite useful for 
studying the relations between microscopic and phenomen­
ological models, the boson realizations of the Sp (2d,R) alge­
bra have been the object of many studies in the last few 
years.9,IS,18,20,21,23,24,26-28 By boson realizations we mean 

both non-Hermitian Dyson49 and Hermitian Holstein-Pri­
makoiFo realizations. 

In Refs. 27 and 2S, the relations between various PCS 
representations and boson realizations, as well as those 
between the latter have been extensively studied for generic 
irreps (A ) of Sp(2d,R ). They are directly relevant to estab­
lishing relations between boson realizations and (fully) CS 
representations, such as that derived in the present paper. 
From Eqs. (3.4) and (3.6), it is indeed obvious that the uni­
tary-operator CS, introduced in the present paper, can be 
expanded in terms of the so-called Perelomov PCS of Refs. 
27 and 2S, as follows: 

lu,z) = )' [¢(,q(z)] *lu;(A I), 
trf 

(S.5) 

the coefficients of the expansion being well-known functions 
ofz*, defined in Eq. (7.7). 

According to Refs. 27 and 2S, boson realizations of the 
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Sp(2d,R ) algebra can be obtained by mapping the Sp(2d,R ) 
representation space Y (A) onto the direct product space 
f!lJ ® Y [A]' where f!lJ is the infinite-dimensional space 
spanned by all the boson states 

IN] = II (N1))-1/2[(1 + 81})-1/
2a1} t'}IO], (S.6) 

l<oj 

built from d(d + 1 )/2 independent boson creation opera­
torsa1} = aft, i,j = 1, ... ,d, acting upon the vacuum state 10], 
and Y [A ] is the representation space of a U (d) irrep [A], 
whose bases are denoted by I (A) ]. If we choose to map the 
discrete basis states IN;(A» or I ([I] [A] )a[h] !3(k)q), de­
fined in Eqs. (2.6) or (2.9), onto the extended boson states 

(S.7) 

or 

IO;(A)] = 10] ® I(A)), (S.9) 
and FN(at) andP[l](at ) are the same polynomials as 
FN(Dt) andP[l](Dt) but with D1} replaced bya1}, then 
the PCS IU;(A» and the CS lu,z) are mapped, respectively, 
onto the extended Glauber CS 

IU;(A)] = lu] ® I(A)), (S.lO) 

and the CS of the direct product group N (d) ® U (d ), 

lu,z] = lu] ® Iz] = L [¢(A) (z)] *lu;(A)]. (S.l1) 
(A) 

Here 
lu] = exp(!tr u*at)IO] (S.12) 

is a standard Glauber CS (see Ref. 2), Iz] is a U(d ) CS belong­
ing to the space Y [A ], and we have used the fact that 

[zl(A)] = (zl(A) = ¢(A) (z). (S.13) 

In this mapping, both the PCS and the CS representations of 
the Sp(2d,R ) algebra are converted into a Dyson realization 
of the latter by the replacement of ulj and aUt} byaij and all' 
respectively. 

In Ref. 2S, it was also shown that the transition from the 
Dyson realization X D of any Sp(2d,R ) generator X to its HP 
realizationXHP can be performed through a similarity trans­
formation as follows: 

XHP = T- I 12XD T 1/ 2, (S.14) 

where T 1/2 is the square root of the positive definite, Hermi­
tian operator T, defined by either relation 

[N';(A 'lITIN;(A)] = (N';(A ')IN;(A I), (S.15) 

or 
[([I'][A ])a'[h] !3'(k )qITI([/][A ])a[h ] !3(k)q] 

= «([I'] [A ])a'[h ] !3'(k )ql([/] [A ])a[h ] !3(k )q). 
(S.16) 

The operator T is therefore an essential ingredient of boson 
realizations, whose determination is of considerable interest. 

For such purpose, one can start from the equations satis­
fied by T,28,SI 

-tft 0 [T,. a + E) = 0, (S.17) 

and 
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TatT- I = it + Eat + [ata - (d + l)IJat, (8.18) 

where E denotes the matrix of U (d) generators acting in 
Y [A. j. By mUltiplying Eq. (8.18) from the right by T, and by 
taking matrix elements of the resulting equation between 
two coupled states (8.8), one gets recursion relations for the 
matrix elements of Tbetween coupled states. 15.20 In Ref. 20, 
an explicit algorithm was devised to solve them in the case of 
Sp(4,R). 

In a recent work, eastanos, Kramer, and MoshinskyS2 
did propose an alternative to this cumbersome recursive 
method. For simplicity's sake, their discussion was restrict­
ed to Sp(4,R ), but it is equally valid for higher-dimensional 
symplectic groups, as we shall now proceed to show. 

We first note that by expanding into powers the expon­
entials in Eqs. (3.4) and (8.12), we obtain a development of 
the pes and of the extended Glauber es, respectively, on 
the discrete basis IN;(A ) and IN;(A )), 

IU;(A) = IFN(u*)IN;(A I), (8.19) 
N 

IU;(A)] = IFN(u*)IN;(A)]. (8.20) 
N 

The expansion coefficient FN (u*) is the same in both cases, 
and it is obtained from Eq. (2.7) by replacing D rj by u'1j. 
The definition of the operator T, given in Eq. (8.15), then 
implies that 

[U';(A ')ITlu;(A)] = (U';(A ')IU;(A». (8.21) 

Finally, by using Eqs. (8.5) and (8.11), Eq. (8.21) can be 
transformed into the following relation: 

[u',z'ITlu,z] = (u',z'lu,z). (8.22) 

Note that for the right-hand side ofEqs. (8.21) and (8.22) to 
be meaningful, one has to restrict oneself to matrices u and u' 
satisfying the conditions I - u*u > 0, and I - u'*u' > 0, al­
though the boson es appearing on the left-hand side of these 
equations could of course be defined for any symmetric ma­
trices u and u'. 

Equation ( 8.22 ) was obtained for the first time by 
Castanos, Kramer, and Moshinsky in the Sp(4,R) case. 52 
To prove it, they used the property that Glauber es lead to 
the Bargmann representation,53 wherein at and a are repre­
sented by u and A.u ' respectively. They then derived the par­
tial differential equations satisfied by the kernel 
[u',z'ITlu,z] as a consequence ofEq. (8.18). By comparing 
these equations with those satisfied by the Sp(2d,R) es 
overlap, given in Eq. (5.13), they finally concluded that Eq. 
(8.22) is fulfilled. We would like to emphasize that such a 
complicated demonstration is unnecessary and would be­
come, moreover, quite cumbersome for higher-dimensional 
symplectic groups. As proved above, Eq. (8.22) indeed di­
rectly follows from the definition of the operator T, as given 
in Ref. 28. 

Equation (8.22) expresses the operator T as a kernel 
with respect to the es of the direct product group 
N(d) ® U(d), and shows that this kernel coincides with the 
overlap of the corresponding Sp(2d,R) es. Since a closed, 
analytic expression of the latter has been given in Eq. (4.14), 
a significant advance has been made in the determination of 
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T. It now only remains to expand the kernel in terms of 
discrete basis states to obtain the matrix representation of T 
without going through the solution of recursion relations. 
Such a procedure has been applied to Sp( 4,R) (see Ref. 54) 
and hopefully will be extended to Sp ( 6,R) in the near future. 

APPENDIX A: EXPLICIT FORM OF EO. (6.9) 

In this Appendix, we list the explicit expressions of the 
partial differential operators A ij , B ij , and of the functions 
aij , bij , appearing in Eq. (6.9), satisfied by the weight func-

tion I(u,u*, z,z*). 
In the Sp(4,R ) case, they are given by 

A l1 = -A22=za-z*a*, A12 = -z2a-a*, 

Bl1 = 2(u l1 - U l2 z)za, B22 = 2(u 12 - U22 z)a, (AI) 

B12 = (u l1 - U22 z2)a, 

and 

b22 = - (U I + n - 4)U22, 

b 12 = - (AI +A2 + n - 6)U 12 - (AI -A2 + 2)U22 Z. 

In the Sp( 6,R ) case, we have to distinguish between cases 
(a), (b), and (c) irreps. As an example, we list below the results 
obtained in the x parametrization for case (a) irreps: 

and 

Al1 =X2a2 +X3a3 -xr ar -xt ar, 

A22 =xlal - X3a3 -xr ar +xt ar, 

A33 = -xlal -X2a2 +xr ar +xr ar, 

AI2 =X~I -~ a3 -xr ar -at, 

A 13 = - X2(X la l + X2a2) + (X IX3 - X2)x3a3 - a r, 
A 23 = - xl(xlal + X2a2) + (X IX3 - X2)a3 - a r, 

Bl1 = 2Ul1(X~2 + X3a3) + 2U 12(X2a l - x~ a3) 

+ 2u 13 [ - X2(X la l + X2a2) + (X IX3 - X2)x3a3] , 

B22 = 2udxla2 + a3) + 2U22(X la l - X3a3) 

+ 2U23[ - xl(xlal + X2a2) + (X IX3 - X2)a3], 

B33 = 2U 13a2 + 2U23al - 2U33(X la l + X2a2), (A3) 

BI2 = Ul1(X la2 + a3) + udxlal + X2a2) 

+ U13 [ - XI(Xlal + X2a2) + (X IX3 - X2)a3] 

+ U22(X2al -x~ a3) + U23[ -X2(X la l +X2a2) 

+ (X IX3 - X2)X3a3] ' 

B13 = Ul1a2 + UI~I + U13( - Xlal + X3a3) 

+ U23(X2a l -xi a3) + U33 [ -X2(X la l +X~2) 

+ (x IX3 - X2)x3a3] ' 

B23 = UI2a2 + U13(X la2 + a31 + U22a l 

- U23(X2a2 + X3a3) + U33 [ - XI(Xlal + X2a2) 

+ (X IX3 - X2)a3] , 
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alJ = a22 = a33 = 0, a l2 = - (A2 - A3 + 2)x3' 

a13 = - (AI - A3 + 4)x2 + (A2 - A3 + 2)xIX3, 

a23 = - (AI - A2 + 2)x1' 

blJ = - (U3 + n - 12)ulJ - 2(A2 -A3 + 2)UI~3 
+ 2u13 [ - (AI - A3 + 4)x2 

+ (A2 -A3 + 2)xIX3], 

b22 = - (U2 + n - 8)U22 - 2(AI - A2 + 2)U23XI> 

b33 = - (U I + n - 4)U33, (A4) 

b l2 = - (A2 +A3 + n - IO)U I2 - (AI -A2 + 2)U13XI 

- (A2 - A3 + 2)U2~3 
+ u23 [ - (AI - A3 + 4)x2 + (A2 - A3 + 2)xIX3], 

b13 = - (AI + A3 + n - 8)U13 - (A2 - A3 + 2)U23X3 

+ U33 [ - (AI -A3 + 4)x2 + (A2 -A3 + 2)xIX3], 

b23 = - (AI +A2 + n - 6)U23 - (AI -A2 + 2)U3~1' 

For cases (b) and (c) irreps, the explicit expressions of 
Aij and Bij can be obtained from Eq. (A3), or its counter­
part in the y parametrization, by deleting all the terms con­
taining either X 3' xr, a3, a r orYI,yr, (jl' (jr. As a result of the 
integration by parts carried out in Eq. (6.7), such a simple 
trick cannot be used for aij and bij , which therefore have to 
be recalculated in each case. 

APPENDIX B: SOLUTION OF EQ. (6.9) 

The purpose of this appendix is to prove that the func­
tion I(u,u·, z,z·) defined in Eq. (6.10) is a solution ofEqs. 
(6.9a) and (6.9b), provided the exponents a andf3/> i = 1, ... , 
d - 1, take the values given in Eqs. (6.11) and (6.12). 

By introducing Eq. (6.10) into Eqs. (6.9a) and (6.9b), we 
obtain the two following equations: 

a(X( T/) [(uAU)ij - (u·.:1u.)jd (det V) 

and 

+ (det U) I p, (:~~ T.) 
X [(u.:1U)lj - (u·.:1U.)ji +Aij] T/ 

d-I 

+ a1j(det V) II T/ = 0, i<j, 
/=1 

a C~X T/) [~Uik(uAu)jk - au~ ]det V 

+ (det U) 1: p, (:~: T. ) 

X [ ~ uidu.:1u )jk - au~ + Bij] T/ 

d-I 
+ bij(det U) II T/ = 0, i<j. 

/=1 

(B1a) 

(BIb) 

In these relations, the action of the differential operators on 
det V can be easily evaluated as follows. We note that in the 
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case where A I = ... = Ad = 0, from Eq. (4.21) the CS overlap 
(where we set u' = u) reduces to 

'" K (u,u·) = (det V) - n12. (B2) 

On the other hand, it fulfills the differential equations (5.12), 
where t = (nI2) I. The function det V therefore satisfies the 
equations 

[luAu )ij - (u· .:1u• )ji ] det V = 0, (B3a) 

and 

[> u'k(uA h - a • - 2u· .]det V = 0. (B3b) 
~' It '.J UI) IJ 

By taking Eqs. (B3a) and (B3b) into account, Eqs. (B1a) and 
(BIb) become 

:t: p, (:~~ T.) [(DA.)u - (u'A."), + Au 1 T, 
d-I 

+ aij II T/ = 0, i<j, (B4a) 
/=1 

and 

:t: p{~~ T. ) [~.,,(DA.)1' - .lor, +B'lj T, 

d-I 

+ (bij + 2auij ) II T/ = 0, i<j. (B4b) 
/=1 

To evaluate the action on T/ of the differential operators 
appearing in Eqs. (B4a) and (B4b), we could again use some 
information coming from the differential equations satisfied 
by the overlap. In this case, it is easier, however, to directly 
apply the differential operators on T/. For such a purpose, 
the following properties are worth noting: 

[(u.:1u)ij - (u· .:1u• )ji] U/m = - 8i/ ~m + 8jm U/i, 

[(u.:1u)ij - (u· .:1u• )ji] U/m,pq 

= - 8i/ ~m,pq - 8im Ulj,pq + 8jp U/m,iq + 8jq U/m,pt> 

[~ uidu.:1u )jk - au~] U/m = uim U/j + ujm U/i, 

[~Uik(uAu)jk - au~] U/m,pq 

whose demonstration is straightforward. 
(B5) 

In the Sp(4,R) case, taking Eqs. (AI) and (A2) into ac­
count, we obtain the following results: 

t
o, ifi =j = 1,2, 

[(uAu)ij - (u· .:1u• )ji + Aij] TI = T 
-z I' ifi= 1,j=2, 

and 

[~Ulk(U.:1U)jk - au~ +B1j ] TI 

{

2(Ull - Ul2 z)TI> 
= 0, 

(U 12 - U22 Z)TI' 

ifi=j= I, 
ifi=j=2, 
ifi= I,j= 2. 

(B6) 

(B7) 

The left-hand side of Eq. (B4a) therefore vanishes for 
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i = j = 1,2. Hence, we are left with a single equation corre­
sponding to i = 1,j = 2, which reads 

(BS) 

It imposes that PI = - (AI - A2 + 2), in accordance with 
Eq. (6.11). On the other hand, Eq. (B4b) leads to the follow­
ing equations: 

[2{JI(U ll - Ul2 z) + (2a - U 2 - n + 8)u ll 

- 2(AI - A2 + 2)u 12 z] TI = 0, 

(2a - U I - n + 4)U22 TI = 0, 

[PI( Ul2 - U22 z) + (2a - Al - A2 - n + 6)u12 

- (AI - A2 + 2)U22 z] TI = 0, 

(B9) 

corresponding to i = j = 1, i = j = 2 and i = 1,j = 2, respec­
tively. With the above value of PI' all three equations are 
satisfied if a = Al + n/2 - 2, again in accordance with Eq. 
(6.11). 

For Sp( 6,R ), the demonstration proceeds along the same 
lines and will not be detailed here. 
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An explicit basis is constructed for the symmetric irreducible representation (irrep) of 
SU(9) ~ SO(9) ~ SO(5) X SU 1(2) X SU2(2). It is also indicated how good angular momentum states 
can be constructed. The techniques used are based on the well-known tensor algebra for the 
infinitesimal generators of simple Lie groups. 

I. INTRODUCTION 

In nuclear physics, the interacting boson model (IBM) 
gives a unified description of collective states in medium and 
heavy nuclei. The original version of the IBM is limited to 
the consideration of s- and d-bosons. I However, for nuclei 
with large deformation the s-d model is insufficient and we 
have to introduce a g-boson degree of freedom to be able to 
account for the experimentally observed results. 

Many authors have already identified the limiting sym­
metries of the interacting s-d-g boson system and obtain the 
typical spectra for the various limiting symmetries.2 How­
ever, the explicit wave functions for the s-d-g system have 
not been given. In this paper, we discuss this problem. For 
the sake of simplicity, as a first step we will focus our atten­
tion on the construction of the basis vectors for the g-boson's 
system. 

For the n g-bosons system, the symmetry group is U (9). 
It is thus necessary to have nine quantum numbers for label­
ing the states uniquely. However, the physical subgroup 
chain U(9)~SO(9)~SO(3), SO(3) being the rotation 
group associated with angular momentum, only gives four 
quantum numbers. In this reduction there are several miss­
ing labels, for which it is extremely difficult (impossible) to 
find a simple physical interpretation. For this reason, we 
adopt the "natural" labeling in which an irrep of SO(9) is 
considered to be fully reduced with respect to its subgroup 
SO(5) XSU1(2) XSU2 (2), and a state is labeled by the 
weight oftheirrep ofSO(5) XSU I (2) XSU2 (2) to which it 
belongs. This basis is called the mathematical basis. If the 
number of g-bosons are small, we can easily express the 
physical basis in terms of our mathematical basis. 

In Sec. II, we will give a reduction formula for the irreps 
ofSO(5) X SU 1(2) X SU2(2), which occur in a given symmetric 
irrep ofSO(9). In addition, we will also give an expression for 
the generators and Casimir operators of SO(9). In Secs. III 
and IV, we will explicitly determine the basis states and give 
some examples. 

II. GENERATORS 

The branching rule of SO(9PSO(5)xSUI(2)XSU2(2) 
can be derived by means of the Schur function method. 3-5 

alOn leave from Nanjing University of China, Nanjing, China. 
blOn leave from Beijing University of China, Beijing, China. 

The result can be written as follows: 

SO(9P SO(5) X SUI(2) X SU2(2), 

(vOOOO) ((p,O),l:,l:), 

where v is the seniority quantum number, 2l: = v - p - 2w, 
and 

p = 0,1,2, ... ,v, 
U) = 0,1,2, ... ,[(v - p)/2]. 

(la) 

(lb) 

The symbol [(v - p)l2] stands for the maximum integral of 
(v -p)l2. 

In IBM, the groups SU(9), SO(9), and SO(3) are generat­
ed by the following set of operators: 

SU(9)' ( t-)(k) k = 1,2, ... ,8, 
. ggq, ° 1 k q= ,± , ... ,± ; 

SO(9): (gtg)~), k = 1,3,5,7, 
q = 0, ± 1, ... , ± k; 

(2) 

SO(3): (gt-)(k) k = 1, 
g q , q = 0, ± 1; 

whereg~( g ,..), /-l = 0, ± 1, ... , ± 4, is the creation (annihila­
tion) operator of the g-boson, and g " = ( - Y'g _" is a ten­
sor operator. A general state vector can be written as 
I~ > = Invn>, where n is the totality of the quantum 
numbers needed for full classification besides nand v. In the 
following we will determine n by means of the group chain 

SO(9) ~ SO(5) X SU .(2) X SU2(2), 

with 

SO(5) ~ SUa (2) X SUb (2). 

(3a) 

(3b) 

For convenience of construction of the state vector Invn>, 
we introduce a set of uncoupling generators for the group 
chain (3), as follows: 

X"v =g~gv -g!g", /-l,v=O,± 1, ... ,±4. (4) 

Obviously, 

X"" =O,X"v = -Xv,,, (X"v)t= (- )"+vX_v_,,' 
and in addition they satisfy the following commutation rela­
tion: 

[X "v,X p,,] = ( - j"6p_vX "" + ( - )"6" - "Xvp 

+ (- j"6,,_vX p" + (- )p6"_pX",,. (5) 

The relation between X "V and the generators in Eq. (2) is 
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t- k 1 ~ Clcq 
(g g) ="2 ~ 4!'4" X,.". ,." 

k=1.3.5.7. q=O.±l ..... ±k. 

Using X ,." we can construct the generators of the subgroups 
as follows: 

SO(5): 

SUa (2): Ao =!( - XI-I + X2-2)' 

A ± = ± (l/v'2)X ± 1±2' 

SUb (2): Vo =!( XI-I + X2-2)' 

V ± = =F (l/v'2)X Of I ± 2' 

a\p ! 

(6a) 

(6b) 

U(1I2)(1/2) 
a/J ! (1Iv'2)X20 

-! (lIv'2)XO-I 

(l/v'2)XlO,(6c) 

( 1Iv'2>XO-2 

SU I (2): CTO =!( - X3-3 + X4-4)' 

CT ± = ± (lIv'2)X ±3±4' 

SU2(2): TO = !(X3-3 + X4-4)' 

T ± = =F(1Iv'2)X'f 3 ±4' 

(6d) 

(6e) 

The remaining generators ofSO(9) can be put in the form of a 
tensor operator. as given in Table I. 

Using Eq. (5). we can construct the commutation rela­
tions for these operators. For example, 

[Ao,A.± ] = ±A±. [A+,A._1 = -Ao. 

[ ' U(112)(1I2)] _ aU (112)(112) 
A()t a/J - a/J • 

[A± .U~I~2)(1/2)] = =F~!(!=Fa)(! ±a + 1) U~I~2?~/2), 

[ U (112)( 112) U (112)( 112) ] - U 
± (1/2)(112)' ± (112) - (1/2) - y' ± • 

[U (112)(112) U(112)(112) ] - 1 
(1/2)(112)' - (1/2) ± (1/2) - 2V ± ' 

[U~1I}i(12).UWWi(ll(1/2)] =!(Ao±Vo). etc. (7) 

The angular momentum operator now can be written as 

1.0 = .j6Olgtg)~) = Vo + 3Ao + To + 7CTo• 

1. ± = .j6Otgtg)(~ 1 

= v'2(3v ± + 2T ± ) - ~U(!;fr){,':!:(1I2) 

'I4T(IOHI/2) - ,,1.,. 'f(I12) Of (112). ± (112) Of (112) . (8) 

TABLE I. Tensor operator T ~~~~). 

a -u -1-1 

1 - (1I.j2>X42 - (1/.j2>X32 ( 1I.j2>X2-3 - (l/.j2>X2-4 

1 - 1 - (l/.j2>X41 - (1I.j2>X31 - (l/.j2>XI-3 - (l/.j2>XI-4 

-1 1 (l/.j2>X4-1 (l/.j2>X3-1 (l/.j2>X -1-3 (l/.j2>X-I-4 

- 1 - 1 (l/.j2>X4-2 (l/.j2>X3-2 (l/.j2>X -2-3 (l/.j2>X -2-4 

0 o (l/.j2>X40 (l/.j2>X3() (l/.j2>XO-3 (l/.j2>XO-4 

443 J. Math. Phys., Vol. 27, No.2, February 1986 

Similarly the Casimir operator of SO(9). as appears in the 
usua12 IBM reduction scheme. can be written as 

C9 = t( - )qlgtg)~) Igtg)(~\ 

= Cs + ~ + r + 2.j5(TUO)(I/2) X TUO)u/2))(0). (9) 

where 

(10) 

If we define the operators S + and S _ as 

S+ = I( - II" g,.+ g~,.. ,. (11) 

S_ = I( - lY'g -,.g,.. ,. 

we can rewrite Eq. (9) as 

A 

Obviously. the eigenvalue of C9 is (v/2)(v + 7) when acting 
on the state Invn). Furthermore. we can prove that A 2 = v2. 
and ~ = r. Our group reduction scheme is now completely 
defined and we can proceed with the explicit construction of 
the basis vectors. 

III. BASIS VECTORS 

In correspondence with the group chain (3), the quan­
tum number n may be taken as the eigenvalues of the opera­
tors Cs• A 2. Ao. VO' ~. CT o. and To. Hence. a general state vector 
Invn) can be rewritten more explicitly as 
Invn) = Inv;p.Aap; l:r8). and the eigenvalues for above­
stated operators are as follows: 

operators Cs A 2 Ao Vo ~ CTo To 

eigenValues (p/2)(p + 3) A(A + 1) a P l:(l: + 1) r 8' 
(12) 

In order to give the concrete structure of 
Inv; P.Aa P;l:r8) , we first observe that the state 
Inv;p.Aa P;l:r8) may be written as 

where 

_--->.(2_v_+'---'7):-." __ • p = (n _ v)/2. 
2 Pp!(2 P + 2v + 7)" 

v = n.n - 2.n - 4 ..... 1 or O. (13b) 

and the operator S + is defined in Eq. (11). Hence, the prob­
lem is reduced to the construction of the state 
Ivv;p.Aa P;l:r€). This can be achieved by the following pro­
cedure. 
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First, we can start with an unique maximum weight state 

1<1>1) = IVV;O,()()();~~~) = /I(g!)VIO). (14) 
2 2 2 -V v! 

For the state 1<1>1)' the eigenvalues of the operators (:5' ..1 2,..10' VO' 0' 2,0'0' and 'To are 0,0,0,0,(vI2)(vI2 + 1), (vI2), and v12, 
respectively. 

It can easily be seen that an eigenstate ofthe operators C5 and 0' 2 with an eigenvalue (p/2)(p + 3) and l:(l: + 1), can be 
written as 

with 

N2 = { '" aJ!w!23
",- 3XS2x(2aJ - 2x + 2p + 3)!!(x + 2l: + I)!} -112, 

x~o (aJ - x)!X!(2p + 3)!!(2l: + 1) 
A 

and where p and aJ should satisfy Eqs. [1(a) and l(b)], and the operator Z is defined as 

Z = ~{2(g0+ go+ - 2.80) + S(g3+ g::'3 + g/ g::'4)j, 

.8J =(gI gt_1 -gI gt_ 2 )· 

(ISa) 

(ISb) 

(16a) 

(16b) 

It can be proven that both of the operators go+ go+ - 2.80 and (g3+ g::' 3 - g/ g::'4) are invariants of both SO(S) and 
SU I (2) X SU2(2). Hence the state 1<1>2) is a simultaneous eigenstate of operators C5,A 2,..10, Vo, 0' 2, 0'0' and 'To with eigenvalues 
(pI2)( p + 3 ),( p12)( pl2 + 1 ),pI2,pI2,l:(l: + I),l:, and l:, respectively. 

Third, we need a state that is an eigenstate of the operator A 2 (and V) with the eigenvalue A (A + 1). The procedure 
followed is described in Refs. 6 and 7, with the result 

1<1>3) = N3 = (g!)21:(Z)"'F(p,A)(g1)2A I0), (17a) 

with 

I (NpA 2'" - xsxaJ!)(x + l: + 1 )!4l' - z 
N3= x~o Y,&'z' (2A + 1 + z)!z!(p - 2A - 2z)!(2A + 1 + z')!Z'!(p - 2A - 2z')! 

(y+z=y' +z') 

(p - 2A - 2z + 2aJ - 2x - 2y)!(y +z)!(y +z + A + I)!} -112 X , 
x!(aJ - X - Y)!Y!(aJ - X - y')Iy'!(A + 1)(l: + 1) 

(17b) 

where 

A = pI2,(p - 1)12, ... ,0, 

F (p,A) = NpA z~o 2Z(2A + 1 + Z)~!( P _ 2A _ 2z)! (gJ Y' - 2A - 2z( Po)Z, 

N -{L[ 1 ]2 (z+l) }1/2 
pA - z=o 2Z(2A + 1 + z)! ((p - 2A) - 2z)! . 

Finally, by acting with A (~-a),vI~-tJ) ,d:- r), and -t: -8) on the state 1<1>3)' we can obtain a general state vector, which can 
be written as 

Ivv;p, Aa .8,l:yo) = N4( - )A + 1: - a - r(l/.J2)2A + 21: - a -tJ- r- Il(Z)"'F(p,A)G (Aa .8;l:y€) 10), (ISa) 

where 

N - (2A)I(2l:)I{ (A - a)!(A -.8 )!(l: - y)I(l: - oj! } - 112 N 
4 - . . 22A + 21: - a -tJ- r- Il(A + a)!(A +.8 )!(l: + y)!(l: + OJ! 3 

(lSb) 

and 

G (Aa {3;~y{j) = L L 8(Aa {3x;~y{jy) X O(Aa {3x;l:y{jy), 
x=Oy=O 

8(Aa .8x;l:y{jy) = (2A)!(A - a-I )!(A - .8 )! 
(x - 1 + {jxO)!(A - a - x - {jxO)!(A + {3 - x)l(a -.8 + x)! 

(2~)!(l: - Y - 1)!(l: - {j)! 
X , 

(y - 1 + {jyO)!(l: - Y - Y - {jyO)!(~ + {j - y)!(y - {j + y)! 

O(Aa .8x;~y{jy) = (gl)A + tJ - X(g~ 2)A - a - X(gr)a - tJ + x(gt_ I t(g!)1: + Il- Y(gt_ 4)1: - r - Y(g!)r - Il + Y(gt_ 3)Y. 

We have now obtained a closed, analytic expression for a general basis state, labeled according to (3), in terms of the g-boson 
operators. In Table II the relation between the basis (13a) and the natural basis is given explicitly for a configuration with n <2. 
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TABLE II. The natural basis of the g-boson system. 

" II P A 1: Natural basis L 

! ° giIO),g110),g!..IO),gt_ 210) 4 

° ° g610) 

° ! g! 10)06; 10)06; 10),gt_.IO} 

2 2 2 ° (l/v'2)g1g1 10),g1gII0 ),o/v'2)glglI0),g1gt_.IO),( lIv'2)(glgt_. + gIgt_ 2) 10) 8,6,4,2,0 

gt_ 2g110),( 1Iv'2)g!..g!..IO),gt_.g!.210),( lIv'2)g!. 2g!. 2 10) 

2 2 ° g1g~ 10),g1g~ 10),g~g!.. 10),g~gt_210) 

2 2 ° ° (l/~)(2g6g~ + gIg!.. - gIg!. 2 ) 10) 

2 gIg! 10),g1g; 10),gIg!. 310),gIg!..IO),g1g! 10),g1g1 10), 

g1gt_310),g1g!..IO),g!..gII0),g!..gIIO),g!..g!.310),g!..g!..IO) 
g!.2g!..10),g!.2g; IO),g!.2gt_ 310),gt_ 2g!..IO) 

2 ° g~gII0),g1g; 10),g~g!. 310),g~gt_.10) 

2 ° ° (lIv'2)glg! 10),g!gI 10),( l/v'2)g;gI 10},glg!. 310},( 1Iv'2) (gIg!.. + gIgt_ 310), 

gIg!.. 10),( l/v'2)g!.3g!.310},g!. 3g!..10),( lIv'2)g!..gt_.IO) 

2 ° ° ° ~(2g~g~ -4g1g!.. +4gIg!.2 +Sg;g!.3 -Sg!g!..) 

° ° ° ° ,fh (g~g~ - 2g1 gt_. + 2gIgt_ 2 - 2gIgt_ 3 + 2glgt_. ) 

IV. ANGULAR MOMENTUM PROJECTION 
The states constructed using the reduction scheme proposed in the present paper do not have good angular momentum, 

and as such are not physical states. In practical calculations this problem can be solved by requiring the states to be eigenstates 
of the angular momentum L 2, and the states can be constructed using numerical methods. We will outline here an alternative 
analytic procedure that can be followed. As an example we discuss only the case n = 2. The formulas for general n will be the 
subject of a subsequent paper. 

In order to form states with good angular momentum we will follow the well-known procedure of taking a maximum 
weight state (14), which has a maximum value of M = 4v and thus a unique value of L, and operating on it with the L_ 
operator given in Eq. (8). It should be noted that the states (18) areeigenstatesofLo witheigenvalueM = /3 + 3a + 8 + 7y. 
The physical states thus have to be a linear combination of states with the same value of M, n, and v. 

445 

For the case n = 2 the action of the operators entering in L _ can be given as follows: 

v _In,v,p;A,a, /3;l:,y,8) = (1Iv12) ~(A + /3)(A - /3 + 1)ln,v,p,A,a,/3 - 1,l:,y,8), 

L In,v,p;A,a,/3;l:,y,8) = (lIv12W(l: + 8)(l: - 8 + l)1n,v,p;A,a,/3;l:,y,8 - 1), 

1 
U _ + In,v, p;A,a, /3;l:,y,8) =-

2 

x 

x 

2 

(p-2A)(p+2A+3)(A-a+ I)(A+/3+ 1) Inv ·A la-1/3 1.l: 8) 
(2A + 1)(2A + 2) , ,p, + 2' 2' + 2' ,y, 

(p-2A+ l)(p+2A+2)(A+a)(A-/3) Inv 'A-1a-1/3 1.l: 8) 
2A(2A + 1) , ,p, 2' 2' + 2' ,y, , 

(l: + y)(l: - 8)(A + a + 1 )(A + /3 + 1) 8 8 8 
2l:(2A + 1) + :I',:I + 112 A',A + 1/2 p',p - I 

(l: - y+ I)(l: +8 + I)(A -alIA -/3) + (11 'fO)[8 8 8, 8, 8, 
(2l: + 1)2A "IV A,O :I,O p,l A,I/2 :I,1I2 

X(8p ,2 - 38p,o) +8A',08:I',08p ,18A,I/28:I,1I2(8p'.2 - 38p"o}]} 

x In = 2,v',p';A',a +!, /3 + !;l:',y - !,8 + p. 
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With the use of these formulas the action of L _ on the high­
est weight state, given by Eq. (14), can be calculated: 

L-'.Irl) = L_12,2,0;0,0,0;1,1,1) = 2~12,2,0;0,0,0;1,1,0), 
where only the 'T _ operator gives a nonzero contribution. 
Since the state on the left-hand side (Ihs) corresponds to the 
state IL = 8, M = 8), the state on the rhs necessarily cor­
responds to IL = 8, M = 7). By acting once again with the 
L _ operator, we obtain 

L_12,2,0;0,0,0;1,1,0) = 2~12,2,0;0,0,0;1,1,-1) 

+ {712,2,q,M;~,~,P, 

h bo h h d th r (IO)(1I2) w erenow t t e'T _ an e +(112)+(112).-(112)+(112) op-
erators contribute. The state on the rhs thus corresponds to a 
state with IL = 8, M = 6). The state IL = 6, M = 6) 
can be obtained by taking the orthogonal linear combina­
tion. This procedure can be used to construct all states with 
good angular momentum. 

V.SUMMARY 

In this paper we have given a method for constructing 
the basis states of a system of g-bosons. The advantage 
of the present reduction scheme over the conventional 
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U(9PSO(9PSO(3PSO(2) is that there are no missing la­
bels, the states can be uniquely labeled by the values of the 
Casimir operators. The only disadvantage of the present re­
duction scheme is that angular momentum is not a good 
quantum number. In the last section we have given an exam­
ple of an angular momentum projection procedure that can 
be followed. The procedure outlined in this paper can, of 
course, be extended without problems to a system of s-, d-, 
and g-bosons. 
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The gradient property for bifurcation equations covariant with respect to a group representation 
that is reducible, but irreducible as a real representation, is examined. In this case, the Schur 
lemma does not hold in the usual form, and one is faced with problems not present in the 
irreducible case. It is shown how to handle these problems, and applications to the fundamental 
real representations ofSO(2) and SU(2) are presented that, due to general group theoretical results, 
represent in a sense the more general situation. 

I. INTRODUCTION 

In this paper we want to present some remarks about the 
gradient property of bifurcation equations in the presence of 
a symmetry I when the symmetry is described by a real re­
ducible representation. Precisely, we are interested in the 
case, important in the physical applications, in which this 
representation T is reducible, but is irreducible on real 
numbers, i.e., it is physically irreducible. 

The main difference between this case and the irreduci­
ble one is that for reducible representations the Schur lemma 
does not forbid the existence of nontrivial operators com­
muting with the whole representation; that is, now we can 
have 

(1) 

for operators K =l=al. 
Ifwe denote by C (T) the space ofintertwining operators, 

i.e., the set of real operators commuting with the real irredu­
cible representation T, 

C(T) = [K IKTg = TgK, 'o'g E G 1, (2) 

we have a theorem (8.2.2 of Ref. 2) which ensures C (T) is 
isomorphic to R, C, or Ill, where R is the field of real 
numbers, C that of complex numbers, and H that of quater­
nions. From this it follows easily that the dimension D of the 
operators in C(T) can be 1,2, or 4. 

The case D = 1, C( T);::::R is trivial. We will treat in the 
following examples of the other two cases, SO (2) for 
C(T);::::C and SU(2) for C(T) ;::::lEI. 

Both cases D = 2 and D = 4 raise problems in connec­
tion with the gradient propertyl,3 of bifurcation equations: 
we will discuss these problems, and how to handle them, in 
the following sections. 

We stress that, because of the group theoretical results 
quoted here and at the end of Sec. III, our treatment covers 
cases that are generic, in the sense that the most general case 
is a combination of these three basic cases, C( T) ;:::: R, C, lEI. 

For what concerns the gradient property, the case of 
SO(2) was dealt with shortly in a previous paper by two of 
the present authors,3 but we present it here anew in more 
detail for clarity and completeness. 

It can also be noted that the property D = 2 for the 
group SO(2) is closely related to the existence of nonzero 
solutions of the classical Hopf bifurcation probleml

,4 [here 
SO(2) describes the covariance with respect to time transla­
tion 1_1 + 1', mod 21T), whereas the case D = 4 should cor­
respond to a more complicated and less known "quater­
nionic bifurcation ... 4,5 

II. REDUCIBLE REPRESENTATIONS 

Let the basis ofthe representation Tbe {Xl'"'' XII} and 
denote by Vo the covariant of first order corresponding to this 
array of basis functions, namely Vo = {v~ , vg , ... ,v~} with 
vJ =xj' 

For any K in C( T), 

v=Kvo 

is a covariant of first order. Therefore, if C (T) =1= [I 1 (for ease 
of notation, we do not distinguish between K and aK, as well 
as for v and av, where a is a real number) the covariant offirst 
order is not unique or, in the language of Ref. 3, there is more 
than one fundamental vector of order 1. This means that one 
could choose v as well as Vo as a basis for this representation, 
that is, substitute [Xl'"'' XII 1 with [xi , ... , X~ 1, where x; 
= Kijx} , obtaining exactly the same representation T. Of 

course, all of the v's obtained in this way are independent, 
and these are the only covariants of order 1, that is, any 
covariant of order 1 can be written as v = ajKjvo, where 
a j E R, K j E C(T). 

We have now to deal with gradients: since the gradient is 
defined with respect to some basis and we now have more 
equivalent bases, the gradient is not defined uniquely any 
longer. Therefore, when we speak about a gradient, we have 
to mean with respect to anyone of the bases individuated by 
first-order covariants. This corresponds to the following 
fact: as everyone knows, if S is a scalar function, its gradient 
VSis a vector (i.e., is a covariant), due to the vectorial char­
acter of the operator V. But now we can define different Vj 's, 
each of them being a vectorial one, and from a single func­
tion S we can obtain different vectors by computing its gradi­
ents in the different bases, Vj S. 
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If two different bases, x and y = Rx, are given, the gra­
dientsin the two bases are relatedbya lax j = (aYklaxj) ca I 
aYk)' that is, Vx = R Vy , denoting by Vo the "ordinary" gra­
dient, that is the one in the basis Yo, any gradient can be 
expressed in terms of V 0 and the operators belonging to 
CCT), 

V=OjKjVo, 

and the Vj = K j Vo are independent. 
At this point it should be clear that the gradient proper­

ty,3 namely the fact that any vector is the gradient of a scalar, 
means that any covariant is obtained by applying one of the 
gradient operators to a scalar. We can put this in more pre­
cise terms: A representation Tg of a group G acting on the 
basis Vo is said to have the gradient property at order n iff or 
any covariant v of order n there are real numbers OJ and a 
scalar S of order n + 1 such that v = ojKj VoS. 

It follows from general theorems in bifurcation theory 
(see Ref. 1) that if a bifurcation equation relative to a system 
with G as a symmetry group is covariant with respect to the 
representation Tg and Tg has the gradient property at order 
n, the bifurcation equation has the gradient property at order 
n, too, that is, its terms of order n can be written as a gradi­
ent. 

The gradient property at each order of Tg is, in general, 
not enough to ensure that the bifurcation equation 
F(A, v) = 0 is itself a gradient equation. In fact, the bifurca­
tion equation is, in general, written as a sum of covariants 

F(A, v) = 2:Bn (A, v), 
n 

where each Bn is n-linear in v. If Tg has gradient property, 
each of the covariants can be written as 

Bn = 2:b }nlKjVqS<nl, 
j 

and F(A, v) is given by 

F(A, v) = 2:b}n)KjVoS(n). 
n,i 

Since there is no reason for the b }nl to be independent of 
n, this, in general, cannot be expressed in the form 
F(A, v) = cjKj VqS, where Sis some scalar function. 

A special case is that of representations, like those we 
consider in the following, such that all the scalars are of the 
form (v, v) m. In this case, if the gradient property is satis­
fied, one has 

F(A, v) = 2:b }mlKjVo(v, v)m = J;KjVoSo, 
m 

with So = (v, v) and 

J; = L2m (v, v)m - Ib }m>, 
m 

so that the bifurcation equation is itself, in this generalized 
sense, a gradient equation. 

III. GRADIENT PROPERTY 

After having clarified the concept of gradient property 
in the case of reducible representations, we can pass to the 
problem of proving it. In particular, we want to discuss the 
applicability of the technique used in Ref. 3. 
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That was based on the computation of the number of 
independent covariant and invariant completely symmetric 
tensors in the basis functions of Tat any order; this computa­
tion was performed by making use of the orthogonality rela­
tions for characters and of the Molien function,1 which to­
gether led to an integral formula for the multiplicity of 
vectors (completely symmetric covariant tensors) and sca­
lars (completely symmetric invariant tensors) at any order, 
which were equal to the multiplicities c~l) of T and c~) of the 
identity representation To in the symmetrized n-tensor pro­
duct (T .. n)s. 

We have to check therefore the applicability of the crite­
rion based on the multiplicities of scalars and vectors, and of 
the integral formula, in the case of a reducible representation 
T. 

As for confronting the multiplicities, the valid criterion 
is that the gradient property holds at order n if the number of 
independent vectors of order n, # v (n), is equal to the num­
ber of independent vectors that can be obtained from scalars 
of order n + 1 by the action of a gradient operator. Now, if D 
is the number of independent operators in CC T), from each 
scalar we have a set of D independent vectors by applying 
gradient operators. Therefore, if we have c~oll independent 
scalars at order n + 1, we can obtain D . c~oll vectors by 
application of gradient operators. If all of these are indepen­
dent, the gradient property at order n is equivalent to 

#v(n) = D . c~~ I' 
For the representations we are going to deal with, inde­

pendence is trivially ensured, since we will have at most one 
scalar at each order, so we will not be concerned about this. 

To obtain the number #v(n), one has to multiply by D 
the multiplicity of Tin (T ® n )s' that is, we have 

#v(n) =DC~I) 

(with the same remarks as for gradients about indepen­
dence). Therefore we have, as in the irreducible case, that to 
ensure the gradient property at order n it is sufficient to have 

C~I) = c~o~ 1 • 

When computing c~~ 1 and c~) we are concerned with 
the problem of decomposing the symmetrized n-tensor pro­
duct Pn = (Ten )s' If we denote its character by Xn' we can 
decompose it into irreducible representations by the stan­
dard formula 

a 

m~n) = LXn(g)X(a)(g)dlLg , 

where Xn (g) can be obtained via a generating function 1,3 

LznXn(g) = det(! - ZT(g))-1 

and dlLg is the Haar invariant measure, i a
) (g) the character 

of T(a) (g). 

If we want to know c~), that is, the multiplicity of Tin 
Pn , we have to decompose T as 

R 

T= LAaT(a), 
a=l 
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and we have 

c~) = min [m~")/ Aa ], 
aell,R) 

where the square brackets mean the integer part, 
We remark here that another theorem [(8.2.3) of Ref. 2] 

ensures that for T irreducible on the reals, we have 
T = TI $ T2 with TI and T2 not equivalent, if D = 2, 
C(T):::::C; and T= TI $ TI if D = 4, C(T):::::H. 

As anticipated, we want now to give short examples of 
applications of these remarks, choosing the fundamental 
real representations of the groups that are the most natural 
ones in view of the group theoretical theorems cited above, 
that is, SO(2) for D = 2, C(T):::::C, and SU(2) for D = 4, 
C(T):::::H. 

IV.SO(2) 

Now we examine the case G = SO(2). Its fundamental 
real representation is given by 

(
COS () sin ()) 

T(()) = . () () , 
-sm cos 

which could be reduced to 

T(()) = (e'8 e -18) = Til) $ T(2). 

The set CIT) is given by 

C(T)= {/,K}, 

I=(~ ~) K= (~ -1) 
o ' 

to which correspond the vectors (;) and (;Y). 
We can now easily compute c~ and c~ by standard resi­

due technique. The Haar measure for SO(2) is simply d() /211', 
() varying from 0 to 211'. Therefore we have 

1 (0) = ~ cIO)z" = _1_ (2" d() 
".fto" 211'Jo (l-zeI8 )(1 -ze- 18 ) 

=~ dw =_1_= fr". 
2,rij(1 -zw)(w -z) l-r ,,=0 

As for cJ,J>, we notice that 

12
" [ ( 1 - zel8 ) ( 1 - ze - 18) ] -lel8 d() 

= f"[(I-zeI8)(l-ze-18)]-le-18d(), 

so that, with the notation used above, mIN) = m~N) and c}i) 
= mIN) =! (mIN) + m~N». Therefore, 

III) = _1_ e d() i
2" 18 

211' 0 (l-zeI8 )(1 -ze- 18 ) 

= _1_" w dw = _z_ = f r" + I. 
21rlj(1 - zw)(w - z) 1 - r ,,=0 

So we have that for the fundamental representation of 
SO(2) the gradient property is satisfied at any order: we have 
a scalar at each even order, which is, of course, 
(vo, vo)m = (Kvo, Kvo)m , and two vectors at each odd order, 
vo and Kvo, while there are no scalars at odd orders nor 
vectors at even orders. 
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This same result holds for all the representations of 
SO(2), given by 

T (()) = ( cos(m()) sin(m() I), 
m _ sin(m()) cos(m()) 

for which the computation dift'ers only for a trivial change in 
the integration variable, ()' = m(). 

The bifurcation equation for S0(2) is therefore of the 
form, as expected from Sec. II, 

F(A, v) = Fo(A,lIvlllv + FI(A, v)Kv = o. 
Each nth-order component can be written as 

where 

U 
__ t(n)xI - b (n)x2) 

(n)x
2 
+ b (n)x

I 

, V = (XI' x 2 ), 

or, with the notation of Sec. II, 

u = ~ (al + bK)Vo(v, v). 

The nth-order bifurcation equation is therefore a gradi­
ent equation in our "generalized" sense: i.e., taking the gra­
dient with respect to the basis v' obtained from v = (x lt x2 ) 

by applying the operator (al + bK) -I, namely 
v~ = (al - bK)/(a2 + b 2»)V, and not with respect to the 
"ordinary" gradient Vo' 

We remind the reader that, as suggested by the notation, 
a's and b 's depend on the order n, so that also the basis v' 
depends on it. 

V. SU(2), OR QUATERNIONIC BIFURCATION 

We come now to the case G = SU(2), representative of 
"quaternionic bifurcation" (see Refs. 4 and 5). We consider 
here the representation T obtained by decomplexifying the 
standard (defining) representation 

( A B) I 2 2 r = _ B * A *' A I + IB I = 1. 

If we write A = a + i1], B = P + ir, it results in 

T~( : -1] p 1, a r 
-p -r a 

r -p -1] 

a2+p2+y+1]2= 1, 

a,p, r, 1] E R. 

It is perhaps useful to stress that we are using a parame­
trization different than the one usual in quantum mechanics, 
namely A = exp(i(cp + t/I)/2)cos () /2; B = exp(i(cp + t/I)I 
2)sin () 12. Our parametrization is the standard one in lattice 
gauge theory computations, and it is easier to handle in the 
present case anyway. 

The decomplexified representation T can be written in 
compact form, using the operator K defined in the previous 
section, 

-1) 
o ' 
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as 

T = (. l!/.+.1/~. : f!~ -t: r.K .), 
- /3/ + yK • a/ - 1/K 

as is obvious, since K is a representation of the imaginary 
unity; over R 2. 

Now we have D = 4; C(T) is spanned by 
{J, K I, K 2, K 3}, where 

C 
1 • 

!} · 0 -1 o . 
KI = ••• . . · 0 

0 
• - 1 

• 0 

. ~ .~} 0 · 
• 1 K'~( 0 • 

. . . . . 
- 1· · -1 o . 

• 1 

o ) ( 0 • -1 • 0 K3 = • ~ 1· •• ·0·:· • • o· • • • . 

o 1 • 

It is immediate to see K; = - 1, K; Kj = EijhKh' so that 
effectively C( n :::: H. 

One has also, in accordance with the general group theo­
retical results quoted above, 

T = TI Ell T}> TI = r. 
Now we can consider the gradient property. With our 

parametrization, the Haar measure is given simply by 

df.L = o( 1 - a 2 - /3 2 - r - 1/2)da d/3 dy d1/. 

Since, in the integrals we have to compute, only class func­
tions appear, it is more convenient to perform integration 
over classes using the class measure. 

The conjugate classes ofSU(2), in the present parametri­
zation, are labeled by the value of a. The class measure dv is, 
after a simple integration in/3 ,y, 1/, 

dv = (2/1r)(1 - a 2)1/2da, a E [ - 1, 1]. 

The determinant is a class function and is given by 

det(1 -zT(a)) = (1 +r - 2za)2 

(we remind the reader that T = r Ell r, which accounts for 
the square), so that we have for /(0), through the standard 
position a = cos B; e;6 = w, 

/(0) =~fl (l_a
2

)1/2 da 
11" - d 1 + r - 2za)2 

2 i11' sin
2 a d 

= -; 0 (1 +r _ 2z cos a)2 a 

1 r211' 
sin2 a d 

=-';Jo (1 +r-2zcosa)2 a 

- 1 £ (w _W- I )2 dw 
= 411"; j (1-ZW)2(1-zW- I)2 -;; 

= __ 1_£ (w2 
- 1 )2 dw, 

41T;j (1 - ZW)2(W - Z)2W 
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and now, evaluating residues, one obtains 

/ (0) = 21Tl·(-=2) [.l_ (1 + Z2) ] = _1_ 
411"; r r( 1 - Z2) 1 - r 

00 

= L rn = LC~)~' 
"=0 n 

so that now we have one scalar at each even order, and no 
scalars at odd orders. 

As for /(1), and therefore cW, recalling T = TI Ell T I, we 
have to compute the multiplicity of TI in Pn = (Ten). and 
divide it by 2, as seen in the preceding discussion: 

/(1) = Lc~)zn =.l r x(l)(a) df.La' 
n 2 JG det(1 - zT(a)) 

Using the same positions as before, one obtains 

/(1)=.l~fl 2a (1-a2)1/2da 
2 11" - d 1 + r - 2za)2 

2 i11' cos a sin2 
a d 

= -; 0 (1 + r - 2z cos a)2 a 

1 i 211' 
cos a sin

2 
a d 

=-; 0 (1+r-2zcosa)2 a 

- 1 £ (w + w-I)(w _W- I )2 dw 
= 811"; j (1-ZW)2(1-zW- I)2 -;; 

= -=2£ (w
2 

- 1 )2(W
2 + 1) dw. 

811"; j (1 - ZW )2(W - Z)2W2 

Evaluation of this with the residue formula gives, with a 
short computation, 

1 _ 2 .( - 1)[ 2(1 +r) _ 2(1 + Z4)] 
(I) - 1Tl 811"; ~ (1 - r)r 

= __ z_= fr n + l . 

l-r n=O 

Therefore we have, recalling now D = 4, four indepen­
dent vectors at each odd order, and no vectors at even orders. 
That is, even in this case, the gradient property is satisfied at 
any order. 

As for the possibility of writing the bifurcation equation 
in gradient form, the same remarks as in the SO(2) case ap­
ply, with the role of the operator K played by the three opera­
torsKI, K 2, K 3· 
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A combinatorial approach is developed for calculation of weight multiplicities at or near the 
center of a weight diagram. The result may be used to determine the inner multiplicity of such a 
weight. or to decompose the product of several representations into irreducible summands. 

I. INTRODUCTION 

Inner and outer multiplicities of weights in the groups 
SU(N) may be calculated by a variety of methods. For direct 
product decompositions in SU(N). physicists usually exploit 
the similarity of the symmetric group representation theory 
to that ofSU(N). and use direct multiplication of the Young 
tableaux. I However. this rapidly becomes tedious if we wish 
to reduce the product of several representations to a sum of 
irreducibles. The more Lie-theoretic methods involve a dou­
ble sum over the Weyl group. or else complete knowledge of 
all weights and multiplicities of the factor representations. 
Even then. products of three or more representations must 
be reduced pairwise. 

In this paper we shall develop a method of extracting 
multiplicities. both inner and outer. by combinatorial 
means. We do not distinguish the product of two representa­
tions from the product of an arbitrary number. The basis of 
our algorithm is the character theory ofSU(N). We make 
use of the operator techniques from the theory of distribu­
tions. 

II. DEFINITIONS 

We have the following expressions for inner and outer 
multiplicities. respectively. 2.3 

( 
1 )n -li2". r;.. (f-t) = 21T 0 X;.. (</>I.· ... </>n - I )e - ;JI..~ d</>t'·-d</>n - I' 

A - II( ) - 2"';~J ~ - E; - E j. E j - e • 
kj 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

The parameters E J>E2 ..... En are the eigenvalues of UeSU (N). 
Since U is unimodular we have 

n 

II E; = 1. (2.5) 
;=1 

Therefore we choose the first n - 1 eigenvalues to be inde­
pendent and 

n-I n-I 

II -I lI-En = E; = E;. (2.6) 
;=1 ;=1 

Since X;.. and 11K can be written in terms of polynomials in 
quantities that are complex exponentials. it is clear that the 
integrands in (2.1) and (2.2) will be a sum of complex expon­
entials. Integration will give delta functions. The only non­
zero contributions will then come from the constant term in 

the integrands. In general the characters are complicated 
functions and integration difficult. Instead of integrating. 
any operator. which when applied to the integrand extracts 
the constant part. may be used as a substitute. 

Let U = diag(EI.E2 ..... En ) e SU(n) and consider a repre­
sentation with Young frame 

m poox~ 
(2.7) 

LetX;. i = 1.2 .... ;n be the basis in which U has the diagonal 
form above. Then a basis of U in the representation with the 
mentioned Young frame is 

{X;,XI, ... X lp IiI d 2 < ... d p }. (2.8) 

Then. since U: XI~;XI (no sum) the character is 

Tr(U)= L E;,E;,'''E;p 
i. <i2 <···<ip 

= Op (EI ... ·.En ) = XO.I •...• I.O •... ,o) (U). (2.9) 

The representation of U with Young frame 

I I .. · I I 
pboxes 

(2.10) 

has character 

X(P.O •...• O) (U) = Tr( U) = L E;, '''E; = hp (EI ..... En ). 
i 1.<;.i2 <···<.ip P 

(2.11) 
The functions op and hp are symmetric functions4 with the 
following generators: 

(2.12) 
n n 

II (1 - E;X) = L ( - l)kX
k
Ok (EI ... ·.En )· 

;=1 k=O 

The characters of arbitrary representations may be found in 
terms of the 0 and h functions by Weyls' second formula2•s 

rs r4 r3 r2 rl boxes 

I 
(2.13) 

ft. 
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X(JI""'/n) =det(h!;_i+j)' 

x(rl, .. ·,rm ) = det(ar;_j+i)' 

Example: 

3 2 2 1 

§F:, 
o o 

a6 as a4 a3 

(2.14) 

(2.15) 

Define the following operators with respect to the symmetric 
functions: 

d d d 
dl = - + al - + a2- + ''', 

da l da2 da3 

(2.16) 

d d d 
d. = - + a l---+ a2-- + "', 

das das+ I das+ 2 

Ds = ..!..(df). 
s! 

(2.17) 

The operator Ds is called the Hammond operator,4.6 which 
has the following actions on a symmetric function 
t/J(X I,x2,· .. ,xn): (1) transformt/J(xl,· .. ,xn ) 

-t/J(xl, ... ,xn 'Xn + I ), (2) differentiate s times with respect 
to Xn + I' and (3) divide by s! and set Xn + I = O. The func­
tions ai' a2, ... are independent, so that by the fundamental 
theorem on symmetric functions, there is a unique function 
t/J', so 

t/J(xl, .. ·,xn) = t/J'(al, .. ·,am), ai = ai (xl, ... ,xn)' (2.18) 

For certain special choices of t/J, one may deduce the follow­
ing actions: 

Dshp =hp _ s' Dshphq = Ihp-ihq-S+i' 
i=O 

Furthermore by symmetry 

D i, Di2 ... Di/a j, • .. a im = D i, .. ·D im ai, .. ·ai/· (2.20) 

The Hammond operator D m , D m, ... D mn will give the num­

ber of times that the monomial x,[,'x;"'" x:n occurs in the 
function t/J when applied to t/J. Hence we replace the integrals 
in (2.1) and (2.3) by Hammond operators acting on the 
integrals expressed as symmetric functions 3 

yu' .... ,[n) (ml, .. ·,mn ) = Dm,Dm, ... D mn det M, (2.21) 

whereM has form (2.14) or (2.15). We now specialize to 
the inner and outer multiplicities of central weights, either 
the zero weight or the fundamental weights. Here SU (n) has 
(n - 1) fundamental weights of the form 

(h1, ... ,1,0, ... ,Q) with frame 

p pboxes 
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and character ap (EI, ... ,En ). The number of occurrences of 
this representation as an irreducible summand in the tensor 
product A. ® A. ' is 

(2.22) 

where x is chosen to exhaust the expression in parentheses. 
Note that from (2.16) it follows that 

0p(EI, ... ,En ) =ap(EI, ... ,En ) =an_p(EI, ... ,En ). (2.23) 

The Weyl measure aA can also be written as a polyno­
mial in symmetric functions by recognizing its occurrence in 
the theory of equations.7 First, since 

a = II(Ei - Ej ), 

i<j 

A = fI(II Ek - II Ek,) 
i<j k#i k'#j 

-an-I(E E)( _l)n(n-l)12a 
- n 1"·" n 

= (_ 1)n(n-I)/2a. 
Hence the measure becomes 

aA = (- Itln-I)l2a2. 

(2.24) 

(2.25) 

Since a is an alternating homogeneous function, its square is 
symmetric and homogeneous. The Weyl measure is in fact, 
up to a sign, the discriminant of the polynomial whose roots 
are EI,E2, ... ,En. Let 

n 

J(x) = II (x - Ei ), 
i=1 

/'(EI) = (EI -E2)"'(EI -En)' 

/'(E2) = (E2 - EI )"'(E2 - En) , 

n 

(2.26) 

(2.27) 

II /'(Ei ) = ( - 1)n(n - 1)/2(EI - E2)2 ... (En _ I - En)2 
i=1 

= aA = R (J,/'), (2.28) 

whereR (f,/,) isSylvesters' formofthediscriminanC ofJ(x). 

Examples: 

J(x) = (x - EI)(X - E2) = aoX2 + alx + a2, 

aO a l a2 

R (f,/,) = 2a0 a l 0 = 4a2 - ai, (2.29) 

o 2a0 a l 

J(x) = (x - Ed(x - E2)(X - E3) 

R (f,/,) 

ao a l a2 a3 0 
o ao a l a2 a3 

3ao 2a1 a2 0 0 
o 3ao 2a1 a2 0 
o 0 3ao 2a 1 a2 

=27a~ +4a~ -aia~ +4a~a3-18ala~3' 
(2.30) 

To summarize 
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.1A = R (/'1'), 
for SU(n) with 

n n 

I(X) = II (X - EI ) = Lalxn - I
• 

1=1 1=0 

An application is now in order. We solve the following prob­
lem: How many spin-O representations occur as irreducible 
summands in the tensor product of N spin-! particle repre­
sentations? For SU(2) the previous analysis shows 

- 2 .1W2! = 2a2 - !al • (2.31) 

Hence the number in question is 

D ~ 12 + 1 (2a2 - !a~ Jaf, (2.32) 

which is clearly zero if N is odd. Explicit evaluation using the 
facts that a l = EI + E2, a2 = EIE2 shows 

D~/2+ I (2a2af - !af+2) 

t
o, Nodd, 

- (2.33) 
- 2(ZI2) - !(ZIi~ I)' N even. 

A trivial case that does not require the operator approach is 
the direct sum decomposition of the tensor product of m 
defining fundamental representations of SU (n ). The coeffi­
cient of each irreducible summand is clearly just the number 
of standard tableaux associated with the Young frame that 
labels the representation I 

(® o)m 

_ II + ... + I. = m {m!II7 < j (I I - I j + j - ;) } - L (/1,···,fn) . 
f.>f.>···>I. II7= 1 (II + n - O! 

(2.34) 

fhe number of trivial representations contained in the direct 
sum decomposition of (® o)Nm in SU(N) is 

(Nm)IIIk' ~ol(k )1 

III. ITERATIVE SOLUTIONS AND MULTIPLICITY 
FORMULAS 

(2.35) 

Decompose a!, into monomial symmetric functions of 
the form 

(3.1) 

We note first of all that the only monomial symmetric func­
tions that occur in the decomposition of ~ are those of the 
form 

(3.2) 

withjl + 2j2 + ... + p.jp = mp by (2.19) and (2.20). Then in 
(3.1) we must have 2m = 2p + q. Starting with m = 1 and 
building up the series using 

D!,~a1 = D!,_pa1 

together with the multinomial theorem, the result is 

D !,~a1 = q!/(q/2)!(q/2)!. 

From this it is deduced that coefficients of the form 

D~~I~' 

(3.3) 

(3.4) 

are sufficient to generate the entire monomial decomposition 
of a~. This is due to the fact that 

D 3 aPI -P' - DPIDP'a3 = DPIDP'D P3a3 
m 1"""2 - 12m I 2 3 m+P3 

- D 3 _PI_P,_P3 
- m+P3"""1"""2"""3' (3.5) 

D 3 a':1~ = D 2 ~ (PI )(P2 )a':1 + m, - ml~' - m, 
ml2 m ~ 1 2 

ml+m,=m m l m2 

Introduce the notation 

D2 ~aq = {(2)P (1)q} = { (1)q} 
m 2 1 (m)2 (m)2 ' 

D3 ~ q _ {(2)P (1)q} 
m 2

a
l - (m)3 ' (3.7) 

D4 a'~aq = {(3), (2)P (1)q}, 
m 3 2 1 (m)4 

and one obtains the recursion formula 

{ 
(1)P1 ~2)P'} = L (PI)( P2 ){ (1)P~ + m - 2ml}. 

(m) ml=Oml m-ml (m) 
(3.8) 

Consider now D!.~I~'a)3, a term that occurs in the 
problem for SU(4): 

D 4 a':1~'al? = D 3 ~ ( PI )(P2 )(P3 )a':1 - ml + m'a!!' - m, + m3~3 - m3 
m I 23m ~ \m m m I 2 3 

m, + '"2 + m3 = m 1 2 3 

= L(~)(~2)(~)D ~ + m3 _ P3 ~I - ml + m,~, - m, - m3 

= L (PI )(P2 )(P3) {(1)P1 - m
l 
+ m, (2)P' -3m, + m3}. 

ml + m, + m3 = m m I m2 m3 (m + m3 - P3) 
(3.9) 

Special cases occur when api is zero, an example being 

(p )( P ){(
l)m, (2IP,+m-m,} 

D4 a!!'al:3 - L 2 3 , 
m 2 3 - m, = 0 m2 m - m2 (2m - P3 - m2)3 . 

(3.10) 
It should be noted that in (3.9) only a few terms in general 
will contribute, since for x > y the binomial coefficient (~) is 
zero. It is also clear that the last three formulas in the appen-
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rl------------------------------~----
dix are easy consequences of(3.9). The process of(3.9) can be 
iterated to obtain the monomial decomposition coefficients 
for a symmetric function am raised to any power P in terms 
of the coefficients for P - 1, P - 2, ... ,2,1. It is worth noting 
that for SU(3), the decomposition of the product ofp quark 
and P antiquark representations to singlets involves the coef­
ficient 
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TABLE I. Values off unctions T, S, r. 

p T(p) S(p) rp(O) 

0 1 6 1 
1 3 36 1 
2 15 240 2 
3 93 1710 6 
4 639 12726 23 
5 4653 97608 103 
6 35169 765288 513 
7 272 835 

8 2157759 

f (P)2(2P - 2k) = rr(P)(P)(P - k)(P - k) 
k=O k P - k k q k k q q 

p!pl 
= ~~ k Ik Iqlql(P - k - q)l(P - k - q)1 

{
pI }2 =r ' 

k.q k Iql(P - k - q)1 
(3.11) 

which is the sum of the squares of the trinomial coefficients. 
Also in SU(2), we note that 

2pI = (2P) = f (p)2. (3.12) 
p!pl \P k=O k 

Using (2.30), (3.6), and (3.11), the number of irreducible sing­
lets contained as summands in the tensor product of p quark 
and p antiquark representations of SU(3) is 

reo .. SIP (0)= ~T(P) - iT(P + 2) - 3T(p + 1) + ~S(P) 
=rp(o), (3.13) 

where 

and (3.14) 

S (P) = f (P)(P + 3)(2P + 2 - 2q). 
q=O q q + 1 P + 1 - q 
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A few of these numbers are tabulated in Table I. 
Arbitrary tensor products may be decomposed into irre­

ducible summands by substituting their character determi­
nants (2.14) or (2.15) in terms of symmetric functions to­
gether with the symmetric form of a~ into (2.22). This 
method has the advantage over Klimyk's and Steinberg'S 
formulas! in that products of two or more representations 
may be reduced without having to reduce the factors pair­
wise. The Weyl group of SU(n) is of order nl so that Stein­
berg's formula involves a sum over (nl)2 terms, each of 
which involves evaluation of a partition function. Klimyk's 
formula requires complete knowledge of all weights, multi­
plicities and their stabilizers in the Weyl group. Our present 
method requires much less information and calculation. 

APPENDIX: COMBINATORIAL FORMULAS IN TERMS 
OF HAMMOND OPERATORS 

Multinomial theorem 

in symmetric function notation 

(It = r / ml / (A )/' ... (..1. {j ... , 
(A I) , ... {IlI) i ... 

Dm,Dm, ... Dm.o'[' 

= m!/m!lm21 ... mnl, m! + ... + mn = m, 

D~o'[' = m!/(p!j9, pq = m, 

D r;:Oqol{ = (;')(Pl)/{ (n - 1)!}9(nlt -q, nm = q + p. 

I A. O. Barut, and R. Raczka, Theory o/Group Representations and Applica­
tions (PWN-Polish Scientific, Warsaw, 1977). 

2H. Wey1, The Classical Groups (Princeton V.P., Princeton, NJ, 1946). 
3J. R. Schmidt, J. Math. Phys. 26, 2721 (1985). 
'P. A. MacMahan, Combinatory Analysis, Vol. I (Cambridge V.P., Cam­
bridge, England, 1915). 

sE. O'Hoker, J. Math. Phys. 25, 1 (1984). 
6F. N. Oavid, M. G. Kendall, and O. E. Barton, Symmetric Functions and 
Allied Tables (Cambridge, New York, 1966). 

7J. V. Vspensky, Theoryo/Equations (McGraw-Hill, New York,1948). 
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A simple general construction of all solutions to the set of equations [01" Ov] = exp (21rinI'J 
N)I, where 01' eSU (N) or U (N) and J.L, v = 1, 2, ... , 2g, is given. 

I. REDUCTION TO A CANONICAL FORM 

Twisted guage fields on the hypertorus, both in the con­
tinuum 1 and on the lattice,2 posed the interesting mathemat­
ical problem of finding matrices 01' in SU(N) or U(N) 
(called twist-eating solutions), such that 

[01" Ov] = 01' OvO;1 0;1 

= exp (21rinI'JN)1. (1) 

Here n is called the twist tensor; it is skew symmetric with 
integer entries mod N. The indexJ.L runs from 1 up to 2g (the 
dimension of space-time; odd dimensions need not be con­
sidered separately). For details see Refs. 3 and 4, where the 
full solution of this problem for g<.2 was found (see also Ref. 
5). 

By means of a Sl (2g, Z) transformation X, we can al­
ways transform n to its standard3 form nS 

: 

o el 

nS = (2) 

-eg 

where e1 Ie21·· 'Ieg and n = 'Xns X. (For integer p and q the 
symbol plq means that p divides q.) If [0.1" 
nv] = exp (21rin~JN)I, then Eq. (1) is solved by 

(3) 
v 

The standard form nS is not unique since we can add a multi­
ple of N to each nl'v' However, transformation (3) is inverti­
ble4

; the specific choice of n' is therefore irrelevant. To be 
precise, 

v 

with ZI' an element of the center ofSU(N), depending only 
on n andX. 

Define 

1; = gcd(e j.N), N) = Ng+) = N /1;, j = 1, 2, ... ,g. 
(4) 

(Greek indices will always run from 1 up to 2g and Latin 
indices from 1 up to g; gcd = greatest common divisor.) 
From the commutation relations it follows that 

[
-N - ] [- -N 0) J,Og+) = O),Og~)] =1. 

-N 
Hence, the 01'''eSU(N) or U(N) commute, so they can be 
simultaneously diagonalized. Let AeSU (N) be such that the 

WI' = An:"A -I (5) 

are diagonal matrices. As [WI',AnI'A -I] = I forallJ.L,vwe 
can choose diagonal matrices AI' such that 

A:" = WI' and [AI" AOvA -1]. (6) 

If we define 

0' = A -IAn A-I (7) I' I' I' ' 
then the O~ satisfy 

[O~,O~] =exp(21rin~JN)I, (O~)N,,=1. (8) 

Next we will further simplify these commutation relations. 
Recall that gcd (e J / I j , N) = 1; hence there exist inte­

gers M) such that 

Mj(e)/1;)==1 (modN}). (9) 

Define 

(10) 

This transformation can also be inverted: OJ = U~eIO, 
where we used that (OJ)NJ=I. As [U)' Ug + j ] 

= [(OJ )MJ, 0;+)] = exp(21rie )Mj/N)I and e }Mj/ 
N = M J (e j/ I) )/Nj = N j I (mod Z), we see that the UI' 
satisfy the commutation relations (1) with a twist tensor m 
in standard form: 

0 . . . 
m= 

Ig 
(11 ) 

-11 . . 0 . 
-Ig 

(Note that I 11/21· .. I I g and moreover each I j divides 
N.) In particular, 

[U),Ug+)] = exp (21riN j I), (UI' )N" = 1. (12) 

Hence to find all solutions to Eq. (1) it suffices to determine 
all solutions to Eq. (12). 

II. THE GENERAL SOLUTION FOR THE CANONICAL 
FORM 

Theorem: There exist matrices UI' eGI(N) satisfying 
Eq. (12) ifandonlyifN1N2•• ·Ng dividesN, whereNi = N / 

ft· 
Proof: Note that the subgroupK of GI(N) generated by 
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Up. is finite. Moreover the U j (I < j < g) generate an Abelian 
subgroup, in particular there is a basis of eN consisting of 
simultaneous eigenvectors for all U j (1..;; j < g). Let v be such 
a basis vector and assume Ujv = exp (21Tia /Nj )v. Then 
Uj (Ug+ jV) = exp (21Ti(a j + 1)INj )Ug+ jV, hence the vec­
tors Kv span a subspace V of dimension N1N2· . . Ng. It is easy 
to see that K acts irreducibly on V. Proceeding with this 
method in theK-invariant complementary subspace of Vwe 
see that eN is a direct sum of k K-invariant subspaces, each 
of dimension N1N2· . . Ng. So N = kN1N2· . . Ng. 

To prove the converse, let Vbe a vector space of dimen­
sionN1N2•• ·Ng with a basise(b1, b2, ... ,bg), withb jEZIN/l. 
Define linear maps U ~: V ~ V by 

Uje(b1,b2, ... A) = exp (21Tib/Nj )e(b1,b2, .. · ,bg), 

u;+ je(b1, ... ,b j , ... ,bg) = e(b1, ... ,b j + I, ... ,bg). 
(13) 

It is easy to check that the U~ satisfy Eq. (12). Now assume 
N = kN1N2·· .Ng, then eN ~ V" and define Up.EGI(N) by 
the block diagonal sum of k copies of U ~. Then obviously 
the Up. also satisfy Eq. (12). • 

We point out that the finite group K generated by the Up. 
is a Heisenberg group. All irreducible representations were 
constructed in Ref. 6. Solutions ofEq. (12) form representa­
tions p of K, which, when restricted to the center 
C(K) ( = {AIIANI = I}~ZN.) of K, is given by p(c) = c, 
'r/CEC(K). This implies that each irreducible component ofp 
has to be the unique so-called Schrodinger representation6 

[Eq. (13) ]. Hence, p is unique up to a similarity transforma­
tion. 

More directly, following closely the above proof of the 
theorem, it is easily seen that for k = I, e(b1, b2, ... , bg ) and 

U~bJ--/j)V are to be identified. Similar statements for k> 1 
reproduce the block diagonal form, and two solutions to Eq. 
(12) have to be equivalent, i.e., 3AESU (N), U ~2) 
=AU~I)A -I, 'r/ft. We will conclude this note with a few 

remarks. 
The Up. are unitary matrices. The explicit matrices for 

Eq. (13) are given by 

U'· = IN ® ... ® QN. ® ... ® IN' 
} I } g 

(14a) 

with 

o 

P = n 
(14b) o 

1 o 
This establishes the relation with the previous construc­
tions.3

-
5 

A solution Op. to the original Eq. (1) is clearly specified 
by AESU(N) and Ap.' a diagonal unitary matrix [see Eqs. 
( 5) and (6)], together with U ~ [see Eqs. (13) and (14) ] . 
Equation (6) implies that Ap. is a multiple of the identity in 
each block of U ~ : Ap. = diag (A ~ 1) I, ... ,).. ~k) I), with I the 
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N1N2· . . Ng -dimensional identity matrix. Hence, the pair (A, 
Ap.) forms the group G = SU(N) XU(1)k. On the other 
hand, the uniqueness of solutions to Eq. (12) guarantees 
that for each {Ap.} satisfying A~" for all ft, there exists an (in 
general not unique) AESU(N) such that for allft, 

AU' = AU' A -I AN" = I ( 15) p. p. p. , p. . 

[This can be explicitly verified for Eq. (14).] Equation 
( 15) specifies a subgroup H of G. The solutions to Eq. (I) 

are [for Op.EU(N)] in 1-1 corresponding with G IH. These 
solutions are described by 2gk inequivalent continuous pa­
rameters [2g(k - 1) for fip.ESU(N)]. A case of special in­
terest is k = I for fip.ESU(N), where the solution space for 
Eq. (1) modulo equivalence is discrete and isomorphic to 
IIJ= 1 (ZNIZN)2, with N Z(g-1l elements. 

Suppose N = k IIf = 1 N;, define 

(16) 

Obviously both np'v and N·P I (nIN) are multiples of k, 
sincee; = -m;k IIN;N j and N.PI (nIN) = -k II;m;. 
Consequently N·P I (nIN)EZ is a necessary condition for 
existenceofa solution to Eq. (1). Next observe that gcd(m;, 
N;) = 1 and NgINg_1l·· . IN •. Hence gcd(m l , N f ) = 1, 
for all j>i, so 

gcd(n/Jv,N.P l(nIN),N) = k gCd(JtN;. ;~tm;). (17) 

Given a solution, it is clearly unique up to a similarity trans­
formation and Z N factors if and only if k = 1. Hence 
gcd (np.v' N·P l(nIN), N) = 1 is a sufficient condition for 
uniqueness. Forg = 2itisalso necessary, as can be seen from 
Eq. (17) and gcd(mz' Nz) = 1. Furthermore, in the case 
g = 2, N·P I (nIN) = - e1e21N. We can write e; = m; Ii> 
and N= 12C with gcd(mi>c) = 1. Hence N'PI(nIN) 
= - m 1m21 llcEZ implies that II is a multiple of c. So 

N ININ2 = f tf 21N = f /cEZ. Consequently for g = 2, 
N·P I (nIN)EZ is also sufficient for existence of solutions to 
Eq. (1). 

That the above criteria [i.e., N·P I (nIN) is sufficient 
for existence and gcd(np.v' N·P I (nIN), N) = 1 is necessary 
for uniqueness] cannot be extended beyond g = 2 can be 
seen from the following two examples constructed by Coste 7: 

(i) g = 3, N = 2236
, e l = e2 = 34

, and e3 = 2434 (hence 
N. = N2 = 2232 and N3 = 32), soN·P l(nIN) = e1eze31N2 

= I but N.N2N3 = 4N does not divide N, and no solution 
exists; and (ii) g = 3, N = 2273

, e l = e2 = 2 . 3 . 72, and 
e3 = 23 

• 3 . 72 (hence N. = N2 = 2 . 7 and N3 = 7), so gcd 
(np.v, N·P l(nIN), N) = 2, but NIN2N3 = N and the solu­
tion is unique. 

Note added in proof: After completion of this work, we 
received a preprint by Lebedev and Polikarpov.8 Their re­
sults coincide with those of Ref. 6 and this paper. 
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Differentiation of retarded integrals and the divergence theorem for retarded 
functions with discontinuities 
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Theorems expressing the time derivatives of retarded volume and surface integrals are presented 
as well as the Gauss divergence theorem for retarded functions with discontinuities. These 
theorems greatly facilitate the analysis of gravitational radiation from the motion of disjoint 
matter distributions in general relativity and could find useful application in other branches of 
physics. 

I. INTRODUCTION 

In the course of our research on the two-body problem 
in general relativity, 1-3 which is concerned with the calcula­
tion of gravitational radiation emitted when two disjoint 
gravitationally interacting bodies accelerate in free-fall, cer­
tain interesting mathematical problems arose. In order to 
deduce the field and hence the radiation, it was necessary to 
consider time derivatives of the retarded volume integrals of 
functions with discontinuities as well as to employ the Gauss 
divergence theorem with such retarded functions. We are 
using the word "retarded" in the usual sense that at the field­
point r at time t, contributions from source-points r' are to be 
evaluated at time t - Ir - r'lle to allow for the propagation 
of signals with the speed oflight.4 

Mter developing methods to handle such integrals, we 
realized that the mathematical problems are of more general 
interest in that the wave equation and its causal retarded 
solutions, as well as the application to disjoint sources with 
discontinuities, are common to a variety of areas in physics. 
Accordingly, it was deemed desirable to present the follow­
ing results, which we have found invaluable in our treatment 
and understanding of the two-body problem, as a separate 
study accessible to researchers in all areas of mathematical 
and theoretical physics. For completeness, we also include a 
treatment of time derivatives of surface integrals. 

Consider a time-independent volume V, bounded by a 
surface S, in which scalar and vector functions I (r,t) and 
F(r,t) are defined. Both I and F are continuous everywhere 
except on a closed time-dependent surface D(t) within V. 
The (time-dependent) volume contained in the interior/ex­
terior of D is denoted Vin (t) / Vex (t); in these regions, I is 
denoted lin/lex. The velocity of an element of Dis u(t). The 
theorems considered below divide into two classes: (A) 
theorems for volume integrals defined on a time slice 
t = const, and (B) theorems for retarded integrals, which 
we develop in turn. 

II. TIME DERIVATIVES OF VOLUME INTEGRALS 

(A) We now demonstrate the following: 

!!... { lin dV = { (a hn ) dV + ,( d S • Uhn' ( 1) 
dt JV;n JV;n at jD 

!!... { lex dV= { (a/ex)dV_'( ds·ulex. (2) 
dt Jv.. Jv.. at h, 

Equation ( 1) follows from the assertion that V in is t depen­
dent. Suppressing spatial coordinates in the integrands, we 
have 

!!... { lin dV 
dt JV;n 

. {S Vin(t+ Ill) lin (t + 8t)dV - S Vin(l) lin (t)dV} 
= hm . 

IlI~ 8t 

(3) 

Clearly, the right side of (3) has contributions from the fol­
lowing two spatial regions: (i) the region Voverlap, compris­
ing the intersection Vin (t + 8t) n Vin (t) [the contribution 
to (3) from this region in the limit is S Vin(l) (a/in/at)dV], 
and (ii) the region V* comprising points lying inside 
Vin (t + 81) and Vin (t) but outside Voverlap. Le., 

V*=( Vin (t) U Vin (t + 81») - Voverlap. (4) 

In the limit as 8t-o, the contribution to (3) from this region 
takes the form 

£ ds·u/in · 

Addition of these contributions to (3) yields Eq. (I). 
Equation (2) may be proved in a similar manner; the 

minus sign on the right side of (2) arising because ds points 
from V in to Vex· 

Finally, addition of (1) and (2) yields the useful rela­
tion 

!!...{ldV= {(aJ)dV+,(dS,u /I , (5) 
dt Jv Jv at h, 

where 

(6) 

onD. Note that in (5), (ai/at) is defined in V* but not onD 
(see Ref. 5). 

(B) We now discuss theorems corresponding to (1), 
(2), and (5) for retarded integrals. 

First, it is important to develop a consistent notation for 
retarded integrals. The archetypical retarded integral corre­
sponding to the integral on the left side of ( 1) is of the form 

¢J(r,t) = { dV' hn (r', t - R), (7) 
J[Vinl 

where 
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R=r-r'. (8) 

In (7), the region [V in] of integration is the intersection of 
the interior world tube INT, which at the time t defines 
V in (t), with the past light cone LC (t) from the field point r 
at time t. More precisely, [Vin ] is designated [Vin he(r): 

[Vin ]LC(t) = INT n LC(t). (9) 

In the following calculations, the prime is henceforth 
dropped from dV' in the integrand of (7) and the retarded 
integrand is denoted with square brackets [/ in ] . 

We now show that the retarded analogs of ( 1), (2), and 
(5) are, respectively, 

!... r [Ii] dV = r [a/in] dV +,( d s. [ aifin ] , 
at J[v .. ] m J[vln ] at ~D] w 

(10) 

!... r [/ex] dV = f [a/ex] dV _,( d s. [ qfex ] , 
at J[Ves] JIVes] at ~D] w 

(11 ) 

:tL[/]dV= fJZ]dV+ fdS.[~], (12) 

where square brackets in the integrands indicate retardation 
to times t - R as in (7); square brackets on Vell and D indi­
cate intersection with LC(t) as defined in (9); 

A A 

Ws=l-u·R, Rs=RIR; (13) 

and /1 in (12) is defined in (6). Notethatpartial-t deriva­
tives appear in (10)-(12) because retarded integrals are 
functions of the field-point coordinates r. 

To prove (to), we again start from first principles. The 
left side of ( to) is, from (7), 

at/> = lim {t/>(r,t + 81) - t/>(r,t) } . (14) 
at 8t--oO ~t 

As with (3), the right side of ( 14) [with (7) ] has contribu­
tions from two spatial regions. In this case, the regions, illus­
trated in Fig. 1, are6 the following. (i) The region [Vovetlap] 
is defined by 

CLOSED SURFACE 

[D]LC(t) 

FIG. 1. Region of integration for the retarded integrals. 
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[ Voverlap ] = [ Yin ] Le(t + 8t) n [ Yin ] LeU)' 

The contribution to (14) from this region in the limit is 
clearly 

f [a/in] dV, 
J[ V .. ]LC(,) at ' 

which is the first integral on the right side of (to). 
(ii) The region [V·] is comprised of points lying inside 

[ V;n hC(t +8t) and [V;n hC(t) but outside [V overlap]' The 
contribution to (14) from [V·] in the limit as 81-0 is 

,( ds • [ q(;n ] , 
~D] W 

where W, defined in (13), arises because the integral is eval­
uated on the past light cone from the field point at r. 

Addition of the contributions from (i) and (ii) reduces 
(14) with (7) to the form of (to). 

Equation (11) is proven in a similar manner, and addi­
tion of (10) and (11) yields (12). 

III. GAUSS'S THEOREM 

(A) Gauss's theorem for the volume integral 
Iv (V· F)dV, defined on the slice t = const, is clearly 

L (V· F)dV = idS. F + L d s 0 FI, (15) 

where FI is the vector discontinuity corresponding to (6): 

FI=Fin - Fell (16) 

onD(t). 
(B) A simple calculation yields Gauss's theorem for the 

retarded integral I V [V • F]dV: 

L [V • F]dV = i d s • [F] + £ d s • [FI] 

- fJ:t (R. F)] dV, (17) 

where the vertical slash indicates discontinuities as in (16). 

IV. TIME DERIVATIVES OF SURFACE INTEGRALS 

This section considers time derivaties of D-surface inte­
grals of vector discontinuities ofF, defined in (16). 

(A) A straightforward series of calculations using ( 15 ) 
and (5) yields 

.!!...,( ds·FI = ,( dsoaFI +,( ds·u{(V·F)I}, (18) 
dt jD jD at jD 
where the vertical slash again defines discontinuities as in 
(16) and (6). 

(B) The retarded analog of (18) is found from (17) 
with (12): 

!...,( ds. [FI] =,( dso [aFI] 
at ~D] ~D] at 

+,( ds.[U(VOF)I] 
J;D] W 

+,( dS.[U(alat)(ROF)I]. 
J;D] W 

(19) 
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II. Necessary condition for complete transparency. 
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A smooth one-dimensional system of N potential barriers of arbitrary shapes (unequal or equal) 
is considered. A general necessary condition for complete transparency is obtained that can be 
understood as a constraint on the reflection coefficients pertaining to the single barriers of the 
system. A maximum transmission problem of a general kind is solved and the solution is used to 
give a physical interpretation of the necessary condition. The sub- and superbarrier cases are 
treated in a unified way. The exact final formulas can readily be converted into accurate 
approximate ones by insertion of available phase-integral expressions (of an arbitrary order) for 
certain characteristic quantities appearing in the formulas. 

I. INTRODUCTION 

We study the one-dimensional SchrOdinger equation 

~~ + Q2(z),p = 0, (1) 

where 

Q2(z) = (2m/~)[E - Viz)], (2) 

z being a complex variable (the real values of which will be 
denoted by x) and E being the energy of a particle with mass 
m moving in the potential field V (x) that, having N humps of 
various shapes, forms a general system of N potential bar­
riers. We assume that Q 2(Z) is an analytical function of z in 
the complex plane. 

In a previous paper! (to be referred to as I), the transmis­
sion coefficient pertaining to the above-mentioned system of 
N (> 1) potential barriers of general shapes (unequal or equal) 
is expressed exactly, by means of the phase-integral method 
ofN. Froman and P. O. Froman, in terms of quantities char­
acterizing the separate barriers and wells of the system. The 
present article is based on the results in I, and the reader is 
referred to that paper for the notation and general back­
ground and also for illustrative figures and for further refer­
ences to relevant papers. Some key facts about the phase­
integral method are given in Appendix A of I. 

In two forthcoming papers,2,3 also based on the results 
in I, we shall treat in the first one transmission through a 
system of N identical potential barriers of a general shape 

B(.1.) B(N-I) 
Vex) 

<-- Q, ~ 

and, in the second paper, bound states of a general potential 
well containing N humps of arbitrary shapes. 

The problem to be treated in the present paper can be 
regarded as a generalization of a corresponding problem for 
a system of rectangular barriers. The latter problem, being 
easier to formulate and visualize, is therefore well suited as 
an introduction to our real work. So let us start by consider­
ing the rectangular system of N barriers shown in Fig. 1, 
which is defined by 

{
Vi' for Xo + Si <x<xo + Si + ai' 

V(x) = 
0, elsewhere on the x axis, 

where 
i-I 

Si = ~ (ak + bk ), S! = 0, i = 1,2, ... ,N. 
k=! 

(3) 

Let the energy E of the incident particle take some fixed 
value in the discussion below. The reflection coefficients 
Ri(E) for the separate barriers (i = 1,2, ... ,N) as well as the 
transmission coefficient T(E) for the whole barrier system 
then naturally become fixed. We ask the following question. 
How can we alter the form of the barrier system without 
changing the reflection coefficients Ri(E) of the separate 
barriers? As we realize, this can be done by altering, quite 
arbitrarily and independently, the distances b I (i = 1,2, ... ,N) 
between the separate barriers. In addition, we can continu­
ously change the form of each separate barrier B (11, within 
certain limits, by letting a change of the height Vi be accom-

B(N) 

-a.N~ 
FIG. 1. A system of N rectangular barriers. The 
width of the barrier B (l)isa/t its height is V;,and 
the distance to the next barrier to the right is b I ; 
E is the energy of the incident particle; and the 
quantity s, is defined by s, = l:~:' \ (ak + bk ) 

ands\ =0. 

~a.t.~ 

r--
E 

I<- 6,-

-----\ x 
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panied by the proper change of the width a j so as to keep 
RI(E) constant during the modification. We may regard all 
the different barrier systems, which can be obtained by alter­
ing the parameters hI' aj' and Vj (i = 1,2, ... ) in the way de­
scribed above, as members of a family of barrier systems. The 
transmission coefficient T (E) is certainly not the same for 
every member of this family, however, but depends strongly 
on the parameters hI' ai> and V;. We now ask two questions. 
What is the maximum value of T (E) that can be attained 
through alterations in all possible ways of the form of the 
given rectangular barrier system, limited only by the restric­
tion that the reflection coefficients Rj(E) of the separate bar­
riers shall be unchanged by the modifications and that the 
rectangular property shall be preserved. The reader is re­
minded that E is held fixed. What condition must be fulfilled 
by the original rectangular barrier system [fulfilled by the 
reflection coefficients Rj(E) of the separate barriers] in order 
that the maximum value of T (E) shall be equal to unity? An 
answer to the latter question would give a necessary condi­
tion for complete transparency. 

We may pose similar questions with respect to a smooth 
barrier system. The following extreme case will serve as an 
introductory example. We consider the potential 

N [ _ (x - a.)2 ] 
V(x) = .L Cj exp 2 1 , 

1=' h j 

(4) 

where aj' hi> and Cj are real constants. The distances 
la j - aj I, i=l= j, are assumed to be very large. The curve of 
V(x) then shows N barrier humps at very large distances 
from each other. We realize that by changing moderately the 
distances la j - aj I, i =1= j, and thereby altering the form of the 
barrier system, we can make the transmission coefficient 
T (E) for the barrier system change considerably, while at the 
same time the reflection coefficients pertaining to the com­
ponent barriers remain essentially constant. With regard to 
these barrier systems, obtained by varying the parameters aj 

(i = 1, ... ,N), we could ask the above-mentioned questions 
about maximum transmission and possible transparency. 

However, our aim is to consider general smooth barrier 
systems containing barrier humps at arbitrary (not necessar­
ily large) distances from each other. For systems of that kind 
we want to formulate a natural generalization of the earlier 
presented problem for rectangular barrier systems. 

For this purpose we shall first consider a potential V(x) 
having just one single hump. Let us take 

V(x;C,a) = Cexp[ _x2/a2
], (5) 

where C and a are real constants. The potential curve is pic­
tured in Fig. 2. Again we let the energy E of the incident 
particle be fixed in the discussion below. The points t, and t2 
are the classical turning points where V(x) = E, and x, and 
Xz are points to the left and to the right, respectively, of the 
turning points. Let us apply the results in I to the potential 
(5), making some comments without going into detail. 

From (44a) and (28) in I, putting N = 1, we find for the 
reflection coefficient R (E) the following exact expression: 

R (E) = (B,/A,)2. (6) 

In (6), A, and B, stand for the limiting values, as x, -+ - 00 

and X 2 -+ + 00, of the quantities A, and B, which are gener-

462 J. Math. Phys., Vol. 27, No.2, February 1986 

E 

__ ~-I------.-.. _ .. __ .l-I __ ..........:-.,., __ ._~ ... X 
x, t, tl. x .. 

FIG. 2. Subbarrier transmission through the potential barrier V(x;C,o) 
= C exp[ - xl /02]. Here E is the energy of the incident particle. The points 

t I and t2 are the classical turning points where V (x) = E, and x I and X2 are 
points to the left and to the right, respectively, of the turning points. For 
further details about the phase-integral method the reader is referred to 
Figs. l(a), l(b), 2(a)-2(d), and 3 in Ref. 1. 

ally defined by (14a) and (14b) in I as follows: 

A, = IFdx,,x2)1, 

B, = 1F22(X"X2 ) I. 
(7a) 

(7b) 

The elements of the matrix F(X,,x2) are given by the conver­
gent series (3.22aH3.22d) in Ref. 4. Formulas (BI) and (B2) 
in I give useful phase-integral expressions for A, and B" 
consisting of an approximate plus a correction part. We ob­
tain from (6) above and (B5) in I the exact formula 

I (A)' --= -' = [I +exp( -2K,)] 
R(E) B, 

X(I +exp[ -K,-!(IK,I +K,)]D(,u,»). 

(8) 

The quantities,u I and,u I exp [! ( IK II - K I) ] are assumed to 
be small compared to unity. The symbol D( ,Ill) denotes a 
quantity at most of the order of magnitude,u ,. From (8) we 
conclude that (B I /A I )2 is practically insensitive to changes 
in the positions of x I and x2, if these points are situated far 
enough from the turning points t I and t2• In fact, formula (8) 
with neglect of the correction term gives the same approxi­
mate value of R (E) in the case when x I andx2 are situated at 
finite distances from the barrier top as in the limiting case 
when XI -+ - 00 and X2 -+ + 00. The difference between 
the two cases is only seen in the different values of the per­
taining correction terms. 

In the subbarrier case illustrated in Fig. 2, the first-order 
phase-integral expression for K, is given by 

K, = (2m)'/2 ft

' (V(x) -E)' /2 dx. (9) 
Ii t, 

From (8) and (9) we clearly see how R (E) is affected by a 
variation of the form of V(x). If the value of C in (5) is in­
creased, the potential curve in Fig. 2 is raised, which means 
that K,(E) in (9) increases. But by decreasing appropriately 
the parameter a in (5) at the same time, we can arrange that 
K, (E) becomes unaltered by the variation of V (x). However, 
the changes of C and a also affect the correction term in the 
exact expression (8) for the reflection coefficient R (E). This 
correction term is much smaller than the term 
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Bo) B (2.) 

V(x)-E 

XI 

[1 + exp( - 2K I) ]. One realizes that it is possible, by 
means of a final small adjustment of the parameter a, to 
change the value of the dominant term [1 + exp( - 2KI )] 

precisely enough to compensate for the variation of the cor­
rection term, thus keeping R (E) unaltered. Making these 
connected changes of C and a in the potential (5), we obtain 

a potential V(x;C,Q) that has the same reftection coefficient 
R (E) as the original potential (5), for the fixed value E of 
the energy of the incident particle. The considerations above 
show the possibility of changing the form of the given poten­
tilll Vex) in (5) in such a way that the value ofR(E), for the 
fixed E, is preserved during the alteration. Also, in the case 
when XI and X 2 take finite values, similar arguments can be 
used to show the possibility of altering the form of the poten­
tial V(x) in such a way that the quantity (B II A I) 2, where X I 

and X2 take finite values, is conserved during the alterations. 
The use of higher-order phase-integral expressions, instead 
of the first-order ones, introduces certain modifications of 
the quantities K I and p, I in (8), but the general reasoning 
above remains valid. 

The reftection coefficient R (E) [see (6)] is a measure of 
that obstacle to an incident particle of energy E that is repre­
sented by the barrier. In this sense R (E) is a measure of the 
size ofthe barrier relative to an incident particle of energy E. 
Bearing this in mind, we shall call the quantity 

(BnIAn)2 (10) 

the size of the barrier B (n), relative to an incident particle of 
energy E, also when the barrier B (n) is part of a multibarrier 
system and its end points Xn and Xn + 1 assume finite values 
(cf. Fig. 3). 

We now proceed to consider arbitrary smooth systems 
of N potential barriers of the kind shown in Fig. 3. The bar­
rier B (n) is by definition that part of the potential V (x) that is 
situated betweenxn andxn + l' Previous considerations indi­
cate that the sizes ofthe separate barriers, i.e., (BnIAn)2 for 
n = 1,2, ... ,N, are those quantities pertaining to a smooth 
barrier system that naturally correspond to the reftectivities 
of the separate barriers belonging to a rectangular barrier 
system. 

Here we are interested in altering the form of the poten­
tial V(x), i.e., altering the "distances" between the single 
barrier humps and at the same time varying the "heights" 
and the "widths" of the humps, in all possible ways limited 
only by the restriction that the sizes (BnIAn)2 of the sepa­
rate barriers, relative to some fixed energy E of the incident 
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BCN) 

FIG. 3. A general smooth system 
of N potential barriers. For 
further details concerning the 
phase-integral method the reader 
is referred to the figures in Ref. 1. 

particle, shall be unchanged by the variations. We shall re­
frain from trying to give a formal mathematical proof of the 
existence of such variations of the potential V(x), but shall 
simply assume the existence and refer to the previous discus­
sion in support of the plausibility of this assumption. 

Exploiting the final formulas (43a) and (43b) in I for the 
transmission coefficient, we shall in the present paper derive 
an exact expression for that maximum value of the transmis­
sion coefficient T (E), pertaining to a given system of N poten­
tial barriers of arbitrary shapes (unequal or equal), that can 
be obtained by varying, at some fixed energy E of the inci­
dent particle, the shape of the potential V(x) in all possible 
ways consistent with the requirement that the sizes of the 
separate barriers (relative to that particular E) remain un­
changed. The multibarrier potential V(x) involved in this 
maximum problem is thus specified only to the extent that 
the sizes of the N single barriers (relative to the particular E) 
have given constant values, but is otherwise freely deforma­
ble. 

In the treatment we shall repeatedly use the inequality 
(B7) in Appendix B of I, i.e., 

An > Bn > 0, n = 1,2, ... ,N, (11) 

which follows from the assumption that the absolute value of 
the error term in (B2) of I is less than unity. This is an as­
sumption concerning the smallness of the quantity p, n' de­
fined by (B6) in I. 

From the formula for maximum transmission, we shall 
then immediately obtain a necessary condition for total 
transmission through a general system of N potential bar­
riers, GN(E)<O, which is a constraint on the sizes of the 
single barriers. As further explained in Appendix A, this 
condition can be understood as requiring the reftection coef­
ficient for the biggest barrier in the system to be smaller than 
or equal to a certain maximum reftection coefficient pertain­
ing to the rest of the barriers in the system. 

In Appendix B we shall give relations between charac­
teristic quantities associated with two single barriers that are 
mirror images of each other. 

The final exact formulas can be converted readily into 
accurate approximate ones, suitable for evaluation, by inser­
tion of available phase-integral expressions (of an arbitrary 
order) for certain characteristic quantities appearing in the 
formulas. These phase-integral expressions together with 
rigorous error estimates are listed in Appendix B of I. 
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We shall proceed as follows. We consider all those N 
barrier systems that, for a particular energy E of the incident 
particle, are characterized by the same given set of values of 
(Bn (E)/An (E»)2 for n = I,2, ... ,N, but that differ from each 
other as regards the values of /3n (E) for n = I,2, ... ,N - 1. 
The quantities An' Bn, and /3n are defined by Eqs. (1Sa), 
(1Sb), (29a), and (29b) in I. For those systems and this 
energy E, we shall determine the maximum possible value of 
the transmission coefficient. This will be achieved technical­
ly by calculating the minima of the quantities 
IPll (xl,xn+ I) 1 and IP I2 (X I,Xn + I) I, which appear in formu­
las (43a) and (43b) in I for the transmission coefficient, 
consideringAn andBn (n = I,2, ... ,N) tobeconstantsand/3n 
(n = I,2, ... ,N - I) to be independent variables. As a pre­
liminary, we shall in Sec. II introduce some useful quantities 
and in Sec. III prove a few assertions. 

II. DEFINITIONS 

For a general system of N (;> I) potential barriers, we 
shall below define certain quantities, which will enter into 
the final formulas (57)-(60) for extreme transmission or re­
flection, and which will also be used in Secs. III and IV in the 
derivation of these formulas. Although seemingly uncalled 
for at the moment, these quantities can hardly be avoided. 

We define, for i = I,2, ... ,n and n<.N, 

I (Ai +Bi n 
rn(i)=- _. II (Ak-Bk) 

2 Ai B,k=1 

(12) 

where Ak and Bk are defined by (ISa) and (ISb) in I. 
Letting Bm/Am be a quantity in the sequence BIIA I, 

B2,/A2, ... , BnlAn satisfying the conditions 

Bm/Am ;>Bk/Ak' for k = I,2, ... ,n, 

we further define 

+ Am -Bm klJ_
n 

I (Ak + Bk)). 
Am +Bm 

We also define 
n 

P~ = (Pn )2= II (A~ -B~). 
k=1 

From (16) above and (20) in I, it follows that 

P~ = exp ( - ~12Kv). 
From (14H16) it is easily seen that 

S~ -G~ =(Sn + Gn)(Sn -Gn)=P~' 
i.e., 
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(13) 

(14) 

(15) 

(16) 

(17) 

(IS) 

(19) 

1 ( n n ) 
Mn ="2 JI (Ak +Bk) + JJI (Ak -Bk) , (20) 

we obtain 

M~ -H~ = (Mn +Hn)(Mn -Hn) =P~. (21) 

Hence, 

(22) 

It should here be remarked, since it is not evident from 
the expressions above, that all the quantitiesA k , Bk , andKv ' 

and consequently also rn(i), Gn, Sn' Pn, Hn, and Mn, are 
functions of the energy E of the incident particle. 

III. THEOREMS 

We shall now prove a few assertions, some of which will 
be used in the demonstration of the statements (33a)- (33d) in 
Sec. IV, and some in a forthcoming paper.3 The principal 
results in the present section are derived for the case n;>3. 
The special case n = 2 is treated separately while the case 
n = 1 is omitted. For the physical meaning of the quantities 
(B;I AY we refer to the Introduction. 

For n;>3 we assert that 

B. Bk 
rn(i);>O=>....!..>-, for k = I,2, ... ,n but k =/:i. 

Ai Ak 

Proof: Assuming rn U);>O, we obtain from (12) 

Ai -Bi IIn Ak -Bk ---<. . 
Ai+Bi k=IAk+Bk 

Using (11), recalling that n;>3, we get from (24) 

Ai -Bi Ak -Bk 
--- < , for any k =/: i. 
Ai +Bi Ak +Bk 

Hence, 

Bi Bk 
->-, k =/:i, 
Ai Ak 

which concludes the proof. 
For n = 2 we have instead 

B. Bk 
r 2(i»0=>....!..>-, k= 1,2 but k =/:i, 

Ai Ak 

and 

(23) 

(24) 

(25a) 

r 2(i) = 0 =>.!!J... = .!!..L. (25b) 
Al A2 

From the theorems (23) and (25a) and the definition of 
Gn in (13) and (14), one immediately obtains the following 
corollaries. 

For n;>3, it is true that 

(26a) 
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and, for n = 2, 

. {r 2(z) = G2, 

r 2(1»0=> rz(k)#Gz, if k #{ (26b) 

We shall also prove the following assertions. 
For n>3, it is true that 

(27) 

and 

{

G n = r n (m) >0, where m satisfies the 

Gn >0 => relations (13)j 

rn (k) <0, for k = 1,2, ... ,n but k #m. 

(28) 

Proof Negating the right-hand member of (27), we ob­
tain by using (26a) the relation G n >0, which is the very nega­
tion of the left-hand member of (27). Assertion (27) is thus 
proved by contradiction. 

Turning to the assertion (28), we realize from ( 13) and 
(14) that G n is identical with at least one of the quantities 
rn (k), k = 1,2, ... ,n. It is therefore true that Gn = rn (m), 
where m is a particular one of the integers 1,2, ... ,n. As a 
consequence, rn (k), where k #m, must be <0, since the 
contrary assumption, i.e., rn (k»O, according to (26a) 
would imply that rn (k) = Gn and rn (m) #Gn , which con­
tradicts the statement G n = r n (m) above. Assertion (28) is 
thereby proved. 

If the potential V(x) of a barrier system satisfies the 
equation 

V(x) = V( -x) (29) 

for all real values of x, we shall say that the barrier system is 
symmetrical. Let us consider a symmetrical system of Nbar­
riers. We conveniently choose the points X t ,x2, ..• ,xN + I (se­
parating the single barriers) on the real axis such that they, in 
pairs, become symmetrically situated with respect to the 
ongln, i.e., such that XI = - X N + l' X2 = - X N ' 

X3 = - X N _ I' etc. The relations (B lOa) and (B lOb) in Ap­
pendix B are then valid for each pairofbarriers,B (I) andB (k ), 
that are symmetrically situated with respect to the origin. 

For a symmetrical system of N barriers, where the 
points X t ,x2, ... ,xN + 1 are chosen as described above, the fol­
lowing assertions are true. 

(i) If N is even >4, then 

GN<O. (30) 

(ii) If N is odd > 3, then (putting N = 2r + 1) we have 

GN>O ¢> r N (r + 1»0, 

GN>O=>GN = rN (r+ 1). 

(31a) 

(31b) 

Proof(i) We assume thatN = 2r>4. SinceNiseven, the 
system consists of pairs of barriers, each pair being symme­
trically situated with respect to the origin. To each pair the 
relations (BlOa) and (BlOb) apply, from which we realize 
that the values A k and B k characterize both barriers of that 
pair, to which the barrier B(k) belongs. This is true also of 
thevaluesA m andBm thatappearin (14). Hence, from (14) 
together with (B lOa), (B lOb), and (11), it follows that 
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- (Am -Bm) JJI (Ak +Bk ») 
k,.,m 

= ~ (A~ -B~) (}t (Ak -Bk)Z 

k,., m 

ill (Ak +BdZ)<O. 

k,., m 

(ii) We assume that N = 2r + 1> 3. The barrier system 
then contains a central barrier, B(r + 1), around which the 
rest of the barriers, in pairs, are symmetrically located. 
Equations (BlOa) and (BlOb) apply to each such pair. We 
shall first prove that r N(i) <0, if i # r + 1. From (12), 
using (B lOa), (B lOb ), and (11), we obtain in this case 

. 1 ( N r N(l) =- (A; +B;) IT (Ak -Bk) 
2 k=1 k,., ; 

- (A; -B;) }Jl(A k +Bk )) 

k,., ; 

- (Ar+ I + Br+ I) }]I (Ak + Bk )z) <0. 

k,., ; 
Thus, if N = 2r + 1 >3, we have 

r N(i) <0, for i = 1,2, ... ,N but i # r + 1. (32) 

From (28) and (32) we conclude that 

GN > O=> GN = r N(r+ 1»0, 

which proves assertion (31b) and half of assertion (31a). 
From (26a) we see that 

rN(r+ 1»O=>GN>O, 

which completes the proof of assertion (31a). 
Summing up the content of(30), (31a), and (31b) con­

cerning a symmetrical system of N ( > 3) barriers, we see that 
GN < 0 in all cases except the particular one when N is odd 
and r N (r + 1) > 0, in which case GN>O. 

IV. MAXIMA AND MINIMA OF IP11(x1,xn + 1)1 AND 
IP12(x1,xn+ 1)1 

In this section we shall prove the following assertion. On 
the assumption that Ak and Bk have given constant values 
while the quantities 13k may vary independently of each oth­
er (k = 1,2, ... ,n), the maxima and mmlma of 
IPl1 (x1,xn + I ) I and IP12 (x 1,xn + 1) I are given by the follow­
ing scheme, valid for n> 1: 

(33a) 
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IPl1 (Xt,x" + I) Imax' for n Odd} =H", (33b) 
IPt2 (xt,x" + I) Imax' for n even 

IPt2 (xt,x" + I) Imin, 
for n odd} r'" if G,,";O, 

IPl1 (Xt,x" + I) Imin' for n even = S", if G" >0, 

(33c) 

IPl1 (Xj,x" + I ) I min , for n Odd} {O ifG,,";O, 

IP12(x t,x,, + 1) I min , for n even = G", ifG" >0. 

(33d) 

Proof: The proof of (33aH33d) will be carried out by 
complete induction. 

Part 1: Recalling the definitions (14), (15), (19), and (20) 
and using that G I = Bland that B I > 0, according to (11), we 
find that Eqs. (33aH33d) assert, for n = 1, 

IP dxl,x211max =M, =At, 

JPl1(XI,x2)lmax = HI = B
" 

IPt2(x t,x2)lmin = St = At, 

IPl1 (x t,x2)lmin = Gt = Bt· 

According to Eqs. (28) and (29a) in I, the matrix P(x"x2) 
is given by 

(Bt At) 
P(Xt,x2) = \At B

t
' 

Assertions (33a)-(33d) are thus seen to be true for n = 1. 
Part 2: Let us next show that the assertions (33a)­

(33d) must be true for n, if they are true for n - 1. We shall 
first consider the case when n is odd. Thus, we assume that 
(33aH33d)aretrueforn - 1, wheren (>3) is an odd integer. 
From (36) in I, and (17) in the present paper, we then obtain 

IPll(xt,x"W - IPdxt,x"W = P~_I' (34) 

Hence, 

IPl1(x t,x,,)I-IPdxt,x,,)1 = IP ( ~~-I~ ( )1 
11 xt,x" + t2 Xt,x" 

(35) 

From (35), observing with the aid of (34) that IPtt (x t,x,,) I and 
IPt2(x t,x,,)1 simultaneously assume their maximum values 
(alternatively, minimum values), we conclude that 

(IPl1(Xt,x,,)I-IPt2(Xt,x,,)llmin 

= JPl1(xt,x,,)lmax - IPdxt,x,,)lmax 

(IPl1(x t,x,,)I- IPdxt,x,,)I)max 

= JPl1(x t,x,,)lmin -IPdxt,x,,)lmin' 

From Eqs. (33) and (28) in I, we obtain 

P(xl,x,, + I) = P(x/,x")P(x,,,x,, + I) 

Hence, 

(36a) 

(36b) 

Pl1(x/,x" + /) = B"PI1 (X I ,x,,) + exp{ 2i,8" _ t JA"Pdxl,xn), 

(37a) 
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Pdxt,x" + tl =A"Pl1(x t,x,,) + exp{2i,8,,_1 jB"Pdxt,x,,). 

(37b) 
Proofof(33d):Letusdetermine IPll(xt,x,.+ 1 )Imin' One 

realizes from (37a) that 

IPl1 (x t,x" + tllmin >0 (38) 

if and only if either 

(B"IPl1 (x t,x")I-A,,IPtZ!xt,x,,)llmin >0 (39) 

or 

(40) 

With the intention of writing the inequalities (39) and (40) in 
a different form, we start by rewriting the left-hand member 
of (39). Utilizing the identity 

B"IPl1 (x t,x,,)1 - A"IPdxt,x"lI 

=!(An +BnHIPl1(XI,Xn)I-IP12(XI,xn)1l 

- !(An - Bn HIPll (xI,xn) 1+ IP12 (x l ,xn) I), (41) 

we obtain, with the aid of (36a), 

(B"IPll (Xt,x,,) I - A" JPt2(Xt,x,,) Ilmin 

= ~(A" + B" )(IPll (xt,x,,) I - IP12 (x t,x,,) Ilmin 

- ~(An - B" HIPll (xt,x,.) I + IPdxt,x,.) Ilmax 

=~(An +B"HIPll(xt,x,,)lmax -IPt2 (xt,x,,)lmaxl 

- !(A" -B,,)(IPl1 (x t,x,,)lmax + IPt2 (x t,x,,)lmaxl. 
(42) 

Using Eqs. (33a) and (33b), which were assumed valid for 
n - 1, and the definitions (12), (19), and (20), we obtain from 
(42) 

(Bn IPll (Xt,xn) I - An IPt2 (x t,xn) Ilmin 

=!(An +Bn)(Mn_ , -Hn_ 1) 

-!(An -Bn)(M"_1 +Hn_ , ) =rn(n). (43) 

By means of (43), the relation (39) can be written 

r,,(n»O. (44) 

Consider next the left-hand member of(4O). With the aid 
of(41) and (36bl we get 

(An IPdxl'Xn) I - Bn JPll (xl,xn) Ilmin 

=!(An -BnHIPl1 (X1,xn)1 + IP12 (x l,x,,)I)min 

-!(An +Bn)(IPll(XI,x,.)I-IPI2(XI,xn)l)max 

= !(A,. - B,. HIPll (XI'X,,) Imin + IPI2 (X I,x,.) Imin) 

-!(An +B,.HIPll(XI,x,.)lmin -IPI2 (XI,xn)lmin)' 

(45) 

Using (33c) and (33d), assumed valid for n - 1, we obtain 
from (45) 

(A,. IPt2 (xt,x,,) I - B" IPI1 (xt,x,,) Ilmin 

{

!(A" -B" )(S,._I + G,,_ t> 
= -!(A" :-B,,)(S"_I -G,,_I)' 

- B"P"_,, IfGn _ I o;;;;O. 
(46) 

Since - B"P" _ I < 0, it follows from (46) that the relation 
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(40) can equivalently be written as 

~(An - Bn )(Sn -I + Gn -I) 

-~(An +Bn)(Sn_1 -Gn_I»O. (47) 

Making use of (23), (25a), and the definitions (12)-(15), we 
can write the inequality (47) in the simplified form 

rn(m»O, wherem =1= n. (4S) 

Utilizing the equivalence between (39) and (44) and 
between (40) and (4S), we obtain from (3S)-(4O) 

IPI1(x t,xn+ tllmin >O¢? rn(m»O. 

Since, according to the definitions (13) and ( 14), 

Gn = rn(m), 

Eq. (4S) also can be written as 

IP I1(x l,xn+ tllmin >0 ¢? Gn >0. 

(49) 

(50) 

(51) 

By making minor changes in the derivation proceeding 
from (3S) to (51), starting instead from the statement 

IP I1(x l ,xn + I )Imin > ° (52a) 

implies that either 

IP I1 (Xt,xn + 1 )Imin 

= (Bn IP I1(x l,xn)l- An IPdxl,xn)llmin >0 (52b) 

or 

IP I1(x l ,xn + I )Imin 

= (An IPdxt,xn)1 - Bn IP I1 (x l ,xn Jl)min > 0, 

one can easily prove that 

IP I1(x l,xn + 1 )Imin > ° :::} IP I1(x l,xn + 1 ) I min = Gn· 

From (51) and (53) we conclude that 

if Gn ..;;0, 

if Gn >0. 

The assertion (33d) is thus shown to be true for n. 
Proof of (33c): Inserting (54) into the formula 

(52c) 

(53) 

(54) 

IPdxl,xn+ 1 W -IPI1 (x t,xn+ I W = P!, (55) 

which follows from (36) in I and (17) in the present paper, we 
find, with the aid of (IS), 

{ 
~O+P! =Pn, if Gn..;;O, 

IPI2 (X I,xn+ 1 )Imin = I 2 2 _ 
VGn +P n -Sn, if Gn>O, 

which means that (33c) is valid for n. 
Proof of (33b): Using (37a), the definitions (19) and 

(20), and also (33a) and (33b)., assumed valid for n - 1, we 
get 

IP I1(XI,xn + I )Imax 

= Bn IPI1(xt ,xn)lmax +An IPdxt,xn)lmax 

=BnMn_1 +AnHn_1 =!(Mn_ 1 + Hn-tl(An +Bn) 

-!(Mn_ 1 -Hn_ l ) (An -Bn) =Hn. (56) 
The assertion (33b) is thus true for n. 

Proofof(33a): From (55), (56), and (22) we obtain 

IPdxl,Xn+tllmax =~H! +p! =Mn, 

which means that Eq. (33a) holds for n. 
We discuss the case when n is even. It bas now been 
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shown that the assertions (33a)-(33d) are true for n if they are 
true for n - 1, provided that n is an odd integer >3. The 
induction from n - 1 to n, in the case that n is an even integer 
>2, can be carried out in nearly the same way and will there­
fore not be repeated here. Assertions (33aH33d) are thus 
proved. 

v. MAXIMUM AND MINIMUM TRANSMISSION 

Let us consider all the possible shapes of a barrier sys­
tem, consisting of N barriers, that are compatible with the 
requirement that the quantities BklAk (k = 1,2, ... ,N) as­
sume certain given values for a particular energy E of the 
incident particle. These shapes together constitute a family 
of barrier systems. From formulas (43a) and (43b) in I for 
the transmission coefficient, and Eqs. (33a)-(33d) and 
(17) in the present paper, we conclude that the maximum 
one of the transmission coefficients (for the particular ener­
gy E), pertaining to those barrier systems that are members 
of the above-mentioned family, is given by 

if Gn (E)..;;O, 

if Gn (E) >0, 
(57) 

and the minimum one of the transmission coefficients (for 
the same E) by 

min T(E) = (PN IMN )2, (5S) 

the quantities Gn, Sn' Pn, andMn being defined by (13)-(16) 
and by (20). Equations (57) and (IS) imply that max T (E) < 1, 
in case GN(E»O. 

Since the reflection coefficient is given by the formula 
R = 1 - T, we immediately obtain, with the aid of (57), (5S), 
(IS), and (22), 

t
o, if GN(E)..;;O, 

minR(E) = S 2 
(GN! N)' if GN(E) >0, 

(59) 

max R(E) = (HNIMN )2, (60) 

the quantity Hn being defined by (19). 
We realize from (10) and (14) that the condition 

GN(E) > 0, occurring in (57) and (59), can be regarded as a 
condition on the sizes of the single barriers. Since these sizes 
are functions of the energy E of the incident particle, it is 
clear that the condition G N (E ) > 0, although fulfilled in one 
energy interval, very well may be violated in another energy 
region. 

For convenience let us call the quantity an (E), defined 
by (29b) in I, the size of the well between the barriers B (n) and 
B (n + 1). Except for the particle energies near the top of 
either of the barriers B (n) and B (n + 1), the quantity an is 
approximately equal to the quantity L n , defined by (7) in I 
[cf. the text from (BS) to the end of Appendix B in I). We 
realize that changing the distances between the barrier 
humps provides a means of varying the sizes an of the wells. 

Using the new terminology, we can now say that the 
result (57) gives an exact expression for that maximum value 
of the transmission coefficient T (E) (pertaining to a given 
system of N potential barriers and a fixed energy E of the 
incident particle) that can be obtained by varying the shape 
of the given potential V(x) in all possible ways subject to the 
condition that the sizes of the single barriers, relative to the 
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fixed energy E, remain unchanged. The potential V(x) in­
volved in this maximum problem is thus specified to the ex­
tent that the sizes of the single barriers, relative to the fixed 
energy E, will have certain given values. Otherwise, the po­
tential can be freely deformed, which means that the sizes of 
the single wells, relative to the fixed E, are freely variable. By 
means of the phase-integral expressions given in Appendix B 
of I, the exact formulas above can be converted into accurate 
approximate ones, suitable for evaluation. 

VI. A NECESSARY CONDITION, ON THE SIZES OF THE 
SINGLE BARRIERS, FOR COMPLETE TRANSPARENCY 

It follows from the six equations in I-(43a), (43b), 
(28), (29a), (29b), and (33)-that the transmission prop­
erties of a barrier system depend solely upon the sizes of the 
single barriers and the sizes of the wells between them. From 
(57) and (18) we infer that max T(E) is equal to unity, only 
if GN (E) ,0. Hence, for a system of Nbarriers and incident 
particles of energy E, complete transparency is impossible 
when GN (E) > 0, whatever the sizes of the wells between the 
single barriers. In other words, formula (57) implies that 
GN (E) ,0 is a necessary condition, on the sizes ofthe single 
barriers, for total transmission ofincident particles of energy 
E through a system of N barriers of arbitrary shapes. 

The result may be understood as follows. From (A4a) 
in Appendix A we realize that the relation GN (E) > ° holds 
when the size of the biggest barrier B(m), i.e., (BmiAm )z, 
exceeds the value [HN (m)IMN em) ]2, which is a function 
of the sizes of the other barriers in the system. Formula (57) 
thus implies that if, for an energy E, the biggest barrier B(m) 
is too big in co.mparison with the rest of the barriers, we 
cannot have complete transparency for this E, even if the 
sizes of the wells between the barriers assume their most 
favorable values. The physical meaning of the quantity 
[HN (m)/MN (m) F is discussed in the text below (A6) in 
Appendix A. It is shown there that [(HN (m)/MN (m)]2 is 
equal to the maximum reflection coefficient that can be at­
tained, for a given energy E, by any barrier system consisting 
of N 1 barriers having, relative to this E, the same sizes as 
the barriers of the N barrier system considered, from which 
the barrier B(m) has been excluded. 

Transmission through a general system of two barriers 
is treated in Ref. 5. Some comments will be added here. 
From (57) and (A4b), with the aid of (AI), (A2), and 
( 13), we find that the necessary condition for total transmis­
sion in this case, Gz (E) <0, can be written equivalently as 
BIIAI = BzIA 2• We alternatively arrive atthesame result by 
using (14) instead of (A4b). In the special case ofa symmet­
ric barrier system, it follows from (B1Oa) and (B1Ob) in 
Appendix B that the relation B II A I = BzI A2 actually holds 
for all values of E, if X2 on the real axis is chosen to coincide 
with the point of symmetry, and in Ref. 5 it is shown that 
total transmission in fact occurs for certain discrete values of 
E, namely for those satisfying Eq. (31) in Ref. 5 (see pp. 639 
and 640 in Ref. 5). 

From Eqs. (43b), (3), and (28) in I we obtain for the 
transmission coefficient T, pertaining to a general system of 
two barriers, the exact formula 
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l/T= 1 + IAzBI +A tB2 exp(2iPI)lzexp(2K1 +2K2 ), 

(61) 
which shows that even in the case of a nonsymmetric double 
barrier complete transparency is possible under special cir­
cumstances. Indeed, if the relation B II A I = B21 Az inciden­
tally happens to be fulfilled for any of the energies E that 
satisfy the equation exp (2i PI) = - 1 [identical to (31) in 
Ref. 5], we will certainly have total transmission for this E. 
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APPENDIX A: THE PHYSICAL MEANING OF THE 
CONDITIONS GN(E) > 0 AND GN(E )<0 

Let us consider an arbitrary system of N potential bar­
riers and an incident particle of energy E. 

We define, for i = 1,2, ... ,n and n<N, 

(Al) 

(A2) 

In particular, thequantitiesHn en) andMn (n) are identical 
to H n _ I and Mn _ I' respectively, which were earlier de­
fined in (19) and (20). With theaidof(Al) and (A2), we 
obtain from (13) and (14) the formula 

1 
GN =-(Am +B,;,)(MN(m) -HN(m») 

2 

-...!..(Am -Bm)(MN(m) +HN(m») 
2 

= -AmHN(m) +BmMN(m) 

(
Bm HN(m») =AmMN(m) - - , 
Am MN(m) 

where. according to (11), Am M N (m) > 0. Hence, 

Bm HN(m) 
GN>O<:}-> , 

Am MN(m) 
N>I, 

Bm HN(m) 
GN<O<:}-< , 

Am MN(m) 

(A3) 

(A4a) 

(A4b) 

Using (AI), (A2), and (11), we can easily show that 

Bk HN(m) 
- < < 1, for k = 1,2, ... ,N but k #m, (A5) 
Ak MN(m) 

provided N-,3. For N = 2 we have instead 

Bk H2 (m) k k - = < 1, for = 1,2 but #m. (A6) 
Ak M 2 (m) 

We recall that (BmIAm)2 is the size of the biggest bar­
rier B( m) in the considered system of N potential barriers; 
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V(x)-E 

8(1) 8(2) 8(3) 8(4) 

cf. ( 10) and ( 13). Furthermore, it follows from (60) and the 
definitions (19), (20), (AI), and (A2) that the quantity 
[H N (m)/ M N (m) F is equal to the maximum attainable 
value, for a fixed energy E, of the reflection coefficient per­
taining to a variable system of N - 1 barriers that is allowed 
to assume every possible shape compatible with the require­
ment that the single barriers shall have the same sizes, rela­
tive to this very E, as the barriers of the given N barrier 
system with the barrier B(m) omitted. 

Remembering also (6), we see that one can roughly un­
derstand the relation (A4b) as follows: GN(E )<0, ifand only 
if the reflection coefficient (for E) pertaining to the biggest 
barrier in the system is less than or equal to the maximum 
one of the reflection coefficients (for the same E) pertaining 
to all those systems of N - 1 barriers that, relative to this E, 
have the same sizes as the barriers of the N barrier system 
considered, from which the biggest barrier has been omitted. 

APPENDIX B: SYMMETRY RELATIONS FOR TWO 
BARRIERS WHICH ARE MIRROR IMAGES OF EACH 
OTHER 

We shall start by writing down, without proof, some 
relations that are valid for a symmetrical system of N poten­
tial barriers [see (29)], provided that thepointsxl,xl, .. ·,xN + I 
on the real axis are chosen to be symmetrically located with 
respect to the point of symmetry. 

We have 

Wl,,_I(Xn) = ±W2N-2n+l(XN-n+l), n= I,2, ... ,N, 

(BIa) 
Wl,,(Xn+ l ) = ±W1N-2n+I(XN-n+I)' n= I,2, ... ,N, 

(BIb) 
where the upper sign pertains to the case when N is odd, and 
the lower sign to the case when N is even. The quantities 
W2" + I (x" + I ) and Wl" (xn + I ) are defined by (8aH8c) in I. 

If, in the symmetric barrier system, the barriers B (11 and 
B (k), i < k, are symmetrically situated with respect to the 
point of symmetry, it is true that 

K j =Kk , (B2a) 

L/ =Lk _ l • (B2b) 

The relations to be derived below are independent ofthe 
number of barriers in the system. For the sake of simplicity 
we shall therefore derive these relations by considering a 
small, easily handled barrier system. Let us consider a sys­
tem of five potential barriers that is symmetric with respect 
to a point, chosen as origin. The potential V (x) thus satisfies, 
for all real values of x, the equation 
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8(5) 

x 

V(X) = V( - x). 

FIG. 4. An example of a symmetrical 
system of five potential barriers. Figures 
l(a), l(b) and 2(a)-2(d) in Ref. I, illustrat­
ing the general case of a system of N po­
tential barriers of arbitrary shapes, con­
tain information concerning our 
application of the phase-integral meth­
od, which is entirely relevant also to this 
special case. 

(B3) 

By choosing XI = - X6, Xl = - x s, and X3 = - X4, we 
achieve the result that the barriers B(2) and B(4), defined 
within the intervals (Xl ,x3) and Ix4,xs), respectively, become 
mirror images of each other (mirror-symmetric). See Fig. 4. 
It is reasonable, although not necessary, to let the points Xl' 
X3, X4' and Xs coincide with the minima of the potential func­
tion V (x). If, however, we allow these symmetrically situated 
points to be chosen more freely, as in Fig. 4, we realize that 
the barriers B(2) and B(4), within their intervals (Xl,x3) and 
(x4,xs), may assume shapes of a more general kind than is 
possible for any two mirror-symmetric barriers in a system 
consisting ofless than five barriers. This is the motivation for 
the choice above of precisely five barriers. 

Using Eqs. (A.Sb) and (A. 10) in Ref. 6, and the inver­
sion formula (A IS) in Appendix A of I, we obtain 

F ll (Xl,x3) = - Fzz{X4,xS) 

Xexp(i[w(xs) - w(x4) + w(x3) - w(xl )]), 

(B4a) 
FI2(Xl ,x3) = F I1(X4,xS) 

Xexp(i[w(xs) + w(x4) - W(X3) - W(Xl)])' 

(B4b) 
Inserting N = S in (BIb), we obtain, for n = 1, 

Wl (X2) = w9(xs) (BSa) 

and, for n = 2, we get 

W4(X3) = W7(X4)· (BSb) 

From (B2a) and (B2b) we find that 

Kl = K 4 , (B6a) 

LI = L 4 • (B6b) 

With the aid ofEqs. (lOb), (23b), and (9) in I, and (BSa), (BSb), 
(B6a), and (B6b) in the present paper, we can write (B4a) and 
(B4b) as follows: 

F ll (Xl ,x3) = - Fll(x4,xS)exp( - 2Kl ), (B7a) 

Fdxl ,x3) = Fdx4,xS)exp[i(2e3 - 2ed]. (B7b) 

Utilizing Eqs. (27a), (27b), (27d), and (19) in I, we find from 
(B7a) and (B7b) the relations 

Fll(t3,2;x2,x3) = F11 (t7 ,4;X4,xS)' 

Fdt3,2;X2,x3) = Fdt7,4;X4,xS)' 

F21(t3,2;X2,x3) = F21(t7,4;X4,xS)' 

F22(t3,2;X2,x3) = Frl (t7,4;X4,xS)' 

(BSa) 

(BSb) 

(BSc) 

(BSd) 

The elements of the matrix F(t 110 _ I ,n;x",x" + I) are 
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completely determined by the behavior of the function 
VeX) - E within the interval (xn,xn + 1) pertaining to the 
barrier B(n). This follows from the definitions of the F-ma­
trix elements by (3.22a)-(3.22d) in Ref. 4 and from the 
definition of the function q( z) by (A36) in Appendix A in I, 
taking into consideration that the problems connected with 
the lower limit of integration in the integral defining w( z) 
and the choice of phase of q( z) on the real axis are taken 
care of by the definition of the matrix F(t 2n _ 1 ,n;xn ,Xn + 1 ). 

We conclude that the validity of the relations (BSa)­
(BSd) is entirely independent of the behavior of the potential 
V(x) in the regions outside the intervals (X2,X3 ) and (x4 ,XS ) 

pertaining to the barriers B(2) and B(4), respectively. Ac­
cordingly, the relations (BSa)-(BSd) are independent of the 
other barriers in the system, i.e., independent of their shapes 
and also of the number of other barriers. We thus realize that 
the relations (BSa)-(BSd) are due solely to the mirror symme­
try of the two barriers B(2) and B(4), which are defined by the 
potential V(x) within the intervals (X2,X3) and (x4,xs), respec­
tively. The same relations must therefore be valid for any 
two barriers, which are mirror images of each other, what­
ever positions they may occupy in a barrier system, provided 
of course that the arguments of the pertinent F matrices are 
changed so as to indicate the actual positions, in the barrier 
system, of the two symmetric barriers. 

Hence, if the barriersB(i) and D(k) in a barrier system 
are mirror images of each other, we have 
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FI1 (t2; _ 1 ,i;X;.X; + 1 ) = Frl (t2k _ 1 ,k;Xk,xk + 1)' (B9a) 

F 12 (t2i_ 1 ,i;x;,x;+ 1) = F I2 (t2k- 1 ,k;Xk,xk + 1 ), (B9b) 

F21 (t2i _ 1 ,i;x;,x; + 1 ) = F21 (t2k _ 1 ,k;Xk ,Xk + 1 ), (B9c) 
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Fdt2i _t>i;x;,x;+ 1) = Ft2(t2k _ 1 ,k;xk,xk+ 1)' (B9d) 

From these formulas and (ISa)-(ISd) in I, we get the useful 
relations 

A; =Ak, (BlOa) 

B; =Bk, (BlOb) 

a; =ak, (BlOc) 

T; = - Tk (BIOd) 

between the barrier characteristics of two mirror-symmetric 
barriers D (i) and B (k ). 

Let us finally regard the particular case when the barrier 
D (i) in itself is symmetric with respect to the center 
~(x; +x;+tl of the barrier interval (x;,x;+tl, i.e., when 
V(x) = V(x; + X;+ 1 - x) for every x belonging to the bar­
rierinterval. Formulas (BIOa)-(BIOd) naturally remain valid 
also for this particular case. However, from (BIOd), consid­
ering the factthatthe barriersB (zj and D (k ) in this case are of 
equal shape, which means that T; = Tk [see (lSd) in I], we 
now simply obtain 

T; =0. (BII) 

10. Dammert, "Transmission through a system of potential barriers. I. 
Transmission coefficient," J. Math. Phys. 24, 2163 (1983). 

26, Dammert, "Transmission through a system of N identical potential bar­
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A variant ofan identity ofH. P. McKean and E. Trubowitz [Commun. Pure Appl. Math. 29, 143 
(1976)] for Hill's equation is derived via contour integration. The identity is 
1 = l:j":o( - 1») iY2(1,Aj )1, IJ(x). 

I. INTRODUCTION 

In this brief paper, a variant of an identity of McKean 
and Trubowitzl is derived via contour integration. The proof 
is therefore similar to that of Deift and Trubowitz.2 Before 
proceeding we introduce notation. 

The Hill's operator H is given by HI = - D 21 + q f, 
whereD = d /dx andq(x) is a real, smooth function of period 
1. The functions YI,2 (x, A ) solve 

HY=AY, (1) 

with initial conditions 

YI(O, A) = 1, yt(O, A) = 0, 

Y2(0, A ) = 0, yi(O, A ) = 1. 

Define the discriminant 

A(A): = YI(I, A) + Yz(l, A) 

(y,_ay2 yo _ay2) 
2- ax' 2- aA . 

(2) 

Here, A(A) is the trace of the Floquet matrix and the roots of 
A 2 - 4 correspond to Floquet multipliers ± 1. It is well 
known (Magnus-Winkler) that these roots 
Ao<AI<A2<A3<A4 < .. · are real and satisfy 
A 2 .. , A 2" _ I = n2fi2 + 0(1), while the eigenfunctionsYI'Y2 
behave like cos.,[J: . x and sin .,[XX/.,[J:, respectively. Hence 

A(A)-2cos.,[J: for IAllarge. Denote by f± (t,A) the 
Bloch eigenfunctionsYI(t,A) +m± (A)Y2(t,A). We are 
now ready to prove the main result. 

II. THEOREM AND PROOF 

Theorem: Let .Ij (x) denote the normalized (periodic or 
antiperiodic) eigenfunction for the eigenvalue Aj • (If 
A 2) _ I = A 2j then choose any such eigenfunction.) Then the 
following identity holds: .. 

1 = 2: (- l)iiY2(I,Aj )lf](x). 
j=O 

Proof: Consider the contour integral 

1 ,( ~(l, A )/+(t, A )/-(t, A )dA 

IN = 211'; ~A.I =(N+ il''''' (A(A )/2)2 - 1 . 

These estimates quoted above and the fact that 
Y2(1,A)/+(t,A)f_(t,A) corresponds to Y2(1,A) for the 
translation of q by t [i.e., q(. + t») (see Ref. 1) combine to 
show that the integrand behaves like A -I( - 1 + O( 1 ») for 
IA 1 large. For integers N- + 00, we obtain the limit 
I N - - 1. Now apply Cauchy's theorem to reduce the inte­
gral to a residue sum. The poles are at A = Aj and since 

A2) =A 2j _ 1 implies Y2(1,J 2j ) =0, the double roots of 
A 2 

- 4 do not contribute. At simple roots Aj the residue is 

~ ( 1, Aj ) 1+ (t, Aj) 1- (t, Aj) 

! A(Aj )A'(Aj ) 

Y2( 1, Aj) [ - A'(Aj ) fJ(t) ] 
=~-..:....~--::..-..~--=-

! A(Aj )A'(Aj ) 

= ±Y2(1,Aj )fJ(t), since A(Aj ) = ±2. (3) 

Note that we used the facti that 

Y2(1, Aj)/+(t, Aj) = - A·(Aj)fJ(t). 

In fact, it is well known that A(A) = 2 if and only if 
j==O,3(mod 4). The sign ofY2(1, Aj ), when it is nonzero, is 
also easily determined since the roots p,j of Y2 ( 1, p,j) = 0 
satisfy A ~_ I <f.tj <A 2j' Thus Y2(1, Ao) > 0, Y2(1, AI»O, 
hO, A2) <0, etc., so that Y2(1, Aj) >0 for j == O,l(mod 4) 
(and is <0 forj = 2,3). Combining these two facts we con­
clude that the coefficient of IJ (t) is the identity (.) is non­
negative for even values ofj and nonpositive for odd values of 
j. 

III. REMARKS 

( 1) As in the analogous identity of McKean and 
Trubowitz, which is .. 
1 = L Ejf~j(x) (where Ej>O with equality 

j=O only at double roots A ~_ I = A 2j)' 
(4) 

the identity (.) leads to a family of trace identities, the first 
of which expresses q(x) as a sum of IJ(x). 

(2) In discussing the structure ofisospectral manifolds 
for Hill's equation, McKean and Trubowitzl use as the "ori­
gin" the point where p,j = A 2j _ I . At such a point the odd 
terms vanish and we conjecture that ( .) reduces to the iden­
tity (4). 

(3) Periodicity imposes constraints on the A) 's, so that 
the set {A 2j} determines all the Aj'S. It is not immediately 
clear how to absorb this dependency into the identity (.). 

IH. P. McKean and E. Trubowitz, "Hill's operator and hypere11iptic func­
tion theory in the presence of infinitely many branch points," Commun. 
Pure Appl. Math. 19, 143 (1976). 

2P.DeiftandE. Trubowitz, "An identity among squares of eigenfunctions," 
Commun. Pure Appl. Math. 34, 713 (1981). 

3W. Magnus and S. Winkler, Hill's Equation (Wiley, New York, 1966). 
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Quantum field theories on the surface of a four-dimensional sphere are considered. The 
Hamiltonian is rotation invariant and its eigenvalues are discrete. Scalar, vector, and spinorial 
functions on S 3 are discussed. The most general Lagrangians for Dirac, Weyl, and Majorana 
fermions are derived. They are different from the ones in existing literature. The wave functions 
and propagator are obtained and formulas for matrix elements involving spinors are presented. 
The discrete symmetries-parity, charge conjugation, and time reversal-are described. The 
Lagrangian in R xs 3 transforms in a nontrivial way under these. Finally, the fermionic 
Lagrangian is rederived using the tetrad formalism, and conformal transformations are discussed. 
This leads to a generalization of the formalism to a time-dependent radius of curvature. As a 
particular case, a new Lagrangian for de Sitter space is obtained, which, however, is not invariant 
under the full de Sitter group. 

I. INTRODUCTION 

We have two reasons for considering a curved space­
time manifold. First, a physical system in a nontrivial gravi­
tational background may exhibit interesting behavior not 
obtained in fiat space. Demanding that we recover the Min­
kowski theory in the limit of vanishing curvature may elimi­
nate certain classes of theories. I Second, if the space is cho­
sen to be compact, the particle modes are discrete. If a 
high-momentum cutoff is imposed, a quantum theory with a 
finite number of degrees of freedom is obtained. This is an 
alternative to making space discrete, which leads to prob­
lems in theories with chiral fermions and supersymmetry. 

The simplest way to quantize a theory is through the 
Hamiltonian formalism. For this purpose, it is useful to keep 
the temporal dimension fiat and compactify space alone. 
The sphere S 3 is maximally symmetric and is therefore pre­
ferable to a rectangular box with periodic boundary condi­
tions. One might expect the spherical curvature to compli­
cate the calculations but the special group theoretic 
properties of S 3 result in considerable simplification. 

Scalar and vector fields have been described in Refs. 2 
and 3. After discussing these, we consider spin-~ fermions 
and their Lagrangian in Sec. II. The wave equation can be 
derived solely from the requirement that the theory have the 
global symmetries of R XS3. The energy spectrum, wave 
function, and propagator for fermions are derived and major 
differences from fiat space are pointed out. In Sec. III, for­
mulas for spinorial matrix elements are presented. In Sec. 
IV, we discuss the three discrete symmetries-parity, charge 
conjugation, and time reversal. Though the theory is invar­
iant under these, the Lagrangian itself transforms in a non­
trivial way under the first two. In Sec. V, we return to fer­
mions and rederive their Lagrangian using the tetrad 
formalism. Following this, conformal transformations are 
discussed and our formalism generalized to the case of a 
time-dependent radius of curvature. This enables us to ob­
tain the Dirac and Weyl Lagrangians in de Sitter space. Al­
though they do not have the full symmetry of the de Sitter 
group, they provide a good description of fermions, and the 

wave functions and spectra can be directly read off from Sec. 
II. Finally, we make a comment on the Weyl spectrum that is 
relevant to a forthcoming paper on supersymmetry in 
R XS3. 

A. Notation and choice of tetrad 

The sphere S 3 can be parametrized in different ways. 
One can use four Cartesian coordinates X m , two complex 
variables (u,v), or three angles (O,a, {3). Setting the radius 
equal to unity, 

xi +xi +x~ +x~ = 1, 

we definez•4 

(1) 

U = XI + Vez = cos 0 eia
, v = X3 + Ve4 = sin 0 eiP , (2) 

where 0<;O<;1T12, O<;a, {3 < 21T. The volume element is 

do' = (l/2r) da d{3 sin 0 cos 0 dO. (3) 

The manifold has an 0(4) rotational symmetry, whose Lie 
algebra is SU(2) X SU(2). The lowering operators of the two 
SU(2) subgroups LI and Lz are 

L I_ = U* av - v* au, L 2_ = u* avo - vau . (4) 

For scalar functions on the sphere, the two LT3 can be dia­
gonalized with eigenvaluessT , 1" = 1,2. As differential opera­
tors, 

L13 = !(u au + vav - u* au. - v* av.) , 

L 23 = !(u au - vav - u* au. + v* av.) . 

We define certain combinations of these operators 

Ji = Lli + LZi = - iEijkXj ak , 

Ki = Lli - LZi = i(X4 ai - Xi a4) , 

J3 = - i aa' K3 = - i ap , 

and the 0(4) rotations 

Mij = ! Eijk Jk , 

Mi4 =!Ki' 

Mmn = - il2(xm an -Xn am)· 

(5) 

(6) 

(7) 
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The commutation relations of J and K are 

[ Ji> l;] = [ Ki' Kj ] = i€ijk Jk , 

[Jj(j] = i€ijk Kk . 
(8) 

These correspond, in the limit of large radius, to rotations 
and spatial translations of Mink ow ski space. Near X4 = 1, J i 

rotates about the Xj axis and - K j translates along it. The 
three boost symmetries of M4 are completely missing in 
R XS3. 

Define a parity operation P, which interchanges LI and 
L 2, as 

(Xl' X2, X3, X4)-( - Xl' - X2, - X3, X4) , 
(9) 

u-+ - u, v---. - v* . 

The metric for (t,O,a, fJ) is ( - 1, 1, cos2 0, sin2 0). 
To write down a wave equation for fermions, one must 

construct a tetrad field.5 This consists of a frame of four 
orthonormal vectors at each point in space-time. Since the 
time direction is fiat in our case, we only have to find a right­
handed triad on the sphere which is continuous everywhere. 
This is possible since S 3 is parallelizable. A convenient 
choice is 

e\l) = (X4' X3' - X2' - Xl) , 

(10) 

e~l) = (X2' - Xl' X4, - X3 ) • 

Here (a,b,c,d ) denotes the Cartesian components of a vector. 
Derivatives along these axes will be denoted by a ~l) and the 
components of a vector V by VP) = V· ell). It is easily veri­
fied that 

ap)= -2iLJj' [ap),ay)] =2€ijka~). (11) 

The second equation shows these unit vectors have a non­
zero twist due to the curvature. The divergence and curl of a 
vector are given by 

V. V = a\I)V~I), 
(12) 

[VXV]P) = !€jjk [a)l)v~) - a~)v)l)] - 2V\I). 

The - 2VP) in the curl formula follows directly from (11) 
and is consistent with the curl of the divergence of a scalar 
function being zero. 

It is important to note that a different frame might have 
been chosen: 

e\2) = (X4' - X3' X2, - xtJ, 
e~) = (x3, X 4 , - Xl' - x 2 ), 

e~2) = ( - X 2, Xl' X 4' - x3). 

Then 

(13) 

a?)=2iL2i> [a?),ay)] = -2€ijkai2). (14) 

This triad is twisted in the opposite sense and the curl of 
a vector in terms of the components V f2) = V • e?) is given 
by 

[VXVW) =! €ijk [aY)Vi2) - ai2 )vy)] + 2Vf2). 
(15) 

The two frames are related by parity: 
e(2) = _ P • e(i) . 
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(16) 

No matter which choice we make, some formulas later will 
look unsymmetric between Ll and L2• Of course, physics 
cannot depend on this. We will work with the first set and 
use Eqs. (lOH12). The superscript (1) will be dropped from 
the next section. 

We note the commutation relations between the ei and 
theLTi : 

[Lri>ey)] = i( - I )T+ 10TT'€ijkeiT) . 

Hence the triads are spin-l objects: 

[L2,e(r)] = 2OTT'eT. 

The reason for this becomes clear in Sec. I C. 

B. Scalar fields and lagrangian 

(17) 

(18) 

Scalar harmonic functions2 on the sphere are traceless, 
symmetric tensors of rank s which belong to the representa­
tion (s/2, s/2) of SU(2) X SU(2). The normalized function of 
highest eigenvalues ST is 

Sis, s/2, s/2) = (s + 1)1/2( - u)S (19) 

and the other S (s,a,b ) are obtained by applying the lowering 
operators (4). These functions satisfy 

S*(s, Sl' S2) = ( - I)S, +S,S(s, - Sl' - S2)' 
(20) 

PSIs, Sl' S2) = ( - I)SS(s, S2' stJ. 
The dimensionality is (s + 1)2 and the value of the Laplacian 
V2 = ai ai is - sis + 2). This corresponds to the squared 
momentum - p2 in fiat space. 

These functions have the orthogonality property 

fdOS*(S,SI,S2) S(s',si,s~) =os-'o ,0, (21) 
~ $,,$1 $2,.82 

and the completeness relation 

L S *(n;r') S (n;r) 

= (2r Isin 0 cos 0 )0(0 - 0 ')O(a - a')O( {3 - {3'). (22) 

The free Lagrangian for a complex, massive, scalar field is 

!L' = ao<f>* ao<f> - aj<f>* aj<f> - m2<f>*<f> + 2e<f>*i ao<f> . 

(23) 

Since we only require invariance under spatial rotation, a 
term like <f>*i ao<f> multiplied by the inverse radius and an 
arbitrary real coefficient can be present. 

The dispersion relations for <f>(s,t ) = S (s, Sl' S2)eiEt are 

E(s) = e ± [e2 + sis + 2) + m2j1/2 . (24) 

The spectrum is symmetric about zero without the e term. 
However, that is no reason for setting it equal to zero. 

C. Vector fields and lagrangian 

Vector functions on the sphere are tensors symmetric in 
s indices and antisymmetric in one more. Hence r • V is zero, 
which is the property that vectors lying on the surface of a 
sphere should have. The antisymmetry also makes them di­
vergenceless, so they form a basis for the transverse modes of 
a vector field. They are of two types: V+ (s), which belong to 
the representation «s + 1)/2,(s - l)/2) and V- (s) belong­
ing to (s - 1)/2, (s + 1) 12). These are related by parity: 
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PV+(s, Sl, S2) = (- 1)'+ IV-(S, S2, SI) . (25) 

Complex conjugation gives 

V ± *(s, SI' S2) = (- 1)" +s, + IV ± (s, - SI' - S2) . (26) 

The total dimensionality of V ± (s) is 2s(s + 2). Their curl is 
given by2 

(27) 

The triads e(l) and e(2) are the vectors (1,0) and (0,1). 
We now make the vector functions explicit. One way of 

doing this is to introduce an auxiliary radial vector r' and 
take its scalar product with V. The vector V+ (s) of maximum 
ST is given by 

, V+( s+ 1 S-I) (S)1/2( )S-I[' '] r • s'-2-' -2- ="'2 \ - u U v - v u . 

(28) 

The other r' • V+ (s, Sl' S2) are obtained by acting on 
this with L I _ + L; _ and L 2 _ + L; _ . The V- (s, Sl' S2) 
are found by (25). 

We follow a different and more convenient procedure. 
Instead ofthe component along the fixed vector r', consider 
the projections on the three unit vectors. The quantities 
V j± = V ± • ej are scalar functions. Define 

V~ = VI ±iV;. (29) 

For V+(s), the Vj(s) are in the representation (Is - 1)/ 
2,(s - 1)/2). This must be so, since the ej belong to P,O), the 
V+(s) to (Is + 1)/2,(s - 1)/2) and the ej • V+ are scalars. 
Solving Eq. (27) gives 

V 3+(S,SI,S2) = [(s+2s1 + l)(s-2s1 + 1)/2s(s+ 1)]1/2 

(30) 

V; (s, Sl' S2) 

= ± [(S=F 2s1 + l)(s+2sI -I)/2s(s+ 1)]1/2 

XS(s - 1, Sl ± 1, S2) , 

where - (s + 1)/2<sl < (s + 1 )/2. The end points 
Sl = ± (s + 1)/2 means V3 = o and V ± = o but V += isnot 
zero. Since - (s - 1 )/2<S2< (s - 1 )/2, the dimensionality 
is s(s + 2). 

For V- (s), the Vj (s) are «s + 1)/2,(s + 1 )/2) scalars. 
From (27), 

V 3- (s, Sl' S2) = [(s + 2s1 + 1) (s - 2s1 + 1)/ 

2(s + 2)(s + I)] 1I2S(s + 1, Sl' S2) , 

V;;; (S,SI,S2) = =F [(s±2s1 +3)(s±2s1 + 1)/ 

(31 ) 

2(s + 2) (s + 1)] 1I2S(s + l,sl ± 1,s2) . 

Here - (s - 1 )/2<sl < (s - 1 )/2 so V3 and V ± are never 
zero. Also - (s + 1 )/2<S2< (s + 1 )/2, so the dimensiona­
lity is again s(s + 2). 

We summarize the above results as follows: with 
l' = ± 1, 

V~ (s, Sl' S2) = cos a(s, s,)S(s - 1', s,' S2) , 

V\ (s, s,' S2) = 21/2 sin a(s, s,) cos/3 T(S, s,) 

XS(s - 1', Sl + 1, S2) , (32) 
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VT_(S, Sl, S2) = 21/2 sin a(s, Sl) sin/3 T(S, sIl 

XS(s - 1', Sl - 1, S2)' 

() _ I [(S + 2s I + l)(s - 2s I + 1)] 112 
as, SI = cos 

2s(s + 1) 

/3 + (s s ) = _ tan - I [ Us - 2s I12 - lJ ] 112 

, I !(s+2slf-l)' 

/3-( )- -t -I [!S+2s1 +2)2-1J ]112 
S, SI - 1T an ! (s _ 2s

1 
+ 2)2 _ Ij . 

The normalization is fixed so S dO VrVj = 1. 

(33) 

If we had chosen the other frame e(2), the V/ would 
have been (Is + 1)/2,(s + 1)/2) scalars and the V j - would 
have been (Is - 1)/2,(s - 1)/2) scalars. 

The vector functions written above are complex. One 
can form combinations of them that are real. In the remain­
der of this section we assume this has been done. 

The most general Lagrangian for a free, massive, Abe­
lian, vector field is given by 

!/ = _ 1 F F mn _ Im2V vm + 1 I'V2 
4 mn 2 m 2JI 0 

+ if2 VO aj V; + 13mVo, (34) 

where 

FOj =aoV; -ajVO' Fij =ajJ} -ajVj -2EijkVk' 

(35) 

The /",2.3 are again arbitrary real numbers. Indeed, the 
last term h m Vo appears if the scalar Lagrangian (23) is 
gauged and the Higgs mechanism is invoked. It can be eli­
minated by a shift in Vo, so we ignore it. The following dis­
persion relations are obtained. 

For transverse modes, 

V is a vector function and Vo = 0 , 

E 2(S) = (s + 1 f + m 2 
• 

The number of modes is 2s(s + 2). 
For longitudinal modes, 

V; = ajS(s, SIJ S2)' 

Vo = i[(E2 - m2)/(j; - E)]S(s, Sl' S2)' 

E2(s) = sis + 2)[(m2 - 1/)/(m2 + III] + m2. 

(36) 

(37) 

(38) 

For these modes, Fij is zero. If II = 12 = 0, the dispersion 
relation simplifies to 

E2(s) = sIs + 2) + m2 . (39) 

In addition, if m 2 = 0, FOj vanishes also. The dimensionality 
of these modes is (s + 1 f They transform as vectors under 
rotations. 

The spectra of transverse and longitudinal modes are 
different due to the curvature. 

II. FERMIONS 

We first describe our notation.6 The Pauli matrices 
cr = - if are well known. Define a fourth matrix 
cfJ = on = - 12 , Then the gamma matrices are 

ym = (; 0;), r = iyDrlrr = (~ ~ IJ ' (40) 
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and the sigma matrices 

un" = i..- [r"', y"] . 
4 

(41) 

For two components spinors, 'I' and W will mean 'I' a and 
Wa with a, it = 1,2. The Pauli matrices acting on these carry 
indices a:a and om aa. Indices are raised and lowered by the 
antisymmetric tensor ~ = - EaiJ = iif-. The 'I' a and ~a 
are related by 

(42) 

The Dirac equation in a general space-time is derived as 
follows. Introduce a tetrad field of one-forms,7 which are 
coordinate systems that are locally inertial. Denoting the 
tetrad by em, m = 1,2,3,4, we have 

em = em" dx" . 

The "flat" index m is lowered by 

TJm" = 1- 1,1,1,1), 

while the general coordinate index f.t is lowered by 

g"v = TJm"e
m 
"e" v • 

The line element 

d~=g"vdx"dxv=em·em . 

The spin connection one-form (J)U b is defined by 

d~ = - (J)u b 1\ eb, (J)ub = (J)/J4b dx" . 

then the equation for a massive spino! particle is 

Ii r"'em "D" - m)'I' = 0, 

with the covariant derivative 

(43) 

(44) 

14S) 

(46) 

(47) 

(48) 

D" = a" + i..-(J)"m"un
n

• (49) 
2 

This equation arises from an action that is invariant under 
both general coordinate transformations and local Lorentz 
rotations of the tetrads. S This procedure will be followed in 
Sec. V. 

Here we adopt a different method. This method works 
due to the special structure of the group of R xs 3, which 
contains an invariant subgroup generated by i ao and 
i at = 2L1/' This is just as in Minkowskispace where the four 
translations form an invariant subgroup of the Poincare 
group. We can therefore simply write down the equation 

ISO) 

and it is guaranteed that, under a global rotation, 'I' will 
transform as 

lSI) 

where the Emn are constants. Restoring the radius of the 
sphere to its rightful place, it is easy to see that - i at / R on 
S 3 reduces to translations in the neighborhood of X4 = R in 
the limit ofinfinite radius. Hence Eq.ISO) describes fermions 
in R XS 3 in the same way as the flat space equation. 

Like the scalar equation, ISO) can be slightly generalized, 
as we will see. 

The requirement that the transformation group of a 
space-time should have an invariant subalgebra offour gen­
erators that have an unitary representation and reduce to 
translations of Minkowski space in the limit of vanishing 
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curvature is very stringent. It rules out de Sitter and anti-de 
Sitter space, S 4 and R xH 1.3, where H 1,3 is the hyperboloid 
x! - ~ - x~ - x~ = 1. The argument above' is therefore 
not applicable to these. However, de Sitter space has the 
topology of R X S 3, and we take advantage of this in Sec. 
VA. 

Spinorial functions on the hypersphere are constructed 
by taking direct products of scalar functions with the four 
spinors 

IS2) 

which will be shown to form the J2 = a representation. 
The SU(2) X SU(2) structure still holds, except that one 

of LI and L2 remains unchanged, and the other becomes a 
sum 

L'=L+S. IS3) 

Here L is the differential operator (14) and IS)] and acts 
on scalar functions, whereas S is a 2d-dimensional matrix 
that acts on spinors and satisfies 

S2 = a I 2d • IS4) 

The first two spinors in IS2) have the eigenvalue of r 
equal to + 1 and describe right-handed Weyl particles given 
by the two-spinor 'I' a' The most general Weyl Lagrangian is 

.Y w = W( - iO" a" + don) 'I' , (SS) 

where d is real. 
The operators that commute with - iO" an + doD are 

i ao,Lu + d/2 = i/2 aj + d/2andL2j . Under the rotations 
L2i , 'I' does not change, '1" (x') = 'I' (x). Under the rotations 
Lu, 'I' must be multiplied by exp(iE· 0'). If we had chosen 
the frame e(2) the commuting operators would have been LI/ 
and L2i + d /2. In either case, the angular momentum oper­
ator is 

Jj = Lu + L2i + d /2 . (S6) 

So the spin angular momentum is given by 

Si = d /2, S2 = P2 . (57) 

The number ofWeyl modes for a given s is 21s + 1)2, as is 
also true for a Majorana particle. For a four-component 
Dirac particle, the dimension is 41s + 1)2. 

For a Majorana particle with a mass term, the Lagran­
gian is 

.Y M = ~I - iO" an + don)'I' + ml'lla'l' a + W a ~a) . (58) 

This can be written as a four-spinor with a wave function of 
the special form 

(59) 

In Minkowski space, the spatial dependence of 'I'M factor­
izes off as a complex number expl - ipmxm)' and the remain­
ing spinor can be made real by a suitable choice of gamma 
matrices. This cannot be done in R X S 3, but Majorana spin­
ors can be written as in IS9). 

Diptiman Sen 475 



                                                                                                                                    

The Dirac Lagrangian can now be written down, since 
such a fermion is a combination of two Weyl particles cou­
pled by a mass term: 

!£ D = iii l( - ion an + dlUO)'II1 + iii2( - ion an + d2UO)'II2 

+ m('II1 a'll2a + iii liz iii2iz) 

= iii(ir'" am - m + elr~ + e2~)'11 , 
where 

e l = (dl + d2)/2, e2 = (d2 - dd/2. 

(60) 

(61) 

Once again e l and e2 are arbitrary, though a theory with 
some additional symmetry may constrain them. For exam­
ple, it is found I that with a nonzero mass term, the Lagran­
gian is supersymmetric if and only if e l = - 2. 

The symmetries of (60) are generated by i ao, 
'k L I; + ~ EijkU' ,and L 2;. Hence 

J; = Eijk( - iXj ak + u jk 12). (62) 

The spin angular momentum is 

S - Ie jk S2 - 3 I ; - Z"'ijk U , - 4 4' (63) 

A. Wave function, dispersion relation, and propagator 

Consider first a Weyl fermion. The field 'IIw can be ex­
panded as 

'II = L [bn 'II +(n)e;w+1n1t + d n+ 'II_(n)e - ;w_1n1t] , (64) 
n 

where (J) + and (J) _ are non-negative and n denotes the differ­
ent momentum modes. The Hamiltonian 

n 

provided the functions'll are normalized, 

J dO 'II: (n)'II a' (n') = onn'o"a' , 

and canonical quantization is invoked. 

f b n+ ,bn·j = ! d n+ ,dn·j = onn' . 

(66) 

(67) 

To find the wave function, it is convenient to consider eigen­
vectors of id a;. These are of two types. The X + (s, S I' S2) have 
non-negative eigenvalues and the X _Is, Sl' S2) have negative 
eigenvalues. For a given s, there are n+(s) = (s + 2)(s + 1) of 
the X + with eigenvaluesandn_(s) = sIs + 1) ofthex _ with 
eigenvalue - s - 2. The total number is 2(s + 1 f The xIs) 
only contain (sI2, s12) scalar functions. Normalized expres­
sions for them are 

(

COS () ± (s, SI)S (s, Sl' S2) ) 
X±(S,SI,S2)= . , 

sm () ± (s, s.JS (s, Sl + 1, S2) 

() ( ) [
s+ 1 ± (lsi + 1)]112 

cos ±S,SI= 1) , 
2(s+ 

(68) 

. () ( ) _ + [s + 1 =+ (lsi + 1)]112 sm ± S,SI - . 
- 2(s + 1) 
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In each case, - sl2 <'S2 <,sI2, but for X +, - sl2 - I <'Sl <,s12 
and for X _, - sl2<,sl <,s12 - 1. 

A few examples are presented: 

id a; = 0: X + (0) - (~) (~), 

ida; = l:x+(1) - el~2U) el~2V) C1/~u*) 

(69) 

The spinors have the completeness relation 

(70) 

The energy of xIs) is 

E ± (s) = ± (s + 1) - d - 1 . (71) 

In terms of these spinors, the Feynman propagator is much 
simpler than in flat space. 

SF(E, s, ±) = iI[ - E - d - 1 ± (s + 1)] . (72) 

There are no Pauli matrices to worry about. 
The reason for the notation E ± is that E+>O and 

E _ <,0, if - 3 <,d <,0. It is convenient to make this assump­
tion. 

Now look at a Dirac fermion. The Hamiltonian 

n 

provided the'll are normalized according to (66) and 

iii = - \II+~ . (74) 

We define wave functions 'II +(s, Sl' S2' 0') and 
'II_(s, Sl' S2' 0') with energies E+(s,u) and E_(s,u). Here 
0' = ± 1, depending on whether 'II(s) is composed of X +(s) or 
X - (s). The dimensionalities of'll + (s,u) and \II _ (s,u) are there­
fore both 2(s + W. Explicitly, 

_ (COS () ± (s,u) X" (s, Sl' S2») 
'II ± (s, Sl' S2'U) - . () 

sm ± (s,u) X,,(s, Sl' S2) 
(75) 

and 

E ± (s,u) = e2 ± [(A,,(S) - e.J2 + m2] 1/2, (76) 

where A,,(s) is the id a; eigenvalue of X,,(s). That is, 
A ± (s) = ± (s + 1) - 1. The () ± (s,u) are given by 

± v,,(s) + A,,(s) - e l 
cos () ± (s,u) = 1/2 ' 

[( ± verts) + Aq(S) - elf + m2] 

m 
sin () ± (s,u) = /' (77) 

[( ± verts) + A,,(s) _ el )2 + m2] I 2 

verts) = [(A,,(S) - elf + m2] 1/2. 

The completeness relation for these spinors is more 
complicated but has a block form 
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L 'I' ± (s, Sl' S2' U)'I' ~ (S, Sl' S2' u) 
SbS2'U 

s + 1 + S cos2 8 ± (s, - 1)] 12 

= -2- [(s + 2)cos 8 ± (s, + l)sin 8± (s, + 1) 
(

[ (S + 2)cos2 8 ± (s, + 1) 

+ s cos 8 ± (s, - 1 ) sin 8 ± (s, - 1)] 12 

Just as in (72), the propagator has a simple form. From (75), 

iy' aj'l'(s,u) = - A,,(S)r~'I'(s,u) , (79) 

and we find 

. e2 - E + (el - A,,(S))r 
Sp(E s u) = I •• j) • (80) 

, , (e2 - E)2 - (e
l 

-Aq(S))2 r 

The energy, wave function, and propagator simplify if 
el = - 1 and e2 = O. Then the square of the Dirac operator 
is exactly the Klein-Gordon operator, and 

E±(s)= ±[(s+W+m2j112, (81) 

8±(s,u)=tan-l{m/[E± +q(s+ I)]) , (82) 

Sp(E,s,u) = - i {[E + q(s + 1)r)/[E 2 - (s + W] J • ~. 

(83) 

B.lnteractlons 

The interaction terms for fermions look exactly as in flat 
space, 

.2" "'<I> = g.$. 'Ii'l' + gp $p 'lir'l' , (84) 

where $. ($p) is a scalar (pseudoscalar). 
For vectors, 

.2" ",v = - gV", 'liy"''I' , (85) 

.2" <l>V =gVm($*i a m$ - i a m$*$) 

- glvm vm$*$ - 2egVo$*$ . (86) 

The last term is needed to make the Lagrangian (23) gauge 
invariant. 

Without a vector mass and the nonminimal terms in 
(34), the theory is gauge invariant, 

[(s+2)cos8± (s,+ 1)sin8± (s,+ 1) ) 

+ s cos 8 ± (s, - 1 ) sin 8 ± (s, - 1)] 12 

[(s+2)sin2 8±(s,+1) . 

+ s sin2 8 ± (s, - 1) ] 12 

(78) 

I 
iant. Choose a large number s and keep all functions up to 
S (s), 'I'(s), and V ± (s). This is a system with a finite number, 
about~, of degrees of freedom that can approximate the 
behavior of any flat-space theory, provided all mass param­
eters mj in the theory satisfy 

(90) 

Perturbative renormalization can be done in a similar 
way. Dimensional regularization is inapplicable here since 
we want the special properties of R X S 3, and Pauli-Villars 
regularization does not work in gauge theories. But since we 
have broken Lorentz symmetry to begin with, an energy cut­
off can be imposed to make divergent integrals finite. There 
is no need for similarly cutting off the spatial momentum 
and, in fact, it might be convenient not to do so, in order to 
use the completeness relations of the spherical harmonics. 

III. MATRIX ELEMENTS 

In this section, we derive formulas for some typical ma­
trix elements. They all reduce to spherical integrals of the 
product of three scalar functions. 2 This can be simplified to 
the product of two 3-j symbols8 with a reduced matrix ele­
ment. Define 

I(rst; rlsltl;r~2t2) 

= f dO S(r,rl,r2)S(s,SI,S2)S(t,tl,t2) 

~R (r~,t)(; s 

D (:, 
s 

~). -
2 2 (91) 

r l Sl S2 t2 

'I' -- exp( - igS) 'I' , with 

$--exp( -igS) $, (87) 

Vm -- Vm + a", S, 

where S is a scalar harmonic function with an arbitrary de­
pendence on time. 

Gauge invariance implies the existence of conserved 
currents. These are 

(88) 

J'; = i($* a m$ - a m$*$) - 2gvm$*$ + 2egrno$*$. 
(89) 

They are conserved by the Euler-Lagrange equations of mo­
tion. One therefore expects Ward identities to hold as usual. 

c. Regularization 

For the purposes of numerical analysis, one must define 
a high-momentum cutoff that is parity and rotation invar-

477 J. Math. Phys., Vol. 27, No.2, February 1986 

R (r, s, t) = ( - 1t[(r + l)(s + l)(t + 1)] 1/2 (92) 

and a = (r + s + t )/2 must be an integer for the above inte­
gral to be nonzero. Henceforth, whenever possible, we will 
simply write I(rlsltl), the other arguments being understood. 

The matrix elements we calculate are 

(1) f -1 = dO 'I'(r r l r2)'I'(s Sl S2)$(t t) (2) , 

1(2) = f dO '1'+ (r)'I'(s)$(t ) , 

1(3) = f dO 'Ii(r)y''I'(S)aj$(I) , 

1(4) = f dfl 'Ii(r)y''I'(s) V j± (t ) . 

(93) 

The I(m) will also have arguments (rsl,r IS II I;r ~212; pu ... ) but 
we only write I(m) (r IS) I I; pu ... ) in the following. 
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Consider Weyl fermions first. Then, by Eqs. (42) and 
(68), 

Iw (2)(r lslt l ;PU) 

= - Iw (l)(rlsltl;pu) 

= f dOXp+ (r)X,,(s)ct>(t) 

= ( - 1),' + r,[ cos Op {r,r l ) cos 0" (s, SI)I{ - r l SI t l ) 

+ sin Op{r,rl)sin O,,{s, SI)I( - r l - 1 SI + 1 t l )] . 

(94) 

Iw (3){ rlsltl; pu) = f dO X/ ( r)dx" (s)a;ct>(t) 

To calculate 1(3), we need (11), a;s(t,t l ,t2) 

= - 2iL liS(t,t l ,t2). Define 

A (t,t l ) = [(t + 2tl + 2)(t - 2t l )] 1/2. (95) 

Then 

and 

- iA(t, - t l ) S(tl - 1)) 

2itIS(tI) 

(96) 

= - (_1)r,+r'2itl[cosOp { r,rl)cosO,,(s,sl)I( -risl t l ) - sinOp { r,rl)sinO,,{s,sl)l{ -rl -ls1 + 1 t l )] 

- { - 1)r, + r, iA(t, - tl)cos Op ( r,rl)sin 0" (s, sl)l{ - r l SI + 1 tl - 1) 

- (-1)r,+r'iA(t,t l )sinOp { r,rl)cos O,,{s, sl)l{ -risl tl + 1), (97) 

I w
(4) { rlsltl;pur) = f dO Xp+ ( r)dx{s) VT; (t) 

= ( - 1)r, + r, cos a Ct,tl ) [cos Op ( r,r l )cos 0" (s, SI )I(r S t - r; - r l SI t l ) 

+ sin Op (r,rl)sin O,,{s, sl)l(rs t - r; - r l - 1 SI + 1 t l )] 

+ { - 1)r, +r, 21/2 sin Op ( r,rl)cos O,,(s, sl)sin a(t,tl)cos,8 T(t,tl)l{rs t - r; - r l - 1 SI tl + 1) 

+ (_1)r,+r'2 1
/
2cosOp { r,r l )sinO,,(s,sl)sina(t,tl )sin,8T(t,tl )l{rst-r; -risl + 1 t l -1). (98) 

Now 1(3) and 1(4) can be further simplified in that, instead of all four ofthe I ( - r I sit I)' it is enough to know only two, for 
example, I{ - r l SI t l ) and I{ - r l - 1 SI + 1 tl)' This is because of the relations 

A(t,tl)l{ -rl -ls1 tl + 1) = -A( r, -rl -l)1( -risl t l ) -A(s,sl)l{ -rl -ls1 + 1 t l ), 
A(t, -tl )1( -risl + 1 tl -1) = -A{s, -SI -1)I{ -risl t l ) -A{ r,rl)l( -rl -lsI + 1 t l ), 

(99) 

which follow from a recursion formula for 3- j symbols, 

A{ r,rl)l{ r l + 1 SI t l ) +A(s, SI)I( r l SI + 1 t l ) + A (t,t l )l(rl SI tl + 1) = O. ( 100) 

For Dirac fermions, the integrals (93) can be expressed in 
terms of the IW): 

lo(l){ rlsltl;PU;p'u') 

= f dO \iip ( r, r l , r2, p') '1'" (s, SI' S2,U')ct>(t,t l ,t2 ) 

=sin[Op{ r,rl,p') +O,,{S,SI'U')] 

XIW (2)( rlsltl;p'u') , 

10 (2){ rlsltl;pu; p'u') 

= -cos[Op( r,rl,p') -O,,(S,SHU')] 

Xlw (2){ r l , SI,tl;P'u') , 

10 (3){ rl,sl,tl; pU; p'u') 

= -cos[Op{ r,rl,p') +O,,(S,SI'a')] 

Xlw (3){ r l , SI,tl;P'u') , 

10 (4) { rl,sl,tl;pu;p'u') 
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= -cos[Op{ r,rl,p') +O,,{S,SI'U')] 

xlw (4) { r H sl,tl;p'u'r) . 
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(101 ) 

I 
IV. DISCRETE SYMMETRIES 

In flat space, we say a Lagrangian has a discrete symme­
try if it remains invariant under the transformation. In 
R X S 3, things are not as simple. For example, under parity 

(102) 

so the fermionic Lagrangian must change in form. We re­
quire that physics should remain the same and that the quan­
tum fields and the creation and destruction operators should 
transform in the same way as in flat space. The Lagrangian 
must then change if necessary. In other words, one is looking 
for symmetries of the theory, not the Lagrangian directly. 

A. Parity 

Under parity, the coordinates transform as 

For a scalar, we may define 

ct>(t, X 4, x;) - ct>(t, X 4, - x;) 
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so the Lagrangian (23) does not change. This is also true of a 
vector particle, 

Volt, X4, Xi) ---+ Volt, x4, - Xi) , 

V;(t, x4 ,x;) ---+ - VI(t, x4 , - Xi)' 

For a Dirac particle, 

"'(t, x4 , Xi )---+yO"'(t, x4 , - Xi) 

and the Lagrangian transforms as 

(105) 

(106) 

\Ii(x)(iyO ao + iy all) - m + elryO + e2yO)"'(x) 

---+\Ii(X')(iyO ao + iya 12) - m - elryO + e2yO)",(x') . 

(107) 

It is important to understand that the e l term does not vio­
late parity, but simply that it appears with the opposite sign 
in the parity reversed coordinate system. The observer in the 
new system finds particles with the same energy but parity 
reversed wave function. The e l and e2 terms have a R- 1 

hidden in them. They are due to the curvature of the space 
and the twist of the coordinate frame. So it is not surprising 
that they change sign under a discrete symmetry. A term like 
m'r, where m' has the dimension of mass but is unrelated to 
R -I and survives in the R---+oo limit, would certainly vio­
late parity. 

A similar situation arises with charge conjugation, this 
time even with the scalar Lagrangian. 

B. Charge conjugation 

Consider the charged scalar field expanded in terms of 
creation and destruction operators. 

" 
(108) 

The S ± (n) are scalar functions and a and e are the particle 
and antiparticle destruction operators. Under charge conju­
gation, we require 

a ++ e, <I> ++ <1>* • 

This is a symmetry if in (23), 

e---+-e. 

For the Dirac particle 

(109) 

(110) 

'" = L [b (n)'" + (n)e",,+(n)t + d +(n)'I1_(n)e- iodn)t] , 

" 
we want 

'11 ---+ if'l1* . ( 111) 

This implies 

(112) 

This can also be understood as follows. Charge conjugation 
is equivalent to interchanging the two Weyl particles in '11, 

( '" la ) ('" 2a ) '" = \li
2

" ---+ \iiI" ' d l ++ d2 • (113) 
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Hence 

el ---+ el but e2 ---+ - e2 • 

For the vector particle, 

Vm---+ - Vm . 

So in (34), 

(114) 

13 ---+ - 13' (115) 

which is consistent with (110), assuming the 13 term only 
appears by spontaneous symmetry breaking. 

C. Time reversal 

This means 

t---+-t. 

For the scalar field, 

<I>(t, x) ---+ <1>( - t, x) , 

a,e ---+ a,e , 

e---+e. 

(116) 

(117) 

Thus the Lagrangian remains unchanged. The Dirac and 
Weyl Lagrangians do not change either. 

The wave functions transform as 

"'n (t, x) ---+ iylr"'n ( - t, x) , 

"'w (t, x) ---+ tr"'w ( - t, x) . 

For the vector particle, 

Volt, x) ---+ Vol - t, x) , Vi(t, x) ---+ - Vi( - t, x) . 

So 

(l18) 

(119) 

(120) 

(121) 

All the nonminimal terms in the scalar and Dirac La­
grangians change sign: 

(122) 

The latter also follows from (60) and (61), since the Weyl 
theory is CP invariant: 

'I1(t, x4 , Xi) ---+ itr'l1*(t, x4 , - Xi) 

but 

d---+-d. 

For the vector particle 

II ---+/1' 12,h ---+ - h, - 13' 

(123) 

(124) 

The above rules can be summarized in a simple way if we 
set the II and h terms equal to zero in the vector Lagran­
gian, as in fact they must be, if one demands gauge invar­
iance. Then the rule is that under CP, all nonminimal terms 
(e,d,e l,e2,J;) change sign and under T, none of them change 
sign. 

V. FERMIONS AGAIN 

We now rederive the Dirac equation using the tetrad 
formalism. This will prove the invariance of the equation 
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under any coordinate transformation. 
The sphere S 3 is the manifold ofSU (2), as shown by the 

parametrization 

U = X 4 + ix· (J". (125) 

The SU(2) X SU(2) transformations act on U from the left 
and right 

U' = U1UU t . (126) 

Hence SO(4) is isomorphic to SU(2) X SU(2) mod Z2' 
Further, J corresponds to the diagonal subgroup U1 = U2, 

which is SO(3). Since S 3 is a group manifold, one can take the 
Maurer-Cartan forms as a basis for a triad.3 The coordinate 
frame we have chosen throughout is the left-invariant 
Maurer-Cartan form: 

0. = g-ldg = idei
, 

e l = - sin(a + {J) dO + sin 0 cos 0 costa + {J )[da - d{J] , 

e2 = costa + {J) dO + sin 0 cos 0 sin(a + {J )[da - d{J] , 

e3 = - cos2 0 da - sin2 0 d{J , 

(127) 

Then the spin-connection one-form has the simple structure 
O· ij k 

W ,= 0, W = - Eijke 

Hence 

Do=ao, 

= ai + k Eijd ri, yk] . 

The Dirac operator is 

iy"'Dm = iy"' am - ~ r~ 

so the minimal Dirac Lagrangian has 

e l = - ~ , e2 = 0 . 

For the Weyl equation, 

di = _! ~ikUka» , 

D a i i-O .= ·+-uu, 
I I 2 

so one gets 

- iU"Dm = iU" am - ~ iJo . 

(128) 

(129) 

(130) 

(131) 

(132) 

(133) 

We use the two-component notation henceforth. The 
covariant derivatives are 

480 

Do = ao + ~ sin(a + {J)u l 
- ~ cos(a + {J)~ , 

2 2 

Da = aa - ~ sin 0 cos 0 [cos(a + {J)u1 

2 

+ sin(a + {J)~] + ~ cos2 0 if , 
2 

Dp = ap + ~ sin 0 cos 0 [cos(a + {J)u1 

2 
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(134) 

+ sin(a + {J )~] + ~ sin2 0 if . 
2 

For application to supersymmetry, we must consider 
the modified covariant derivative, J.l = O,a, {J, 

(135) 

The extra term is proportional to the Ricci scalar R,," in 
general. 

In our case, R,," = - 6. Global supersymmetry can 
only be defined if there exist two Killing spinors S satisfying 

D"s = O. (136) 

The modified derivatives satisfy 

(137) 

but this does not guarantee the existence of the spinors. In 
fact, one can solve (135) and (136) with either sign. With the 
plus sign, 

(138) 

With the minus sign, 

D" = 2D" - a", s = (~.J and (v:) . (139) 

This is another great advantage of our choice of axes as 
opposed to the usual one, which is 

el = dO, e2 = cos 0 da, e3 = sin 0 d{J , 

Then 

Do =afj, 

Da =aa +~sinOif, 
2 

i 
Dp = ap + - cos 0 ~ . 

2 

Once again, one can define modified derivatives 

- i I 
Dfj =Dfj ±"2u, 

- i 
Da =Da ±"2cosO~, 

- i 
DfJ =Dp ±"2sinOif. 

(140) 

(141) 

(142) 

These commute but there is no continuous Killing spinor 
corresponding to them. In fact, Eq. (136) implies 

(a~ + l)s = (a~ + l)s = (a~ + lIs = 0, (143) 

which means S has sines and cosines of a/2 and {J /2. This is 
unacceptable in S 3, which is simply connected. 

Of course, (140) and (141) also give a Dirac equation 
with 

i 
D2 = sec 0 aa + - tan 0 if , 

2 

D3 = csc 0 afJ + ~ csc 0 ~ . 
2 

(144) 

This is much more complicated than (60) and difficult to 
solve. 
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A. Conformal transformations 

Conformal transformations9 of the metric change the 
physical manifold, unlike coordinate transformations that 
merely amount to relabeling. A conformal transformation is 
defined by a continuous, nonzero, real function Ott, x), 

g~v(z) -+g~v(z) = 02(Z)g~v(z). (145) 

The scalar Lagrangian is conformally invariant if 

e = 0 and m2 = 1 . 

The vector Lagrangian is invariant since we are in four di­
mensions, provided m2'/I,J;,J; are all zero. 

The fermionic case is more interesting. We used the fact 
that the manifold is R X 8 3 and chose a particularly simple 
tetrad field. One might therefore think that even the minimal 
massless equation (130) would not be conformally invar­
iant. This is in fact true, except for two special cases. In the 
first, 0 depends only on time, and in the second, n is a func­
tion of space alone which is such that it does not change the 
sign of the curvature. 

More precisely, in the second case, 0 must be such that 
each sectional curvature remains strictly positive and 
bounded away from zero everywhere. The sectional curva­
ture at any point is defined 10 as the Gaussian curvature of the 
surface generated by two vectors at that point. In our mani­
fold, the time direction is flat so there are only three indepen­
dent sectional curvatures to consider. If all three are positive, 
the spatial manifold locally looks like a region of 8 3, so the 
previous analysis works. In particular, one can define a con­
tinuous tetrad field which satisfies (128). With the above 
property of the curvature, the manifold is bounded and has 
the topology of 8 3 globally. 

If n is a function of time alone, 
ds2 = R 2(r)[ - dr + d0 2 + cos2 0 da2 + sin2 0 df32] . 

(146) 
Changing variables to 

t = f dr' R (r') , (147) 

we get the Robertson-Walker metric for a space of positive 
curvature 

(148) 

The Lagrangian and action are, of course, invariant, 

(149) 

8 = J dr dO( - g)1/2 2"(r,O) , 

and the wave function is given by the conformal transforma­
tion 

'I1(r; R = 1)-+[R (r)]-3/2'11(r) . (150) 

It remains normalized with the volume element R 3(r) dO. 
If 0 depends only on time, we may consider massive 

fermions also, and give d, e1, and e2 arbitrary values. The 
Lagrangian is the same as in Sec. II, except that the deriva­
tives are 
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1 1 a =-a -a· 
m R (r) T' R (r) " 

(151) 

the four-dimensional volume element in the action is 
R 4(r) dr dO, and the wave function has the factor R -3/2. 

As a special case, consider de Sitter space 

R =cosht=secr. (152) 

This describes the manifold 

-x~ +x~ +x~ +x~ +x~ = 1, (153) 

with the pseudo-Riemannian metric 

ds2 = - dx~ + dx~ + dx~ + dx~ + dx~ . (154) 

To get back to (148), parametrize as in Sec. I A, 

XO = sinh t, 

XI + iX2 = cosh t cos 0 eia 
, (155) 

X3 + iX4 = cosh t sin 0 ei/J • 

This space is of great interest cosmologically. Quantum field 
theory in it has been studied by several people beginning, as 
often, with Dirac. II Its symmetry group has ten generators, 
six rotations, and four boosts. 

The action (149) describes fermions adequately, but it is 
not symmetric under the full de Sitter group but only under 
the subgroup that leaves Xo invariant. The boosts act as rais­
ing and lowering operators between the different SO(4) re­
presentations. The wave functions corresponding to a com­
pletely symmetric action will be complicated combinations 
of the ones derived in Sec. II. 

From the point of view of this paper, the extra symmetry 
of de Sitter space is the accidental result of a special time 
dependence of the radius. Our formalism only takes advan­
tage of the special features of 8 3. 

B. WeyJ spectrum 

We point out an interesting feature of the Weyl Lagran­
gian that is relevant to supersymmetry. As in Sec. II, restrict 
d to lie in the interval [0, - 3]. Then the spectrum with d 
and - 3 - d are very similar. The energy, for d inthe above 
range, is a non-negative integer E. For any energy, the La­
grangian with d gives as many particles (antiparticles) as the 
Lagrangian with - 3 - d gives antiparticles (particles). In 
terms of E, the precise number is (E + d + 1) (E + d + 2) 
particles and (E - d - 1) (E - d - 2) antiparticles for the 
first Lagrangian. 

This symmetry resembles CP but is actually different 
from it. The particles and antiparticles that have the same 
energy, have different wave functions. In fact, the wave func­
tions belong to adjacent representations of SO ( 4). 

The minimal Lagrangian d = - ~ is self-conjugate. For 
each energy, it has the same number of particles and antipar­
ticles. This is also true for the scalar with e = 0 and is a 
general feature of minimal Lagrangians. 

The conjugate cases with d equal to - 1 and - 2 are 
specially interesting. If, for each Lagrangian, we count the 
particles and antiparticles together, then for any energy E 
the number of modes is 2E 2. Further, E is a positive integer. 
This last property is shared by the two conformal bosons, a 
massless complex scalar with e = 0 and a massless gauge 
particle with all J; = O. The fermions and the bosons have 
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the same spectrum, though not the same dimensionality. 
It turns out that under supersymmetry, the conformal 

scalar and vector transform into the d = - 1 and - 2 fer­
mions. Which boson turns into which fermion depends on 
whether the Killing spinors (138) or (139) are chosen as the 
anticommuting parameters. For reasons given elsewhere, 
the correct choice is (139). Then the scalar and the d = - 2 
fermion transform into each other and similarly, the vector 
and the d = - 1 fermion. 
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The classical limits of phase-space formulation of quantum mechanics are studied. As a special 
example, some properties of both quantum mechanical and classical entropies are discussed in 
detail. 

I. INTRODUCTION 

It has been common knowledge that quantum mechan­
ics approaches classical mechanics when Planck's constant 
approaches zero. Rigorous investigations have been carried 
out during the last decade by various authors. 1-4 So far the 
methods employed are restricted to the quantum mechanical 
operator techniques and the questions considered are mainly 
partition function and ensemble average. The purpose of the 
present work is to examine the general problem of the classi­
cal limit Ii -+ 0 by means of the so-called phase-space for­
malism of quantum mechanics. With the help of the general 
results, the unsolved problem of the behavior of quantum 
mechanical entropies at the classical limit is discussed. 

The phase-space formulation of quantum mechanics 
has found many applications, particularly in statistical me­
chanics and quantum optics. Its basic feature is to provide a 
framework for the treatment of quantum mechanical prob­
lems in terms of classical concepts. Following the appear­
ance of the well-known Wigner distribution function, S many 
other distribution functions have been considered. For in­
stance, the antinormal-ordered (Husimi6) and the normal­
ordered distribution (P distribution) functions,7 the anti­
standard-ordered (Kirkwood8

) and the standard-ordered 
distribution functions.9 Each of those distribution functions 
was created for a particular purpose. 10 

Considering the properties of entropies, Wehrl stated, 
"It is usually claimed that in the limit Ii -+ 0, the quantum 
mechanical expression tends towards the classical one, how­
ever, a rigorous proof of this is nowhere found in the litera­
ture."l1 In a recent paper,I2 Beretta took the first attempt at 
this question. But some weak points can be found in Beret­
ta's investigation, as shown in our paper. In fact, both quan­
tum mechanical and classical entropies are singular at the 
classical limit, however, the difference between them does 
vanish at this limit. 

The paper is organized as follows. In Sec. II we briefly 
review the concepts of the phase-space formalism of quan­
tum mechanics. Some useful results are derived. In Sec. III 
the classical limit of quantum mechanical description is con­
sidered. We discuss the relation between quantum mechani­
cal and classical entropies in Sec. IV. Conclusions and dis­
cussions are presented in Sec. V. Also, in the Appendix, we 
wish to make some comments on the problems of complete 
classical phase-space representation of quantum kinematics 
and spectral expansion in the classical limit Ii -+ 0 discussed 
in Ref. 12. 

We are going to restrict our discussion to the case of one 

degree of freedom so that the Hilbert space is K = L 2 (R) 
and phase space is eJJ = R 2. But we wish to emphasize that 
the arguments can be easily extended to the case of many 
degrees of freedom. 

II. THE GENERAL CLASSICAL PHASE-SPACE 
REPRESENTATION OF QUANTUM MECHANICAL 
OPERATORS 

The mathematical form of the general question about 
the classical phase-space representation of quantum me­
chanical operators is stated as follows. Suppose A and Bare 
two Hermitian operators. Find a pair of mappings, 9 and 9', 
say, on phase space, which have the following properties: 

9(A) = a(q,p), (1) 
A 

9'(B) = b '(q, pI, (2) 

and 

Tr(A ) = J J a(q, p)dq dp, (3) 

Tr(AB) = J J a(q, p)b '(q, p)dq dp. (4) 

This problem was solved satisfactorily by Agarwal and 
Wolf,9 but their results were mainly presented in terms of c­
number space, annihilation, and creation operators. which is 
convenient for applications in quantum optics. For the sake 
of statistical mechanics and discussions in the present paper, 
we will derive the similar results in terms of phase space, i.e., 
q and p, language. 

Denote the inverse mapping of 9 by 0., i.e., 

90.=0.9= 1, (5) 
A 

A = o.[a(q, p)], (6) 

then9 

A = 21rli J J a(q, p)6. (O)(q - q, p - p)dq dp, (7) 

where the 6. operator is defined by 

6.(O)(q' - q,p' - p) = 0. [6(q' - q)t5(p' - p)]. (8) 

Explicitly it can be written as follows: 

6.(O){q' _ q, p' _ p} 

= (21rli)-2f f o.(u,v) 

x exp[ - i(u(q' - q~ + vIp' - P))] du dv. (9) 
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TABLE I. The filter functions .0.( u.v) for the commonly used rules of associ­
ation. where the symbol (q'Jnw denotes the Weyl-symmetrized form of the 
product qnpm. e.g .• (fp)w = (fp + qpq + pf)l3. 

Rule of association 

Weyl 

Standard 
Antistandard 

The inversion is 

pmq" --+ (q"pm)w 
pmq" --+ qnpm 
pmq" --+ p"qm 

A _ 

a(q,p) = Tr(Aa(Oi(q - q,p - pl). 

.o.(u.v) 

exp( - iuv12li) 
exp(iuv/Ui) 

(10) 

Each mapping is characterized by a so-called filter function 
!l(u,v) (Table I), which is chosen to satisfy the trivial normali­
zation condition 

!l(0,0) = 1. (11) 

The operator a (i'i)(q - q, p - p) is defined in the same fashion 
as Eq. (9) with filter function 

n(u,v) = [!l( - u, - V)]-I. (12) 

The problem of expressing an operator in an ordered 
form according to a prescribed rule is equivalent to an appro­
priate mapping of the operator on phase space. 

The second mapping !l' is determined by 

B = II b '(q, p)a(i'ii(q - q, p - pJdq dp, 

with inversion 

b '(q, p) = 21rli Tr(Ba(O)(q - q, p - pl). 

It is clear that 

9 = (21rli) -19'. 

(13) 

(14) 

(15) 

Next we wish to find the relation between two different 
mappings!ll and !l2 say. The a-operator can be expressed in 
a slightly different form 

a(Oj)(q _ q,p _ p) 

= (21rli)-2 I I!l j(u,v)D (u,v)exp( - i(q: + VP)) du dv, 

(16) 

wherej = 1, 2, 
A 

D(u,v) = exp(i(uq + vp)lli) (17) 

is the well-known displacement operator if we define 

a = (21i)-1/2(q + ip), (18) 

and 

a = (21i)-1/2( - U + iv). (19) 

We observe that 

a(i'i')(q _ q, p - p) = (21rli)-2II (!l2(U,V)) !l1(U,V)D (u,v) 
!l1(U,V) 
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X exp( - i(qu + pV)lli)du dv 

= (21rli)-2 !l2(ili a laq,ili a lap) 
!ll(ili a laq,ili a lap) 

x I I !l1(U,V)D (u,v)exp( - i(q~ + PV)) 
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Xdu dv = [!l2(ili a laq,ili a lap)] 
!l I (iii a laq,ili a lap) 

xa(O')(q -q,p -pl. 

From Eqs. (10) and (20) it follows that 

where 

L 21(x, y) = !l2(X, y)l!l I (x, y). 

(20) 

(21) 

(22) 

Letting n j ~ !lj,j = 1, 2, and using Eq. (9), we obtain the 
following differential relation between a'Otl(q, p) and 
a(O,i(q, p): 

a(O')(q,p) = L12( - ili~, - ili~) a(O')(q,p). 
aq ap 

(23) 
A 

In particular, we choose A = p, which is the density op-
erator describing the system of interest, then a(q,p) serves 
as if it were a classical distribution function. Conventionally 
b '(q,p) <iefined by Eq. (13) is called the n-equ~valence of 
operator B, and a(q,p) defined by Eq. (10) the !l-distribu­
tion function, which is usually denoted by P(i'i)(q,p). Thus 
the expectation value of a quantum mechanical observable B 
can be written in a classical form 

A A 

(B) = Tr(pB) 

= I Ib I(i'i)(q,p)P(i'i)(q,pjdqdp. (24) 

Also the distribution thus defined satisfies the normali­
zation condition 

II P(i'i)(q,pjdq dp = Tr(p) = 1. (25) 

For example, if we consider the simplest case where 

n(u,v) = !l(u,v) = 1, (26) 

then it leads to the famous Wigner distribution function and 
the Wigner equivalence (denoted by suffix w)s: 

b'(W)(q,p) =I(p- ~IBlp+ ~)exp( -iUq)dU. 
2 2 Ii (27) 

A AA 

The Wigner equivalence of an operator F = B,F can b~ 
expressed in terms of those corresponding to B and C 
through the Groenewold theorem 13 

j'(W)(q,p) = b I(W)(q,p)exp(1lG 12i)c,(W) (q,p), (28) 

(29) 

and the arrows indicate in which direction the derivatives 
act. 

One of the major advantages of the Wigner equivalence 
is that it leads to the simplest forms for the quantum correc­
tions to the corresponding classical quantity, 14 and therefore 
is very useful to the semiclassical calculations. IS It can as­
sume negative values, which makes it quite different from 
classical distribution functions. 

Another choice of the filter function leads to the anti­
standard-ordered distribution function6 (see Table I), 
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which has the important property that it is non-negative 
everywhere in phase space. 16 The class of non-negative 
quantum distribution functions has belen shown to be rather 
smal1. 17 

III. CLASSICAL LIMIT Ii -+ 0 

With the help of the formulas mentioned in the Sec. II, 
we now consider taking the classical limit Ii -- O. 

First of all we observe from Eqs. (11), (22), and (23) that 
any phase-space distribution function that describes the 
same system, approaches the same limit at Ii __ 0.18 Also, 
any phase-space equivalence (resulting from any rule of asso­
ciation) of the same quantum mechanical operator ap­
proaches the same limit at Ii -- O. Explicitly we have 

lim b '(O)(q,p) = b (cl)(q,p), (30) 
111 ...... 0 

and 

(31) 

Of course the necessary and sufficient condition for any of 
Eqs. (30) and (31) to be true is that the appropriate limit 
exists, which will be assumed in the following discussions. 

Equation (31) thus defines a classical distribution. 
p(CI)(q,p). We can prove thatP(C')(q,p) is real and non-riega­
tive everywhere in phase space simply by choosing a real and 
non-negative quantum distribution function, e.g., the anti­
standard-ordered distribution function, on the left-hand side 
of Eq. (31). In the case of a canonical ensemble, P(CI)(q,p) 
turns out to be the Maxwell-Boltzmann distribution.s 

Now we would like to consider the properties that the 
"classical functions" b (CI)(q, p) and P(cl)(q, p) possess. The 
conclusions at which we just arrived make it enough to re­
strict ourselves within the Wigner equivalence and distribu­
tion function. 

By u~ing Eqs. (28) and (29) we get the Wigner equiv­
alence of B n, where n is a positive integer, 

A .... A 

(BR)(W) = b '(W)(q,p)exp(IiG 121)(B n-I)(W) 

= b ,(W)(q,p)exp(IiG 121) 

X [b '(W)(q,p)exp(1iG 12i)(.on 2)(wl]. (32) 

Obviously, exp(1iG 12i) approaches its identity at Ii -+ O. 
Hence 

{R (.0 )cl = f f P(CI)(q,p)R (b(cl)(q,p))dq dp, 

and its existence has been assumed. 

IV. RELATION BETWEEN QUANTUM MECHANICAL 
AND CLASSICAL ENTROPY 

(37) 

Traditionally entropy is introduced in the phenomeno­
logical thermodynamical considerations based on the sec­
ond law of thermodynamics. The conception of entropy thus 
defined frequently leads to some obscure ideals. 19 The well­
known heat death provides a good example. In classical sta­
tistical mechanics the Boltzmann and the Gibbs entropies 
are not very good ones either. The reason is that they never 
lead to the third law of thermOdynamics. Thus a correct 
definition of entropy is only possible in the framework of 
quantum mechanics. 

If a system is described by a density operator p, its en· 
tropy is then defined quantum mechanically by 

S(p)= -kTr(plnp) 

= - k f f P(Wi(q,p)(lnp)(W)dqdp 

= - k f f P (W'(q, pl( In ( 2';.,,)) (W'dq dp - k In(21T'1i). 

(38) 

Noticing that 

(pI21rli)(w) = P(W)(q,p), (39) 

we find, according to Eq. (36). that the first term in Eq. (38) 
approaches 

-kff P(cl)(q,p)lnP(cl)(q,pjdqdp (40) 

in the limit Ii -+ O. But the second term diverges to positive 
infinity. If the classical entropy functional is defined by 

S(cl)(P(CI)) = - k f f p(CI)(q, p)ln P(cl'(q, p)dq dp - k In(21rli), 

(41) 

then the quantum mechanical entropy approaches the classi­
cal entropy functional in the limit Ii -+ 0, in the following 
sense: 

(33) lim(S(p)-ln(21rli)) = lim(S(cl)(P(cI))-ln(21rli)), 
111 ...... 0 111 ...... 0 

(42) 

It is easy to see that for any infinitely diWerentiable func­
tion R (t ), we have the following useful relation: 

lim (R (B) )(0) = R (b (e1) (q,b»), 
111 ...... 0 

(34) 

where suffix n denotes an arbitrary n-equivalence. 
On the other hand we have 

Tr(,oR (.0)) = f f P (O)(q, p)(R (.0 j)<°)dq dp. (35) 

Let Ii -+ 0 at both sides 

A A 

lim Tr(,oR (B)) = (R (B )Cl' 
111 ...... 0 

(36) 

where 
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or 

lim(S (,0) - S(cl'(p(Cl,)) = o. 
111 ...... 0 

(43) 

Let us consider a simple example, i.e., an ensemble of 
harmonic oscillators with a heat bath of temperature T. The 
easiest way to compute the quantum mechanical entropy is 
to use the Wigner phase-space equivalence and distribution 
function. 

From Ref. 20, 

b ,(w'(q, p) = (exp( _ PH ))'W) 

= sech(wP 12)exp( - 2 tanh(wp 12)Hlw), 
(44) 
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and the partition function is 
A 

Z = Tr(exp( -/3H)) 

= (21rli)-J fb '(W)(q,p)dq dp 

= (2 sinh(w/3 12))-1. (45) 

Hence the Wigner distribution function is an immediate 
result ofEqs. (44) and (45), 

P(w)(q,p) = (p/21rli)(W) 

= b '(W)(q,p)/(21rliZ) 

= (1rli) -I tanh(w/3 12) 

Xexp(( - 2/w)tanh(w/3 12)H), 

where the Hamiltonian is 

H = jJ2/2m + m{Jif/12. 

The quantum mechanical entropy can be obtained by 

S(p)=k(lnZ-/3 a~~z) 

= (k{3w/2)/tanh(w/3 12) 

- k In(2 sinh(w/3 12)). 

(46) 

(47) 

(4S) 

The Wigner distribution function approaches the classi­
cal canonical distribution function at Ii ~ 0, 

lim P IW)(q, p) = (m/3 121T)exp( - /3H), (49) 
11_0 

as predicted by the general considerations. The classical par­
tition function is, by definition, 

zlel) = (w/3)-I. (50) 

Finally, the classical entropy has the form 

S leI) = k - k In(w/3). (51) 

With the help ofEqs. (4S) and (51), Eqs. (42) and (43) are 
maintained. 

V. CONCLUSIONS 

We discussed the general phase-space representation of 
quantum mechanics at the classical limit Ii ~ O. We proved 
that every representation approaches the same "limit repre­
sentation" at Ii ~ o. The open question on the relation 
between the classical and quantum mechanical entropies 
was answered. The differences between the classical and 
quantal entropies are shown to approach zero at the classical 
limit Ii~O. 
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APPENDIX: COMMENTS ON TWO OF THE PROBLEMS 
DISCUSSED IN REF. 12 

In a recent paper,12 Beretta gave a set of rather restric­
tive conditions defining a complete classical phase space rep-
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resentation of quantum kinematics for systems with both 
classical and quantum mechanical descriptions. With help 
of the general considerations of phase-space representation 
we wish to make some comments on Beretta's ideals and 
derivations. In order to keep consistent with the notations 
that we have been using, we quote those conditions in a 
slightly different form. 

Given a system with quantum mechanical Hilbert space 
K and ~lassical space 9, find two mappings w(q, p; p) and 
b (q, p; B) that satisfy the following conditions. For every 
densit~operator p on K, every well-defined Hermitian op­
erator Bon K, every point (q, p) in 9, and every continuous 
real function R (t) of the real variable t, 

(i) w(q,p;p) is real and non-negative, (AI) 
A 

(ii) b(q,p;B) is real, (A2) 

(iii) f f R (w(q,p;p))dq dp = Tr(R (p)), (A3) 

(iv) f f w(q, p; p)R (b (q, p; B ))dq dp = Tr( pR (B )). 
(A4) 

The purpose of seeking this representation is to show 
that the quantum mechanical entropy is exactly equal to a 
"classical entropy functional," which is defined by 

S(cl)(W) = - k f f w(q,p;p)ln 21T1iw(q,p;p)dqdp. (AS) 

If such a representation exists, then we choose 
R (t) = - kIn t and from (AlO) obtain 

Sip) = - k Tr(p lnp) =s(el)(w). (A6) 

Beretta did not know whether this representation exist­
ed or not. After making a conjecture, Beretta tried to prove 
that this representation was just the one to which the 
Wigner, the Blokhintzev, and the Wehrl21 phase-space re­
presentations (Ro) converge in the classical limit Ii ~ O. 

Although we do not know whether this representation 
exists, we are able to conclude that Ro is an incorrect candi­
date for the representation, the reason being that in Ro, Eqs. 
(A3) and (A4) hold only after limit Ii ~ 0 are taken in the 
right-hand sides. 

Now we tum to consider another problem discussed in 
Ref. 12: the behavior of the spectral expansions in the classi­
cal limit Ii ~ O. The density operator can be written as fol­
lows: 

(A7) 

A 

where ~ = I th)( th I is the projector onto the eigenspace 
It/!j) with eigenvalue 

mj = [exp( - f3Ej ) liZ (AS) 

and 

HIt/!) = Ejlt/!)· (AS') 

By definition we have 

f Pj =1, (A9) 
j=O 

where 1 denotes the identity operator. 
The Wigner equivalences of Eqs. (A 7) and (AS) are 
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ao 

p(W)(q,p) = L WiPr)(q,p). (A 10) 
i=O 

A 

The relation between PjW)(q,p) and r(q,p; Pi) in Ref. 12 is 
A 

PJW)(q,p) = (21rli)-lr(q,p;Pj ). (All) 

Next we consider letting" --. O. It has been shown that22 

(A12) 

where Ii is the semiclassical action associated with 1 "'i) [i.e., 
1= (j + rJli with r the Maslov index]. 

While quantization disappears in the classical limit 
" --. 0, we expect 

(A13) 

since Wj is the probability of the system being in state I"'i)' 
Thus when li~ -0 is applied to both sides ofEq. (A 10), 

the order of1~_o and 1.:=0 cannot be exchanged. Fur­
thermore it is easily verified that 

(A14) 

Therefore Eqs. (34), (35), and (39), the conjecture, in Ref. 12 
are not valid. 
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Numerical integration in many dimensions. III 
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Extending a previous line of work, a powerful computational method is found for numerical 
integration in many dimensions off unctions of the form F(lI(x l ,x2) + i2(X2 ,x3) + h(x3 ,x4) 
+ ... + id(Xd,xJ!j. 

I. INTRODUCTION 

In a previous paperl a method for fast and accurate ma­
chine computation of d-dimensional integrals, where the in­
tegrand was of the form F (II (x I) + fz (X2) + ... + id (xd ») 
was presented. The first step was to introduce an integral 
transform representation of the function F so that its argu­
ment appeared in an exponential, then each of the d integra­
tions over the coordinates Xi could be done separately, with 
the final product then numerically integrated over the trans­
form variable. If n lattice points were needed for the ade­
quate numerical evaluation of each one-dimensional inte­
gral, then this method would require of the order of n2d 
operations: This is enormously better than the nd operations 
that would be required in a direct integration method. Now 
this method of approach is extended to a more complicated 
integrand, in which the argument of the general function F 
has the coordinates Xi linked together in a chain. 

II. THE METHOD 

Consider the integral over the d-dimensional product 
space 

(1 ) 

where Xd + I = X I' Start, as before, with some integral trans­
form 

F(s) = f dO' F(O')tfuio"l, (2) 

where the integration takes place along some suitable con­
tour. Then we have 

1= f dO' F (O')J (0'), 

where 

(3) 

Now introduce the numerical quadrature rule of choice 
for each Xi: 

(5) 

We assume, only for simplicity of notation, that we use the 

same quadrature rule (points Zj and weights wj ) for each Xi 

integration variable. 
Now comes the coup. Notice, that with the definition 

(6) 

we can write the multiple integration in terms of the matrices 
Ai: 

J (0') = Trace A I(O')A 2(0') ••• A d (0'). (7) 

There are n2 elements in each of d matrices, and these 
must be evaluated for each of n values of 0'. The mUltiplica­
tion of two matrices requires n3 mUltiplications of numbers. 
Therefore the total amount of computer time for this method 
is of the order of n3 d function evaluations plus n4 d additional 
multiplications. For n of the order of 10, this means that we 
can evaluate integrals with d into the hundreds or more for 
pennies. 

Once again, a problem that seemed to increase exponen­
tially with the number of dimensions has been reduced to a 
procedure that increases only linearly. The choice of the in­
tegral transform is of course important, and the reader is 
referred to Ref. 1, where several examples are given. 

III. FURTHER COMMENTS 

If the entire integrand is symmetric in all variables (all 
functions/; andgi given by a singleiandg), then there is only 
a single matrix A; and then 

n 

J = L (Aj)d, (8) 
j=1 

where the Aj are the eigenvalues of the matrix A (for each 
value of 0'). Thus we can even take the limit as d goes to 
infinity, with the answer given in terms of the largest eigen­
value ofA. 

If the structure of the integrand is that of an open chain 
[i.e., if the functionid(xd,xd is absent in (I)), then the prob­
lem is simplified a bit. The work of multiplying the matrices 
is reduced by a factor of n. 

The technique used here for handling the multiple sum 
over chain-linked variables leads to the study of some well­
known problems in statistical mechanics. I have applied this 
approach to the Ising model in one, two, and three dimen­
sions; and these results will be published separately. 

Ie. Schwartz. I. Math. Phys. 26. 951 (1985). 
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The canonical formulation of field theory on open spaces is considered. It is proved, under 
appropriate assumptions, that the Poisson bracket of two differentiable generators is also a 
differentiable generator. 

I. INTRODUCTION 

The following question naturally arises in the study of 
the Hamiltonian formulation of Einstein theory on open 
spacelike sections. Given the generators of two asymptotic 
symmetry transformations, supplemented by the appropri­
ate surface terms at spatial infinity that make them differen­
tiable (i.e., that make their functional derivatives well de­
fined),I,2 can it be taken for granted3 that their Poisson 
bracket is also a differentiable generator? In this paper, we 
analyze this question and answer it affirmatively, 

Because the theorem to be derived here can be applied to 
more general situations than just general relativity, we will 
adopt notations that do not explicitly refer to that case. The 
canonical variables will be denoted by yA (x) and the Pois­
son bracket of two differentiable functionals F[ yJ, G[ yJ of 
the canonical variables will be denoted by 

[F G] =f 8F 8G qABd"x, 
, 8yA (x) 8yB (x) 

(1) 

where qAB is, for simplicity, a constant anstisymmetric ma­
trix. In ( 1), 8F 18yA (x) is the functional derivative of Fwith 
respect to yA (x), defined by 

8F= f :F 8yA( x)d"x (2) 
8 (x) 

for any allowed variation 8yA of the fields. The functional F 
is said to be differentiable if its variation can indeed be 
brought to the form (2), with functional derivatives 8F I 
8yA (x) that are regular functions of x. 

The formula ( 1 ) can be rewritten in various useful ways 
as follows: 

(3a) 

(3b) 

(4) 

In the open case considered here, the field configura­
tions yA (x) are restricted by appropriate boundary condi­
tions at spatial infinity, which read 

al Chercheur qualifie au Fonds National Beige de la Recherche Scientifique. 
hi Permanent address. 

,t"(yA ,yf, ... ~"".' Xl) --.0, (5) 

for some given functions,t" of the fields and their derivatives 
. . I 

,.Ai i . ==..:J..A lax" ax" ... ax·, and for some specified rate of fit ru1k vy 

approach. 
If the differentiable functional G is such that 

yA (x) + 8GyA (x) obeys the boundary conditions whenever 
yA (x) does, G is said to be a differentiable generator. In that 
case the infinitesimal canonical transformation generated by 
G maps an allowed configuration on to another allowed con­
figuration. 

From now on, F and G will always stand for differentia­
ble generators which are given by integrals oflocal densities, 

F= f I( yA ,yt,J'th· .. ,ytr"km' x')d"x, (6a) 

(6b) 

Moreover, we assume that 1 and g are differentiable (as 
many times as needed) functions of their arguments. This 
case covers all field theoretical models of common interest. 

From (6), it is easy to obtain4 

8F= fd"x 8~ 8~+fd"-lSk V~(8y), (7) 

where the following conventions have been adopted: 

81 al al m al --= a -ak --+ ... + ( -) ak, ... k 
8~ ~ ayf. m ayt, ... k

m 

(8a) 

(8b) 

aj + ... + (- )m- j 
akj+, ... k

m 
(8c) 

ayt, ... k m 

The functions 81 18J't, ... k j are the "variational derivatives" 
of f with respect to J'tr .. k j' 

Since the (already improved) functional F is differentia­
ble by hypothesis, its variation (7) must reduce to the form 
written in (2) for any 8yA that preserves the boundary condi­
tions (5). For the case in which the variations 8yA are of 
compact support but otherwise arbitrary, the surface inte-

489 J. Math. Phys. 27 (2), February 1986 0022-2488/86/020489-03$02.50 ® 1986 American Institute of Physics 489 



                                                                                                                                    

gral in (7) vanishes and the variation 8F indeed reduces to the 
form (2). It then follows that at each point x, 

of of 
o~(x) = o~' (9) 

where the right-hand side of(9) is understood to be evaluated 
at x. Now by comparing (7) with (2) for arbitrary variations 
o~ compatible with the boundary conditions, the surface 
integral is seen to vanish, 

(10) 

for all allowed 8yt . Similar expressions hold for G. 
We are now in a position to formulate the main theorem 

of our paper. 
Theorem: The bracket [F, G] oftwo differentiable gen­

erators is itself a differentiable generator. 
This theorem contains two assertions. The first one is 

that [F, G] is differentiable. The second one is that 8[F. G J ~ 
has the correct asymptotic behavior, i.e., that [F, G] gener­
ates a canonical transformation that preserves the boundary 
conditions. 

II. PROOF OF THE THEOREM 

In order to prove the theorem, we first demonstrate the 
following lemmas. 

Lemma 1: Let p,A. (~,yt, ... , Y1. ... is ' xi) and 
vA( ~ ,yt, ... , Y1. ... ir' xi) be two allowed, field-dependent, 
"infinitesimal" variations of ~ (i.e., let ~ + p,A. and 
yt + vA obey the boundary conditions). Then, the bracket 
[p" v] A. defined by 

[p" v]A. = 8" vA - 8"p,A. (11) 

is also an allowed infinitesimal variation of yt. In (11), 
8 vA stands for the change in vA induced by the variation 
" p,A. , 

t avA c 
8"vA = L -c-P,iJ""ik ' (12) 

k=O aYi""ik 

The proof of this lemma is straightforward. Infinitesi­
mal variations 8yt are indeed characterized by 

q aXa 

8~ = ~ :l.o1 . 8Y1. ... ik ---+ O. (13 ) 
k-O UYi'''''k 

Also, note that o!", ,,\X" is equal to o"o"Xa 
- o"op.~ [use 

o"hi""ik = (O"h)i""ik ]' Thensince8,,~ and8"xa fallofffor 
all admissible field configurations, it follows successively 
that8,,0,,~, 8"8,,Xa

, and 8["."J ~ also go to zero at infinity 
and thus, that [,u, v] A. preserves the boundary conditions. 0 

Lemma 2: Let p,A. and vA be as above. In performing the 
integrations by parts needed to transform 

I 0,,(:;) .p,Bd"x 

into a volume piece containing only undifferentiated vA plus 
a surface integral, that surface integral is simply given by 

f d" - ISk A J( p" v), (14a) 

with 
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AJ(p"v) =8"Vj(v) -8"Vj(p,) + VJ([v,p,]). 
(14b) 

This can be seen by using again the simple identity 

0"8,, f- 8"8J=8[".,,Ji (15) 

By integrating (15) over x and taking into account (7) and 
the definition of the bracket [v, p,]A. , this yields 

+f d "-ISk A j(P"V), (16) 

where A J( p" v) is given by (14). Since the volume integral 
on the right-hand side of ( 16) contains no derivative of vA , 
the second lemma is proved. 0 

Incidentally, (16) shows that the polynomials 8" (8f / 
8yt) are "self-adjoint," as indeed they should be (see, e.g., 
Ref. 4, pp. 202-204). 

Lemma 3: Let p,A. and vA be given by 

,uA. = 8F~ = ~A., vA = oG~ = ~A.. (17a) 
8yB 8yB 

The bracket [p" v]A. is then equal to 

[ v] A. = ~( 8f ~ (TCD) uSA.. (17b) 
p" 8yB 8yc 8yD 

This is a straightforward consequence of the following iden­
tity of the calculus of variations: 

~( 8f 8g uSc) = 8 8g _ 8 8f (18) 
8~ 8yB 8yc F 8~ G 8~ 

(where 8F = 8", oG = 8,,). 
To prove this identity, integrate the right-hand side of 

( 18), multiplied by an arbitrary function ~ of compact sup­
port, over the whole space and make all necessary integra­
tions by parts. The resulting surface integrals will all vanish 
since ~ is identically zero sufficiently close to spatial infin­
ity. This gives, using the equality (16), 

I 
~ (8 8g - 8 8f )d"X 

F 8~ G 8~ 

= I (8F~ 8E :~ - 8G~ 8E 8~ )d"x 

= I8 ( 8f 8g uAB)d"X. (19) 
E 8~ 8yB 

Again making an integration by parts and taking the arbi­
trariness of ~ into account, (18) is easily seen to hold 
true. 0 

We now turn to the demonstration of the theorem itself. 
The first step in the demonstration amounts to showing that 
[F, G] is differentiable. This is done by relating the surface 
term that appears in the variation of [F, G] to the surface 
terms that arise in the variations of F and G, and that are 
known to vanish. 

The definition (1) and the equality (9) may be used to 
write the variation of[F, G] for an arbitrary (allowed) vari­
ation vA of ~ as 

Ov [F, G] = f 8v( 8g )OFyB d"x - I ov(:~)oGyB d "x. 
8yB ~ (20) 
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We want to prove that the surface integrals arising from 
the appropriate integrations by parts in each term of the 
right-hand side of (20) are separately zero. Since these terms 
have the same structure, it is enough to show this property 
for one of them. 

From the second lemma, we know that the surface inte­
gral arising in S {j", ({jf l{jyS) {jayS d nx is given by 
~A 1({ja y, v)d n - ISk [formula (14)], where 

A 1({ja y, v) = {ja V1(v) - {j", V1({ja y) + V1( [v, {ja y]). 
(21) 

But each of the terms in A 1({ja y, v) contribute zero, be­
cause (i) ~V1(v)dn-ISk vanishes for any allowed vari­
ation performed about any allowed configuration, and so 
also does 

f {ja V1(v)d n- ISk = {jaf V1(v)d
n

- 1Sk; 

(ii) similary, ~ {j", V1({jaY) d n - ISk vanishes for an identi­
cal reason; and (iii) [v, {ja y]-.4 is an allowed variation by 
virtue of the first lemma, and so its flux integral 
~ V1( [v, {ja y])d n - ISk is also zero. Hence, there is no un­
wanted surface term in {jv [F, G]. 

This proves that the Poisson bracket [F, G] is differen­
tiable; its functional derivatives are equal to [see (1) and 
(9) ], 

(22) 

Then the result of the third lemma can be rewritten as 

(23) 

and it follows from the first lemma that {j[F. a 1 y.4 is an al­
lowed variation. This shows that the canonical transforma­
tion generated by [F, G] preserves the boundary conditions 
and completes the demonstration of the theorem. 

The conclusion of our paper is that as soon as the ca­
nonical generators of a field theory are supplemented, in the 
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spatially open case, by the appropriate surface terms needed 
to make them well defined, then their Poisson brackets may 
be taken as many times as desired (provided these generators 
are given by the integrals of C"" local densities). In that 
sense, the problem of the surface terms arises only once. In 
addition, the Poisson brackets possess the nice properties 
expected from classical mechanics with a finite number of 
degrees of freedom [cf. (23)]. 

As a final point, we note that the results of our paper 'can 
be easily extended to the case when some of the variables 
y.4 (x) are fermionic. 
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This paper examines properties of solutions to the Yang-Mills equations in four dimensions and 
in particular on the manifold CP2: Two solutions are found: one is neither self-dual nor anti-self­
dual but is a solution of the full Yang-Mills equations, the other is a self-dual solution. 

I. INTRODUCTION 

The attention of both mathematicians and mathemat­
ical physicists in recent years has been drawn to Yang-Mills 
theories. There are deep results of a nontrivial mathematical 
kind, cf. Ref. 1; and, of course, physics is making an increas­
ing use nowadays of Yang-Mills and Yang-Mills-Higgs 
theories. These theories are mathematically interesting in 
various numbers of dimensions, and physicists similarly 
vary the number of dimensions so as to be able to discuss 
vortices, monopoles, instantons, and Kaluza-Klein theor­
ies, to mention a few of the possibilities considered (cf. also 
the selective list of Refs. 2-6 and references therein) . We 
shall limit ourselves in this paper to four dimensions. 

In four dimensions there are extra things that can hap­
pen: there is the vital and fundamental relationship between 
an oriented four-manifold M and its associated twistor space 
Z, and also the fact that the Yang-Mills curvature P, being a 
two-form, has the possibility of being self-dual. The most 
studied case in four dimensions is that when M = S4 (see 
Ref. I) for which the corresponding twistor space Z is CP3_ 
the complex projective three-space. Another example that 
has received considerable attention7 is the torus T 4

, this be­
ing the manifold that is natural when periodic boundary con­
ditions arise. In this paper we look at the manifold CP2 com­
plex projective two-space. This manifold is a 
two-dimensional complex manifold and so can be regarded 
as an orientable manifold of real dimension 4. An additional 
motivation of choosing M = CP2 is that, as well as Cp2 being 
a well-known compact four-dimensional manifold, it has a 
twistor space Z, which is a Kiihler manifold. Kahler mani­
folds are complex manifolds endowed with a metric that is 
Hermitian and possess the further invariance property that 
the Hermiticity operations are preserved under parallel 
transport. For an introduction to Kahler manifolds and 
physics, cf. Ref. 8. In this respect Z is a surprising rarity­
the only other compact four-manifold M whose twistor 
space Z is Kiihlerian is S4 (see Ref. 9). 

On Cp2 we wish to study the G-invariant Yang-Mills 
action S where 

S= 11F112= - r tr(PI\*P), Jcp2 (Ll) 

with G some compact Lie group, which in this paper is either 
SU(3) or SU(2), and the * operation on the Yang-Mills cur­
vature is defined with respect to the so-called Fubini-Study 
metric on Cp2 (see Ref. 10). This means that if we have a two­
form 0) on CP2 then 

(1.2) 

withA,B = 1, ... ,4, then *0) is given by 

0) = (,fg/2)EAB CDO)CD dxA I\dxB, (1.3) 

and g is the determinant of the Fubini-Study metric gAB' 
The organization of the rest of this paper is as follows: In 

the next section we give two extremal connections A and A ' 
for S. The first of these connections A is su(3 I-valued, while 
the second A ' is su(21-valued. It turns out that the curvature 
P of A is neither self-dual nor anti-self-dual, but satisfies the 
second-order Yang-Mills equation 

D *F= O. (1.4) 

This solution has been independently found in cpn context 
by Hogan. II However, neither the Chern class C2 of A nor the 
action S were calculated there. Here we calculate C2 and S. 
We shall show that C2 is zero and that S is infinite. This 
means that A is actually a singular, noninstanton, solution of 
the Yang-Mills equations. Atiyah 12 has recently discussed 
the significance of some solutions to the Yang-Mills equa­
tions that possess singularities. The second connection A ' 
has topological charge k = 1 and is self-dual with action S 
equal to 8~. Finally the last section contains our concluding 
remarks. 

II. THE YANG-MILLS EQUATIONS ON CP2: THE 
CONNECTION A 

As coordinates on Cp2 we use the homogeneous coordi­
nates (Z°,zI,zZ) and work for the most part on the patch 
ZO = 1. The Fubini-Study metric on CP2 that we use is de­
noted by gAB with gAB given in the block-otT-diagonal form 

gAB = (0 
\gab 

(2.1) 

The capital letters A, B run over 1, 2, T, 2, the lowercase 
letters a, b run over 1, 2, and the Hermitian matrix gab is 
given by 

1 [8ab r'zb] 
gab ="2 (1 +fl) - (1 +fl)2 

= aa ar, In~(1 + fl), (2.2) 

where a a =a / azO and aa ==.a /r'. 
Turning to the Yang-Mills action we have more expli­

citly 

S= - r tr(FI\*F) 
JCP2 . 

(2.3) 
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where (tJ is the volume form on CP2 and 

F = (FABI2)dzA A dzB. (2.4) 

As we said in Sec. I the Euler-Lagrange equations for S are 

D*F=O. (2.5) 

A solution to (2.5) is given by taking an ansatz of the form 

A = f1 aF1 + f2 aF2, (2.6) 

wheref1 andf2 are functions, F1 and F2 are matrices belong­
ing to the Lie algebra su(3) ofSU(3), both are homogeneous 
of degree zero in :f1, ... ~, and aF1 and aF2 stand for the one­
forms (aF1Iart)drt and (aF2/aft)dfl, respectively, with 
rt, ft local complex coordinates on CP2. It turns out that 
we can satisfy the Yang-Mills equations for the case whenf1 
andf:z are both constant. To this end let a, /3 run from 0, ... ,2 
and consider nine 3 X 3 matrices T afJ, where T afJ is a matrix 
that is zero everywhere except at the (a,/3) location, which 
has a nonzero entry equal to unity. Now if we write 

(2.7) 

with f afJ a real function homogeneous of degree - 2, then 
the choice 

A =aF-aF (2.8) 

gives a connection. A straightforward computation shows 
that this connection obeys the Yang-Mills equations (2.5) 

providedfafJ = ( - It +P I~ 1 + rr, where w~ now work 
in the patch:f1 = 1. Note that AESU(3) although F~u(3). The 
connection (2.8) has a curvature F that is not self-dual or 
anti-self-dual. This can be seen directly from F itself but it 
will also be a consequence of the fact that we will find the 
action S and the second Chern class c2(F) to be different. 

Of interest first is what is the value C2 of c2(F), where 

-Ii C2=~ tr(FAF) 
811 CP 

(2.9) 

for su (3). The integrand tr(F A F) is readily calculable and 
one obtains, withf = (1 + fl), 

tr(FAF) =f-4(~bc +zi'r)(~'f +Z"zI) 

X (fIJcg - rzB) (fd" - ztz") 

X (2f-2z"Hr - f-1ZOz"~d. 

_ f-1ZOz"~bd _ f-1z:iz"~ab 

_ f-1z:iz"~a. + ~ab~d. + ~a.~bd) 

X dr A dz" A di" A dz<I, (2.10) 

and this eventually simplifies to, with 
G = f- 2(ZOdz") A (z"azt'), 

tr(FAF) = 2GAG, (2.11) 

and this is immediately zero. Thus C2 is zero and the next 
question, since F is not self-dual, what is the action S? This 
means that we need to calculate 

tr(FA *F) = !tr(FABFcDJrcgsD.JK d 4z, (2.12) 

and d 4z the volume form on CP2. In (2.12),gis the determi­
nant of the Fubini-Study metric gAB of (2.1) and r c denotes 
the inverse of gAC' This leads to g being expressible in terms 
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of g, the determinant of the 2 X 2 matrix gab' via 

g=g2, (2.13) 

while r c may be calculated directly or by using the explicit 
off-diagonal form (2.1) and the characteristic polynomial for 
gab' With these facts one finds, after a lengthy computation, 
that 

tr(FA *F) = - 2f-2(2f-2z"rz-1z" - f-1ZOzB~h 

- f-1ZOz"~d - f-1zdz"~ag 

_ f-1zdzB~ah + ~ag~dh + ~ah~d) 
X~Trg'dg d 4Z. (2.14) 

h =ZOz"r, If we introduce the notation t = tr ~b, 
/ = ZOzBtfdgld, and m = tr(~b(ib), we obtain 

tr(FA *F) = - 2f-2(2f-2h 2 - 2f-1/ 

-2f-1ht+m+t 2)gd 4z. (2.15) 

However, using the characteristic polynomial 
p(A.) = A. 2 - tA. - g with A. = gab' it is possible to relate the 
functions /, m, and t and express them all as functions off. 
We simply quote the result of doing all this. It is that (2.15) 
is equal to 

2( 1 1 1 ~ 1 f2 X 2) 4 
- IS + f3 + f - r + )X + 7' d z, (2.16) 

where X = (Z7)(z"z"). 
It remains to integrate the expression in (2.16) over the 

manifold Cp2. In theory13 this integration could require spe­
cifying a partition of unity subordinate to some covering 
{Ua } ofCP2. However in the case Cp2 may be covered by the 
three patches Ua specified by za #0, respectively. Further 
each of the patches Ua is dense in CP2 and hence we need 
only integrate over one ofthem-Uo say. Hence 

S= - ( tr(FA*F) JcP2 

=2{ (~+~+~_~1+f2)X+X2)d4z. J U
O 

IS f3 f fS fS 
(2.17) 

This means that S is reducible to a sum of four-dimensional 
integrals-the integrals involving X need some considerable 
attention. When this is given we obtain the formulas [r(z) is 
the gamma function] 

( ~4Z 
JUofa 

= 22"r r(a - 6)(a - 6)(a - 5) , 
r(a - 4)(a - l)(a - 2)(a - 3)(a - 4) 

(2.18) 
( X

2 
d4z = 2'4!"rr(a - 1O)(a - 1O) .. ·(a - 7) . 

Juo fa r(a - 8)(a - 8) .. ·(a - 1) 

For the action S we eventually find the expression 5"r I 
12 + S[' where S[ stands for the expression 

lim[2n2 r(a - 2) + 2
2
·4!n2 

a_1 r(a) (a - 2)(a - l)a ... (a + 3) 

_1~r(a-2)], (2.19) 
r(a + 2) 

which is, in fact, infinite so that S diverges. This infinity has 

C. Nash 493 



                                                                                                                                    

arisen on integrating over the patch zo;60, where one can 
easily verify using (2.7) and (2.8) that A and F are regular. 
Since CP2 is compact the infinity of S shows that the singu­
larity is at Zo = O. 

The connection A ': We now take the group G tobeSU(2) 
rather than SU(3). Our ansatz for A ' is 

A'=aa-aa, (2.20) 

where in this case a is given by (a and /3 run from 0 to 1), 

a =aapTaP, 

and aaP is a homogeneous real-valued function given by 
aaP =!( -1)(a+ Pl/2<5ap In(1 + fl). The curvature FofA 'is 
straightforward to evaluate and is given by expression 

F = [ dz
l 

1\ di
l + dr 1\ tfi2 

(1 +fl) 

ZIZI dzl 1\ dil + rrdr 1\ tfi2 + zlr dz l 1\ tfi2 
(1 +fl)2 

_ zlz2 dr I\di
l 
](T 00 - Tll)' 

(1 + Z'Z")2 

Using (1.3), we do a routine calculation of*F, which verifies 
thatFis self-dual so thatF = *F. Of interest next is the value 
of the topological charge k. Since k = - C2 we have 

k = ~ f tr(F I\F). (2.21) 
811 JCP2 

The techniques developed for the SU(3) solution suffice also 
to evaluate this expression and we obtain finally for k the 
integral 

-Ii 4al 
8"r Uo (1 + flf 

where (i) = dzll\dill\dr 1\tfi2. This integral is now 
straightforward to perform and we confirm that k = 1 as 
claimed. We also calculated the action S and find that 
S = 8"r, as it should. Thus A' is a self-dual solution with 
k = 1. 

III. CONCLUSIONS 

We have carried out an investigation of the Yang-Mills 
equations in four-dimensions, and have considered solutions 
to the Yang-Mills equations for the groups SU(2) and 
SU (3). In particular we have shown that a solution A to the 
SU (3) equations on CP2 endowed with the Fubini-Study 
metric is trivial topologically and possesses a singularity on 
CP2. For the SU(2) case we have found a self-dual solution 
with unit topological charge. An interesting question also is 
the geometry and topology of the solution space on CP2. A 
further point of interest in the study of CP2 is that its twistor 
space9 Z = CF (3) and is one of the only two Kiihlerian twis­
tor spaces possible. The number of non-instanton-like solu­
tions to the Yang-Mills equations on CP2 is an interesting 
topic l4

; in two dimensions all the topology of the space of 
solutions can be fully analyzed using an equivariant Morse 
theory, 15 but in four dimensions, where the criteria for appli­
cability ofthe Morse theory are not met, the situation is open 
even for manifolds such asS 4

• There are interesting calcula-
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tional results, 16 not touched on here, for taking a step nearer 
to the quantum field theory; the significance of the solution 
discussed here may be in its relation to the properties of 
singular solutions as discussed by Atiyah, 12 or in its embed­
ding in a space of higher dimension, these are points under 
further study. 
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Kruskal's asymptotic theory of nearly period motion [M. Kruskal, J. Math. Phys. 4, 806 (1962)] 
(with applications to nonlinear oscillators, guiding center motion, etc.) is generalized and 
modified. A new more natural recursive formula, with considerable advantages in applications, 
determining the averaging transformations and the drift equations is derived. Also almost 
quasiperiodic motion is considered. For a Hamiltonian system, a manifestly Hamiltonian 
extension of Kruskal's theory is given by means of the phase-space Lagrangian formulation of 
Hamiltonian mechanics. By performing an averaging transformation on the phase-space 
Lagrangian for the system (L --+ I) and adding a total derivative dS IdT, a nonoscillatory 
Lagrangian A = I + dS I dT is obtained. The drift equations and the adiabatic invariant are now 
obtained from A. By truncating A to some finite order in the small parameter E, manifestly 
Hamiltonian approximating systems are obtained. The utility of the method for treating the 
guiding-center motion is demonstrated in a separate paper. 

I. INTRODUCTION 

A nearly periodic Hamiltonian system was shown by 
Kruskal to possess an all-order adiabatic invariant. 1 The the­
ory may be used as a general method of finding the adiabatic 
invariants of various Hamiltonian nonlinear oscillators. It 
may also be applied to the motion of a gyrating charged 
particle in a strong magnetic field. It provides a systematic 
method for deriving to arbitrary order the (possibly) three 
adiabatic invariants-the magnetic moment, the longitudi­
nal, and the flux invariants-and the associated drift equa­
tions. The method of Kruskal has, however, certain less sat­
isfactory features that will be discussed later on in this 
section, and that motivates the present paper. 

Following Kruskal we shall first consider nearly period­
ic but not necessarily Hamiltonian systems. Without the Ha­
miltonian property we do not obtain any adiabatic invariant, 
but we still derive the drift equations to arbitrary order, 
which determines the asymptotic solutions. Let us therefore 
consider a system of m + 1 ordinary differential equations 

dy - = g( y,V;E), (Ua) 
dT 

dv - = t/J( y,v;E), (Ub) 
dT 

where yER m, veR, and 

g( y,v;E) = €g(l)( y,v) + ~g(2)( y,v) +"', (Uc) 

t/J( y,v;E) = t/J(O)( y) + Et/J(l)( y,v) + . . . (Ud) 

are formal series in the small parameter E. The functions are 
periodic in v with period 21r. An ordinary differential equa­
tion with all solutions nearly periodic may, in appropriate 
coordinates, be written in the form (1.1).1 

The generalization to the nearly quasiperiodic case is 
given in Appendix A. The nonautonomous case when g and t/J 
depend on ET is considered in Appendix B. 

We are interested in solving (1.1) for times of order 1/ E, 

i.e., for many periods of the rapid-angle variable v. Direct 

iteration in (1.1) produces secular terms ET, (ET )2, etc., and 
is not useful. Instead we may derive new equations approxi­
mating (1.1) with the rapid-angle variable averaged away. 
Straightforward averaging of ( 1.1) yields the equation 

1 1211" y=- g(y,V;E)dv, 
21r 0 

(l.2) 

which turns out to be valid only to lowest order in an as­
symptotic expansion. In order to obtain an all-order theory 
we make use of an averaging transformation approach. The 
basic idea then is to find new coordinates such that all the v 
dependence enters in the coordinate transformation leaving 
the transformed system independent of the rapid angle. For­
mally, a coordinate transformation means no approxima­
tion, but in our case, the transformation is a formal, usually 
not convergent, power series in E. New constants of motion 
for the transformed equations may exist as formal series in E 

and are called adiabatic invariants. The way we usually deal 
with these series makes the question of convergence less im­
portant; only terms of low order in E are calculated, so the 
most important thing is that these few terms have good ap­
proximating properties. 

Various methods for deriving the averaging transforma­
tions have been developed. When (1.1) are the canonical 
equations, we may use the Poincare-von Zeipel method. By 
means of canonical averaging transformations we then 
eliminate the rapid-angle coordinate from Hamiltonian. Al­
ternatively we may, without any Hamiltonian structure, find 
an averaging transformation directly from the dynamic 
equations (1.1). This is done by Kruskal1 and by Krylov, 
Bogoliubov, and Mitropolsky.2 An important contribution 
of Kruskal was the inclusion of an adiabatic invariant which 
exists when (1.1) is a Hamiltonian system. 3 

If(l.l) isa Hamiltonian system but (y,v) are not canoni­
cal variables, the application of the Poincare-von Zeipel 
method may be far from straightforward. For example, con­
sidering the guiding-center motion of a charged particle in 
an inhomogeneous magnetic field, this happens to be a non-
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trivial problem.4 The method of Kruskal may be used in 
place of canonical perturbation theory, but has the unsatis­
factory property of producing non-Hamiltonian approxima­
tions of (1.1) to each finite order in E when (1.1) is a Hamilton­
ian system. This problem was recently solved by Littlejohn 
by the development of two versions of noncanonical Hamil­
tonian perturbation theory. Both methods are basically gen­
eralizations of the Poincare-von Zeipel method. In the first 
method,4,5 the Poisson bracket formulation of noncanonical 
Hamiltonian mechanics is used and symplectic averaging 
transformations are used to eliminate the angle variable 
from the Hamiltonian. In the second method6-8 arbitrary 
(nonsymplectic) averaging transformations is allowed. This 
is possible due to the very convenient phase-space Lagran­
gian formulation of noncanonical Hamiltonian mechanics 
(see Appendix C).9 The averaging transformation is, in this 
case, used to eliminate the rapid-angle variable from the 
phase-space Lagrangian. Littlejohn makes use of Lie trans­
forms to find the averaging transformations from the condi­
tion of a nonoscillating phase-space Lagrangian.6 Remarka­
bly nice looking formulas for the guiding-center motion have 
been derived in this manner.7 

In the present paper we are going to improve and gener­
alize the Kruskal method rather than the Poincare-von Zei­
pel method. The former method has the advantages of a sim­
ple mathematical structure and an explicit, compact, and 
easily derived recursion relation determining the asymptotic 
expansion to all orders. Furthermore, non-Hamiltonian sys­
tems also may be considered. However, Kruskal's theory 
also has quite serious drawbacks, which makes it less attrac­
tive in applications. We have already mentioned that it pro­
duces non-Hamiltonian approximations to Hamiltonian 
systems. Furthermore, the recursion relation gives inconve­
nient new variables. It is probably no accident that 
Northrop, in his well-known book1o on the guiding-center 
motion of a gyrating charged particle, prefers to use a WKB 
ansatz (also due to Kruskal) when deriving the guiding­
center drift equations and only make use of Kruskal's gen­
eral theoryl for deriving the adiabatic invariants. The prob­
lem is evident in Ref. 11 where a straightforward application 
of Kruskal's recursion formula is seen not to give the usual 
lowest-order guiding-center position. 

These problems with Kruskal's method are solved in the 
present paper.12 The class of averaging transformations is 
quite large and we determine this class explicitly in order to 
make possible a favorable choice in each specific problem. 
Further, by considering the inverse averaging transforma­
tion in our recursion formulas (2.5), we avoid unnatural ini­
tial conditions like (B20) in Ref. 1. The relations (2.5) not 
only determine the whole class of averaging transforma­
tions, but the subclass that possesses certain gyrogauge in­
variance properties (see Sec. IV B) is also easily identified. 
The class of averaging transformations is determined by the 
functions (Y) and (Y), both formal power series in E, serv­
ing as free parameters. The gyrogauge invariance of the slow 
drift variable Z is obtained if (Y) is chosen in a "physical­
geometric" way. These free parameters are in practice cho­
sen, order by order, to simplify, for example, the trans­
formed equations and the constants of motion. When deal-
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ing with a Hamiltonian system we try to get a simple formula 
for the phase-space Lagrangian. Compared with Kruskal's 
original approach, we have now achieved additional possibi­
lities for obtaining convenient asymptotic formulas first by a 
more natural form of the recursion relation, and second by 
carefully displaying the free parameters, which are chosen in 
the end to make the results simple. 

The phase-space Lagrangian formulation of Hamilton­
ian mechanics is a perfect tool for developing a noncanoni­
cal, but still manifestly Hamiltonian, perturbation theory 
from Kruskal's theory. In terms of the phase-space Lagran­
gian L for ( 1.1) and an averaging transformation determined 
by (2.5) we get an explicit expression for a nonoscillating 
phase-space Lagrangian A. The adiabatic invariant and the 
drift equations are now obtained directly from Euler's equa­
tions. We get Hamiltonian approximating systems by trun­
cating A to finite order in E. The adiabatic invariant may be 
used to reduce the order of the system by 1, and since we 
already have eliminated the rapid-angle variable, we have a 
reduced system two orders lower than (1.1). Kruskal proved 
that this reduced system is also Hamiltonian.1 This result 
follows much more easily with the present method, but more 
important is that we now also get finite-order Hamiltonian 
approximations of the reduced system. 

It is straightforward to obtain a systematic all-order the­
ory for the guiding-center motion of a charged particle by 
means of this method. We have investigated13 how the free 
parameters may be chosen in order to simplify the form of 
the guiding-center Lagrangian. In particular the algebraic 
results in Ref. 7 are confirmed apart from a claimed gyro­
gauge invariance property of the guiding-center Lagrangian. 
What is of interest, we believe, is the gyrogauge invariance of 
the slow guiding-center variables. However, the requirement 
of this invariance property probably forces the all-order La­
grangian to take a more complicated form than in Ref. 7. 

The new recursion relation determining all averaging 
transformations is given in Sec. II. The manifestly Hamil­
tonian extension of Kruskal's theory is presented in Sec. III, 
and some invariance properties are considered in Sec. IV. In 
Sec. V we summarize the procedure of obtaining A, and also 
give a direct method of deriving A from L without explicit 
use of (Ll). This alternative is close to Littlejohn's second 
method but it is mathematically more elementary and Lie 
transforms are used. Section V also includes a discussion 
comparing the methods for obtaining A. 

II. THE AVERAGING TRANSFORMATIONS 

We are going to determine the class of near-identity co­
ordinate transformations (y,v) -+ (z,lP) such that (Ll) in 
terms of (z,lP) transforms into 

z = h(Z;E), ip = m(z;E), 

h(Z;E) = Eh(1)(z) + ... , 
(2.1a) 

(2.1b) 

(2.1c) 

where we note that hand m, to all orders, are independent of 
the rapid-angle variable lP. These transformations are called 
"averaging transformations" and (z,lP) are called "nice varia­
bles." Let us write an inverse averaging transformation 
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y = z + V(Z,¢;E), v = ¢ + Y(Z,¢;E), 

where 

V(Z,¢;E) = Ey<l)(Z,¢) +"', 

Y(Z,¢;E) = Erl)(Z,¢) + .... 

Here V and Y are periodic with period 211" in ¢. 

(2.2a) 

(2.2b) 

(2.2c) 

Let the function F ( y, v) be periodic in v with period 211". 
We define the operations V, a, -, A, I, and jby14 

(V F)( y,v) = aFt y,v) , 
ay 

(a F)( y,v) = aFt y,v) , 
av 

1 i2
17" (F)(y)=- F(y,vjdv, 

211" 0 

P=F- (F), 

F( y,v) = (¢,(O)( y))-{[ P( y,v'jdv't, 

I( y,v) = y, j( y,v) = v. 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

(2.3e) 

(2.3f) 

The inverse averaging transformation may now be written 
(I + V,j + Y). We use the symbol o to denote composition of 
functions. We have, for example, 

g(z + V(Z,¢;E),¢ + Y(Z,¢;E);E) 

= gO(1 + V,j + Y)(Z,¢;E). (2.4) 

The formal series (V)(Z;E) and (Y)(Z;E) are now regarded as 
free parameters. To each choice of these we have V, Y, h, and 
w determined recursively, order by order in E, by means of 
the relations 

h + ,,/0) aY 
= go(1 + V,j + Y) - h· VY - (w - ",(O»aV, (2.5a) 

w + ",(0) ifi 

= ¢o(1 + V,j + Y) - h· VY - (w - ",(0»a'Y'. (2.5b) 

Furthermore, every averaging transformation may be ob­
tained in this way by correspondingly choosing (V) and 
(Y). 

The proof of these results concerning (2.5) is merely a 
matter of simple checking which is conveniently performed 
in the following steps. 

(a) Giveng(k), ",(k), (V(k», and (y(k» for k = 0, ... ,n, 
then Eqs. (2.5) determine h(n), w(n), v(n), and y(n). 

(b) Let h, w, V, and Y satisfy (2.5). Then (1.1) trans­
forms into (2.1) by means of the coordinate transformation 
( y,v) --+ (z,¢) defined by (2.2). 

(c) If (2.2) is an inverse averaging transformation so 
that Eqs. (1.1) transform into Eqs. (2.1) then the relations 
(2.5) follow. 

From (a) and (b) it is clear that (2.5) produces averaging 
transformations and corresponding transformed equations 
in the wanted fashion. From (c) it then follows that all aver­
aging transformations are obtained in this way. 

Let us now prove (a), (b), and (c). We use induction for 
(a). First take n = 0. Substituting 8(0) = 0, ",(0)( y,v) = #0)( y), 
( y(O» = 0, and (y(O» = ° in the ~ part of (2.5) gives h(O) 
= 0, w(O) = ",(0), V(O) = 0, and -r0) = 0. Assume (a) is true for 

n = p - 1. Consider the E P terms in (2.5) 
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h(p) + #0) aY(P) = g(P) + R(P), (2.6a) 

w(P) + ",(0) ifi(p) = ",(P) + V(P) • V",(O) + r(P), (2.6b) 

where R(p) and r(p) are known by the assumption above. 
Now given g(P), ",(P), (V(P», and (Y(P» we want to show 
that (2.6) determines h(P), ",(P), V(P), and y(p). Then (a) is 
proved for n = p and is, by induction, true for all n. Now y(p) 
is the only unknown quantity on the right-hand side of (2.6). 
From (2.6a) we obtain _ "'-

VIP) = gIP) + RIP), 

hIP) = ( gIP» + (RIP», 

and from (2.6b) 

yIP) = ;p) + yIP) • V",(O) + ;h'), 

wIP) = (¢IP» + (VIP» • V",(O) + (rIP». 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

Thus VIP), hIP), and wIP) are determined and so is y<P) after 
substitution of (2.7) in (2.9). To demonstrate (b) we substitute 
(2.2) in (1.1) and eliminate the gand ",terms by meansof(2.5). 
Then, order by order, (2.1) follows. The demonstration of (c) 
is completely straightforward. 

III. HAMILTONIAN PERTURBATION THEORY 

We now consider the case when (1.1) is a Hamiltonian 
system but ( y,v) are not necessarily canonical coordinates. 
Then Eqs. (1.1) are the Euler equations for a phase-space 
Lagrangian function 

L (y,v, y,v;E) = y. 1'( y,V;E) 

+ v-r,( y,v;E) - H( y,v;E), (3.1) 

as shown in Appendix C. Let us now transform (3.1) by (2.2) 
and write the phase-space Lagrangian in (z,¢) coordinates as 
[see (4.32)] 

I (z,¢,z,i,b;E) = z • y(Z,¢;E) + i,b7i(Z,¢;E) - Ii (Z,¢;E). (3.2) 

The Euler equations of (3.2) are (2.1) which are ¢-indepen­
dent. However, I is in general ¢-dependent, but we prove in 
Appendix E that a rapid-angle independent phase-space La­
grangian A may be defined by 

- d 
A=L +-(S+Sd, (3.3a) 

d". 

SI(Z,¢;E) = - [f (7i(Z,¢')rd¢']-, (3.3b) 

where S (Z;E) is a free parameter. We note that A contains the 
free parameters (V), (Y), and S which are to be chosen as 
conveniently as possible. Of course A and I have the same 
Euler equations (2.1). A useful expression for A is 

A = (I) + dS . (3.4) 
d". 

The averaging in (3.4), 

- 1 i 2
17"-(L )(z,¢,z,i,b;E) = - L (z,¢,z,i,b;Ejd¢, 

211" 0 
(3.5) 

simplifies the algebra in applications by eliminating a lot of 
terms. From (3.2), (3.3a), and (3.4) we note that 

Ii= (Ii). (3.6) 

Let us write 
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A(z,t,6,z,~;€) = r(z;€) • Z + J (z;€)~ - K (z;€). (3.7) 

The Euler equations of A give the drift equations to all or­
ders. By truncating the series A = A (0) + € A (I) + ... , we ob­
tain Hamiltonian approximations of these equations to any 
desired order. We also find the adiabatic invariant J(z;€); 
j = 0 to all orders in € as a consequence of aAlat,6 = 0 in 
Euler's equations. 

Let us now consider the reduced system obtained by 
eliminating t,6 and J. We then first change coordinates, 
(z,t,6) -- (w, J,t,6), so that J becomes one of the independent 
variables. To simplify the notations, we assume that (z,t,6) in 
(3.7) already has been chosen so that Zm = J and we denote 
z = (w, J). The phase-space Lagrangian for the reduced sys­
tem may now be written 

m-I 
AR (w;w; J,€) = L r;(w; J,€)w; - K (w; J,€), (3.8) 

;=1 

where w;w€R m - I. Since here J also is considered to be a 
parameter, we now write J after the semicolon in (3.8). The 
Hamiltonian property of the reduced system thus follows 
almost directly by the phase-space Lagrangian formulation 
of Hamiltonian mechanics. The proof of this fact in Ref. 1 
was quite complicated. Furthermore, we now obtain Hamil­
tonian approximating systems by truncating the series AR 
= A~O) + €A~I) + .... 

IV. GAUGE INDEPENDENCE 

We consider the nonuniqueness in the choices of coordi­
nates and of phase-space Lagrangians and investigate some 
invariance properties. Let us, like Kruskal,1 consider an or­
dinary differential equation 

x = F (x;€), xER m + I, 

F(x;€) = F(O)(x) + €F(I)(x) + ... , 
such that 

x =F(O)(x) 

(4.1a) 

(4.1b) 

(4.2) 

has all solutions periodic. There exists a coordinate transfor­
mationx __ ( y,v) so that (4.1) transforms into (1.1).1 We take 
(4.1) to be our physical-geometrical equation which we ex­
press in terms of the nonuniquely determined coordinates 
(y,v) and (z,t,6). We have coordinate transformations 

C: Rm+I __ Rm+1, x--(y,v), (4.3) 

where C depends on some free parameters which we do not 
display explicitly. The averaging transformations A, 

A: Rm+I __ Rm+1, (y,v)--(z,t,6), 

A -I = (I + Y,j + 'Y'), 

(4.4a) 

(4.4b) 

where Y and 'Y' are determined recursively by (2.5), depend 
on the free parameters (Y) and ('Y'). When (4.1) is a Hamil­
tonian system we write the phase-space Lagrangian 

.2"(x,x;€) = ~(x,x;€). X - K(x;€). (4.5) 

Without changing the Euler equations we may add the total 
derivative of an arbitrary function Y(x;€) to .2", we write 

d .2" a;..2" + - Y . 
dr 

(4.6) 

For the system (1.1) we choose the phase-space LagrangianL 
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obtained from .2" by the coordinate transformation C. We 
write 

The averaging transformation A yields 
A _ L __ L, 

(4.7) 

(4.8) 

where I is related to the t,6-independent phase-space Lagran­
gian A by (3.4). 

A. The adiabatic Invariant 

The adiabatic invariant /"(x;€) of a Hamiltonian system 
(4.1) may be written 

/" = JoAoC, (4.9) 

where J (z;€) is determined by (3.7). In order to show that /" 
is independent of the free parameters in A and C we intro­
duce a second choice of these indicated by primed quantities 

/"' =J'oA 'oC', 

and we show that 

/"(x;€) = /"'(X;€). 

DefineBby 

B =A IOC'OC-1oA -1, 

(4.10) 

(4.11) 

(4.12) 

so that B is the transformation between the unprimed and 
primed sets of nice variables 

B(z,t,6;€) = (ZI,t,6'). (4.13) 

Then B is of the form 1 

B (z,t,6;€) = (B(z;€),t,6 + /3 (z;€)). (4.14) 

From 

(4.15) 

and (4.14) we obtain 
_ B _ 

(L) __ (L '). (4.16) 

From (3.4) we note that (I > and A have the same ~ term and 
according to (3.7) it is J~. This fact together with (4.16) and 
(4.14) gives 

J=J'oB, 

and (4.11) follows. 

B. Gyrogauge Invarlance of the z-varlable 

The transformation 

AoC: x -- (z,t,6) 

(4.17) 

(4.18) 

depends on the free parameters of A and C. We shall demon­
strate an invariance property of the z variable, i.e., of the 
mapping I, 

1= loAoC, I(x;€) = z, (4.19) 

when we restrict the freedom of choosing A and C. Let there 
be some natural choice for the y-variable, i.e., we are given a 
function v: R m + 1 __ R m and consider only coordinate 
transformations C such that 
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(4.20) 

We then choose the free parameters (Y) of A independently 
of C, i.e., we choose a function k = Ek(1) + Ck(2) + ... , k(n,: 
R m_R m and take 

(Y) = k. (4.21) 

The conditions (4.20) and (4.21) restrict the allowed choices 
of C and A. The remaining freedom is associated with the 
choice of rapid-angle variable. We will show 1= loAoC is 
uniquely determined by (4.20) and (4.21) and thus indepen­
dent of the choice of rapid-angle variable, we call this prop­
erty "gyrogauge invariance.,,7 

Let us, as in Sec. IV A above, introduce primed varia­
bles A " C', etc., associated with an alternative choice of free 
parameters, still requiring (4.20) and (4.21). We obtain 

loC= loC', (4.22) 

(Y) = (Y'), 

and want to prove that these imply 

I = I', i.e., loAoC = loA 'oC'. 

From (4.12) and (4.22) we have 

loA -I = lo(A ')- l oB; 

inserting (4.4b), we obtain 

1+ Y = (I + Y')oB, 

and then averaging with use of (4. 14) 

1+ (Y) = (I + (Y'»)oB. 

Inserting (Y) = (Y') = k yields 

I + k = (I + k)oB. 

An order by order calculation now gives 

B=I 

and (4.24) follows. 

C. Independence of gauge In .!l' 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

LetueR "anda = (a;),A = (A;)bemappingsfromR "to 
R ". Then we can prove the identity 

A (u + a(u)) . ~ (u + a(u)) 
d". 

=A (u)· U - ;,~ Ifa;(u}Bij(U + aa(u)) 

d 
X ....:;:-{uj + aaj(u))da 

d". 

trariness in .!l' and L due to (4.6). The construction of the 
rapid-angle independent phase-space Lagrangian A involves 
L 
L(z,fjJ,z,4>;E) 

=L(z+Y(z,fjJ), fjJ+Y'(z,fjJ), 

Z + z· VY + ~ay, ~ + ~ or + Z· VY';E). (4.32) 

Straightforward Taylor expansion of the right-hand side 
around (z,fjJ,z,4» would produce a lot of gauge-dependent 
terms involving derivatives of A. This problem is avoided by 
first applying the identity (4.30). Note that the d /d". part of 
(4.30) may be neglected without changing the dynamics. 

The equality (4.30) may be rewritten as 

t ~ [A (u + aa(u) . ~ (u + aa(U))]da Jo da d". 

d i l 

- - A (u + aa(u)) . a(u)da 
d". 0 

= - ;,~ I fa;(U}B;j(U + aa(u)) 

d 
X- (uj + aaj(u))da. 

d". 
(4.33) 

This equality is easily proved by performing the a and ". 
derivations on the left-hand side of(4.33). 

V. SUMMARY AND A DIRECT METHOD OF FINDING A 

In this section we first recapitulate, step by step, the 
procedure of constructing A given in Secs. I-IV. We include 
the method in Sec. IV C of avoiding gauge-dependent terms 
in the perturbation series. We then suggest an alternative 
method of deriving A from L without explicit use of (1.1) and 
(2.5). Finally the two methods are compared and discussed. 

Let us now consider the derivation of A. 
(a) The phase space Lagrangian L ( y, v,y, V;E) has (1.1) as 

Euler's equations. We substitute (2.2) in L and obtain 
L (z,fjJ,z,fjJ;E). 

(b) If L contains gauge-dependent terms, they may be 
eliminated as explained in Sec. IV C. We get 

- - dS3 L=L+-, (5.1) 
d". 

where S3(Z,fjJ;E) is obtained from the last term in (4.30). 
(c) Let 71(z,fjJ;Ejtf> be the 4> term in L. We eliminate the 

oscillating part of it by the transformation 

A =L + dS I + dS , (5.2a) 
d". d". 

d i l 

+ - A (u + aa(u)) . a(u)da, 
d". 0 

(4.30) where 

where Bij is the antisymmetric derivative of A, i.e., in usual 
index notation 

Bij =Ai,j -Al,i' (4.31) 

This identity is useful for eliminating certain gauge-depen­
dent terms in the perturbation series. The phase-space La­
grangian L for the system (1.1) may contain gauge-depen­
dent terms A (u)· u, where for notational convenience we 
have denoted u = ( y, v), such that the antisymmetric deriva­
tive of A is gauge independent. These terms reflect the arbi-
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(5.2b) 

and S (Z;E) is a free parameter. 
(d) Define Y and Y' by the recursion relation (2.5). Then, 

as shown in Appendix D, A is t,6-independent. We thus have 

A = (L) + dS , (5.3) 
d". 

which is a more convenient formula than (5.2) 
(e) The so-constructed A contains the free parameters 
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(Y), (Y), and S. This freedom may be used to simplify the 
expressions for A and the constants of motion. We may ob­
tain a gyrogauge-invariant z variable, by means of a phys­
ical-geometrical choice of (Y) as explained in Sec. IV B. 

We now present an alternative method of deriving A 
without explicit use of (1.1) and (2.5). The steps (a), (b), (c), 
and (e) above are unaltered, but (d) is replaced by the follow­
ing. 

(d') Require A to be tP-independent. This gives con­
straints on Y and Y since A depends on them. Then yIn) and 
yIn) must be uniquely determined for n = 1 while for n>2 
they may depend on the free parameters (y(P), and (y(P) for 
p<n - 1. 

This direct method is not a satisfactory theory by itself, 
but depends on the results obtained by the explicit use of 
(1.1) and (2.5). It follows from these results that if Eqs. 
( 1.1) are Euler's equations for L, then Y and Y must be 
determined by (d'). We might hope that the direct method 
would avoid some unnecessary algebra since the use of (2.5) 
requires the explicit calculation of ( 1.1 ) and of the functions 
hand w. We have rederived Littlejohn's results for the guid­
ing-center motion valid to one order higher than usual with 
both methods. 15 The price we have to pay for a rather moder­
ate decrease in the amount of algebra needed in the direct 
method is a considerably less straightforward calculation. 
While the use of (1.1) and (2.5) requires only straightfor­
ward algebra and the whole structure with free parameters is 
clear from the outset, we must, with the direct method, work 
very carefully so that each choice of terms we make in Yand 
Y is forced by (d'). 

Littlejohn has developed a direct method of deriving the 
averaging transformations by requiring A to be nonoscillat­
ing. He makes use of the technique of Lie transforms. The 
result for the guiding-center motion was, however, given 
without derivations, and from the published work on his 
method it seems to be difficult to compare it with the other 
two methods above. 

APPENDIX A: ALMOST QUASIPERIODIC SYSTEMS 

The generalization to quasiperiodic systems is straight­
forward. We then replace (1.1) by a system of m + k ordi­
nary differential equations where k is the number of rapid­
angle variables. We make the replacements v - v and t/J -1/1 
in (1.1) and require g and 1/1 to be periodic with period 21r in 
each of the k-angle variables. All relations in Sec. II may be 
used with minor modifications. We make the obvious re­
placements w - ro, a - a, tP - 4>,j - j, where j( y,v) = v 
and 

1 l2~ l2~ 
(F)(y)=- dv l ••• F(y,vldvk' 

(21r)k 0 0 
(AI) 

F( y,v) = [(1/1(0)( y). a)-1Ft y,v)C. (A2) 
A 

We may express Fin terms ofF's FouriercomponentsFn( y), 
where neZ} and Z is the set of all real integers. We have 

F( y,v) = LFn( y) exp(in· v), (A3) 
neZ' 

A Fn(Y) 
F( y,v) = - i ~ (0) exp (in· v). (A4) 

neZ - 0 n • 1/1 (y) 
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In (A4) the problem of small denominators appears, this will 
not be discussed in the present paper. 

The recursion relation (2.5) may be used with the minor 
changes in notation introduced above. 

APPENDIX B: NONAUTONOMOUS SYSTEMS 

The nonautonomous case when g and t/J in (1.1) are 
weakly dependent on r is easy to include in the theory. We 
will treat this r dependence as a parameter, avoiding the 
obvious but less practical alternative of increasing the order 
of the system by 1 and treat r as a variable on the same 
footing as (y,v). In place of(l.1) we have 

dy - = g( y,v;Er,E), (Bla) 
dr 

dv - = t/J( y,v;Er,E), (BIb) 
dr 

g( y,v;Er,E) = Eg(J)( y,V;Er) + "', (Blc) 

t/J( y,v;Er,E) = t/J<O)( y;Er) + Et/J(1)( y,v;Er) + . . . . (BId) 

The recursion relation (2.5) is replaced by 

h + t/J(O) ay = gO(1 + Y,j + Y) - h· VY 

- (w - t/J(O)aY - E~, 
a(Er) 

w + t/J(O) aY = t/J0(1 + Y,j + Y) - h· VY 

(0) :yyo aT 
- (w - t/J )U.l - E -- . 

a(Er) 

(B2a) 

(B2b) 

The transformed Eq. (2.1) and the inverse averaging trans­
formation (2.2) are changed only by the inclusion ofthe pa­
rameter Er in Y, Y, h, and w just as in (B 1). 

APPENDIX C: PHASE-SPACE LAGRANGIAN 
FORMULATION OF HAMILTONIAN MECHANICS 

Let us consider a Lagrangian function L of the form 

L (x,x;r) = Yj(x;r)Xj - H(x;r), (CI) 

where x = (XI" .. ,xn) and we sum over the index i, I<i<n, 
in (C I). Such a Lagrangian is associated with first- rather 
than second-order systems. The Euler equations are 

(~:~ _ ~ )Xj = ~!H. (C2a) 

If 

det (aYj 
_ aYj )#0, (C2b) 

aXj aXj 

then (C2a) may be written in the standard form 

x =f(x;r). (C3) 

A Lagrangian (CI), which satisfies (C2b), is said to be nonde­
generate. 

The class of equations (C3) that are derivable from a 
Lagrangian function of the form (CI) are precisely the class 
of Hamiltonian systems.3 Thus we get the phase space La­
grangian formulation of Hamiltonian mechanisms. 

It is observed in the standard textbooks on classical 
mechanisms that the Lagrangian L defined by 

L (q,p,q,jJ;r) = p . q - H (q,p;r) (C4) 
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has the canonical equations as its Euler equations. Thus the 
class of systems (C3) obtained from Lagrangians of the form 
(Cl) clearly includes all Hamiltonian systems. Conversely, 
we also have to prove that if (C3) is derived from (C 1), then 
(C3) is a Hamiltonian system. The proof is a simple applica­
tion ofDarboux's theorem. Consider the first-order differen­
tial form 

r = r; dx;. (C5) 

Now dr is a closed nondegenerate two-form and so, accord­
ing to Oarboux's theorem, n is an even number and there 
exist new coordinates q,peR nl2 such that dr - ~tl! dp; 
Adq; and thus 

nl2 

r - L p; dq; + dS (q,p;r), (C6) 
;=! 

for some function S and 

nl2 dS ( as) 
L- LP;q;+-- K+- , 

;=! dr ar 
(C7) 

where H - K. Here the arrows _ stand for "transform into 
when we make the coordinate change x - (q,p)." The Euler 
equations of (C7) are Hamilton's equations with the Hamil­
tonian K + as lar. 
APPENDIX D: PROOF THAT A IS +-INDEPENDENT 

The phase-space Lagrangian A defined by (3.3) may be 
written 

A(z,t,6,z,;;E) = r(Z,t,6;E) • z + J (Z;E); - K (Z,t,6;E), (01) 

and has the Euler equations (2.1). We note, by the construc­
tion of A, that J in (01) is t,6-independent. We will now show 
that rand K are also independent of t,6 so that A may be 
written as in (3.7). The((d Idr)(a fa;) - (a lat,6)) component of 
Euler's equations for (01) together with (2.1a) implies 

K=h·f. (02) 
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Then from ((d I dr)(a I ai) - (a I az)) part of Euler's equations 
together with (2.1) and (02) we obtain the following formal 
differential equation for f: 

d - --r= -Vh·r. (03) 
dr 

The coefficient on the right-hand side in (03) is 0 (E). A direct 
order by order calculation or the application of Kruskal's 
theorem of phase independence! gives f = O. From (02) we 
note that K = 0, also, and the proof is complete. 

1M. Kruskal, J. Math. Phys. 4,806 (1962). 
2N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic Methods in the The­
ory of Nonlinear Oscillations (Gordon and Breach, New York, 1961). 

3We call x = j(x) a Hamiltonian system, if by a change of coordinates 
x --. (q, p) it may be written as Hamilton's canonical equations. 

4R. G. Littlejohn, "Hamiltonian theory of guiding-center motion," Ph.D. 
thesis, LBL-12942, University of California, 1980. 
~R. G. Littlejohn, J. Math. Phys. 20, 2445 (1979). 
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than the di1ferential geometric language of forms. 
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liT. G. Northrop, C. S. Liu, and M. Kruskal, Phys. Fluids 9, 1504 (1966). 
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13J. Larsson, "The guiding center Lagrangian," submitted to Phys. Scr. 
14Note that Fstands for a function with domain in R m + I V is the m-dimen­

sional gradient operator on the first m variables, and a is the derivative 
with respectto the (m + l)th variable. The notation ( y,v) in (2.3) for a 
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The behavior of nonlinear oscillators x(t ) driven by a periodic external force is completely 
determined by the corresponding Poincare map, which loses stability only in certain well-known 
ways. These translate into different classes of perturbations S (t ) ofx(t ) that must be considered. By 
choosing simple representatives in each class, the stability of approximate solutions can be studied 
analytically. The Duffing equation is considered as an example. An extra island of stability is 
predicted for a range of driving forces and this is confirmed by numerical computation. 

I. INTRODUCTION 

The stability of the asymptotic oscillatory solutions of 
externally driven nonlinear oscillators x(t) has been exten­
sively studied. Although it is straightforward to obtain an 
approximate solution x(t), e.g., by suitably truncating the 
higher harmonics of the response to the external force, the 
issue of stability against arbitrary small perturbations 
x(t )-x(t ) + s (t ) is more complicated. A recently developed 
technique well suited to the question of stability is a vari­
ational formulation, 1-4 in which a trial function with slowly 
varying coefficients A (t), B (t ), ... is put into the variational 
integral, and evolution equations are obtained for A (t ), 
B (t ), .... The possibility of subharmonic response has been 
treated in a similar fashion. S Such analytic studies are com­
plemented with a host ofnumerical6

•
7 and experimental8 re­

sults for various systems. 
However, these oscillators are described by a nonholon­

omic ordinary differential equation (ODE) with a number of 
parameters ai • Numerical computation or experiments can 
yield a wealth of information at specific values of ai' but is 
less useful in characterizing the global properties in the space 
of ai • In particular, unstable solutions to the ODE, though 
inaccessible to numerical computation or experiment, are 
nevertheless important. For example, the collision of an un­
stable solution with a stable one causes the latter to disap­
pear; two stable solutions in disjoint regions of parameter 
space may be linked by an unstable one. Thus the approxi­
mate analytic study of nonlinear oscillators remains useful. 

On the other hand, the analytic studies l
-
s have in the 

main considered only instabilities caused by the growth of 
slowly varying coefficients. It must, however, be realized 
that such instabilities are only one of several possible types, 
and a more systematic investigation of other instabilities 
would be desirable. Our starting point is the observation that 
for systems that are holonomic except for an external force 
of period T. the Poincare map {x(nT),x(nT)J 
----+ {x(n T + T ),x(n T + T) J is sufficient to characterize the 
stability and indeed the entire solution. This is, of course. the 
principle of stroboscopic sampling that has been used suc­
cessfully to reveal fine structure in numerical computa­
tions.7 The possible mechanisms for the loss of stability of 
maps have recently become well cataloged9

; these mecha­
nisms translate into different classes of perturbations S (t ) 
that must be considered. In the main part ofthis paper (Sec. 
III), we show how stability may be tested with respect to a 

judiciously chosen S (t ) within each class, giving a fairly accu­
rate analytic global picture. Unexpected features may also be 
revealed in certain regions of parameter space. 

These remarks will be illustrated with the Duffing oscil­
lator 

x = - yX - x + 4x3 + F cos (J}t (1.1) 

and the results are presented in terms of the response curve 
showing 

R = 6( (x2) _ (X)2) 

vs (J}2 for fixed r and F, where ( ) denotes the average over a 
period, from t = nT to (n + lIT, T= 211"/(J). The following 
well-known properties l ,2,5,6,8 are reproduced by the stability 
analysis. 

(a) The response curve for small F is the usual resonance 
type, skewing as F increases. 

(b) In the nonlinear region, the response curve breaks 
into two disjoint parts, and if (J}2 is varied adiabatically, the 
response jumps from one to the other, showing hysteresis. 
The low-frequency part first loses parity invariance and then 
becomes chaotic via the period-doubling scenario. 6 

Our analysis predicts a third possibility, which is con­
firmed by numerical computation. 

( c) In a certain small range of F, the response curve 
contains an extra isolated portion which occupies only a 
small region in the (J}2-R plane and is not reached from the 
other parts by adiabatic variation of the driving frequency. 
Thus this novel feature might not have been discovered with­
out the analytic treatment as a guide. 

In all cases, connection between the disjoint parts of the 
response curve is provided by unstable solutions, giving a 
global view which complements numerical results. It is sug­
gested that the method outlined in this paper. based on re­
cently gained knowledge on maps. will be used for the quali­
tative study of the stability of other externally driven 
nonlinear oscillators. 

n. APPROXIMATE SOLUTION 

A. Symmetric solution 

Symmetry of the Duffing equation under parity inver­
sion x----+ - x, t----+t + T /2 would suggest that a solution be 
sought with only odd harmonics. For not too large driving 
forces. the third (fifth, ... ) harmonic is important only when 
(J}2:::::; 1/32 (1/52 

.... ), so for (J}2 ~ 0.2, it will be reasonable to 
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FIG. 1. Schematic relation between R and 0/ based on approximate algebraic analysis. Solid line represents stable solution; broken line represents unphysical 
or unstable solution. The four figures (a)-(d) refer to increasing values of F. 

substitute 

x(t) = a cos fJ)t + b sin fJ)t (2.1) 

into the Duffing equation and drop higher harmonics, giving 
an algebraic equation for the response R: 

(2.2) 

where in this case R = 3(a2 + b 2). The underdamped case 
(r < 2) is more interesting and we set r = 0.4 everywhere 
below. S.6 The graphs of R VS fJ)2 are shown schematically in 
Fig. 1 for increasing F. (The curves GH refer to the asymme­
tric solution; see below. Broken curves refer to unstable solu­
tions; for stability see Sec. III.) For small F, the four extremes 
are joined along AB, CD, the former being the usual reso­
nance curve [Fig. l(a)]. As F increases, CD intersects GH at 
R = ~ and AB skews, R becoming multivalued in fJ)2 [Fig. 
l(b)). Next the curves AB' CD touch and reconnect along 
AC, BD [Fig. l(c)), with AC shifting to smaller fJ)2 [Fig. l(d)) 
and finally disappearing to negative fJ)2 with increasing F. 
These properties are all well known, but the general impres­
sion seems to be that CD [e.g., in Fig. l(b)) is unstable.s.lo 

This is not necessarily the case, as we shall see. 
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B. Asymmetric solution 

The parity invariance of the equation need not be shared 
by the solution. Ignoring second and higher harmonics, we 
may approximate the asymmetric solution as 

x(t) = e + a' cos fJ)t + b ' sin fJ)t, 

which leads to 

R [(2 + fJ)2 - 5R)2 + yfJ)2] = 3F2 , 

e2 = 1(1 - 2R ) . 

(2.3) 

(2.4) 

(2.5) 

The fJ)2 - R graphs are shown by the curves GH in Fig. 1. 
First, the region R > ~ is unphysical on account of (2.5) and is 
shown by dotted lines. Second, the even and odd solutions 
intersect at R = ~, as is evident from (2.2) and (2.4). 

III. STABILITY 

A. Relation to Poincare map 

The main point of this present paper is to utilize the 
recently gained understanding of iterated maps. Consider 
the Poincare map M: 

M: v = {x(nT),x(nT)}-v' = {x(nT+ T),x(nT+ T)} . 
(3.1) 
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A solution x(t) of the ODE with period T corresponds to a 
fixed point v* of M. Ifx(t) is perturbed tox(t) + s(t), then 
correspondingly v = v* + fl. v n' where 

fl.vn = {s(nT),t(nT)}. (3.2) 

The fixed point v* can lose stability in one of three ways. 
(i) A tangent bifurcation is characterized by an eigenval­

ue Ii, = 1 + E, 0 < E<I, so that fl.vn -(1 + E)"fl.vo, and thus 
S (nT)-S (0)(1 + E)n. In other words, S(t) is nearly periodic: 

~ 'I«"t S (t) = ~cke' + C.c., 

where the Ck are slowly varying coefficients. We may further 
divide S into odd and even parts, with the following repre­
sentatives labeled as tangent odd (TO) and tangent even (TE): 

TO: S (t ) = ceiOlt + c*e - iOlt , (3.3) 
TE: S (t) = c . (3.4) 
(ii) A period-doubling bifurcation (PD) is characterized 

by an eigenvalue Ii, = - (1 + E), O<E<I, so that 
fl.vn - [ - (1 + E)]nfl.vo and s(nT)-( - 1)"(1 + E)"S(O). It 
is seen that S (t) can be written as 

with slowly varying Ck' A simple representative is 

PD: s(t)=cewtI2+c*e-iOltI2. (3.5) 
(iii) A Hopfbifurcation (H) is characterized by a pair of 

complex eigenvalues Ii, = (1 + E)e ± i8, 0 < E<I, 0 #0, 1T, •••• 

One of the eigenvalues will give 

fl.vn -(1 + E)nR (0 )nfl.vo , 

where R (0) is the rotation matrix of angle O. Thus 

senT) - (1 + E)n[COS (nOt)s(O) + sin (nOt)t(O)] , 

where 0 = 0 IT #0,w/2, ... . Thus we may put 

S (t) = L ckei(kw + O)t + c.c., 

with Ck slowly varying, and a simple representative is 

H: S (t ) = ceiOt + c*e - iOt • (3.6) 
The idea is to test the approximate solutions against the 

perturbations (3.3)-(3.6). Instead of studying the growth ofa 
function S (t ), we only have to study the growth of a numberc. 

B. TO perturbation of symmetric solution 

Change x~x + S with S as in (3.3). Put this into the 
Duffing equation, keeping only the terms that are linear in S 
and that have the same frequency as S itself: 

C + 2iwc - w2c = - C - r(c + iwc) 

+ 6(a2 + b 2)C + 3(a - bifc* , 
(3.7) 

with a, b given by (2.1) and (2.2). The growth rate a = c!c 
satisfies 

(a2 + ra - w2 + 1 - 2R )2 + (r + 2a)2w2 = R 2 , (3.8) 

and the onset of instability occurs at a = 0 , 

(1 - w2 _ 2R )2 + y-w2 = R 2 , 

which coincides with the condition dR Idw2 = 00 obtained 
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from (2.2). A little algebra shows that the three branches 
(e.g., A, C, D) are, in increasing R, respectively stable, unsta­
ble, and stable. 

In fact under the TO perturbation, the original solution 
a cos wt + b sin wt remains of the same type, but with a, b 
now slowly varying. Such adiabatic perturbations have al­
ways been considered in the literaturel

-
5

,lO; however, the 
other perturbations described below have not been consid­
ered systematically. 

c. TE perturbation of symmetric solution 

Using S in (3.4), we find 

c+yc= -(1-2R)c, 

so that 

a=!/-y± [Y--4(1-2RW/2). 

(3.9) 

If R > 1, one of the roots is positive and the symmetric solu­
tion becomes unstable to TE perturbations. The important 
dividing line R = 1 is shown in Fig. 1. 

In fact, under a TE perturbation, the solution becomes 
a cos wt + b sin wt + e, i.e., it loses parity invariance. Thus 
it is no surprise that the TE instability occurs exactly at the 
point where the asymmetric solution crosses the symmetric 
solution. 

O. H perturbation of symmetric solution 

Use S as in (3.5) to get 

c + 2iOc - 02C = - C - r(c + iOc) + 6(a2 + b 2)c , 
(3.10) 

leading to 

a 2+2iaO-02 = -1-ya-iyO+2R. (3.11) 

Since a is real (otherwise it amounts to a redefinition of 0), 
(3.11) gives 

a 2 
- 0 2 = - 1 - ra + 2R , 

2a0= -yO, 

(3. 12a) 

(3.12b) 

giving a = - r/2, which means all H perturbations are 
damped. 

E. PO perturbation of symmetric solution 

The linear equation satisfied by S is 

t +rt+s- I2x2s=0, (3.13) 

and we assume S to be given by (3.5). In the case of the sym­
metric solution, x 2 has only even harmonics, so the e ± wt /2 

terms in S are not coupled. (Contrast the case of the asymme­
tric solution below.) Then the equation for the growth rate a 
is the same as (3.12), but with 0 = w/2, so the symmetric 
solution is stable against period-doubling. 

F. TOlE perturbation of asymmetric solution 

Since the asymmetric solution already contains both 
even and odd harmonics, one would not expect the eigenvec­
tors Set) to be purely even or odd, so the TO and TE pertur­
bations should be combined. Such a perturbation in fact cor­
responds to (2.3) with e, a', b' allowed to vary slowly. An 
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algebraic equation is obtained for the eigenvalue a( = e/ 
e = a'/a' = b' /b') and the onset of instability (a = 0) occurs 
at the point where dR /doi = 00. It is easily shown that the 
lower branch (0) is stable while the upper branch (H) is un­
stable. 

G. H perturbation of asymmetric solution 

In analogy to (3.12), we get a = - y/2, so all such per­
turbations are damped. 

H. PO perturbation of asymmetric solution 

For the asymmetric solution, x 2 in (3.13) contains e ± iO)t 

terms, which would couple the c and c* terms in S. Thus in 
this case the PD perturbation is not obtained just by setting 
n = w/2 in the equations for Hopfbifurcation. Rather 

.. .. w
2 (..w ) 

C+IWC-~= -c-y C+l~ 

+ (3 - 4R)c + 12e(a - bi)c*, (3.14) 

where the last term is the coupling discussed. Putting c = ac 
gives 

[ a 2 + 1 - :2 + ya - (3 - 4R ) r 
2 

+(y+2a)2~= 12R(1-2R). 
4 

(3.15) 

We immediately see that for R = ! there is no real solution, 
so the asymmetric solution is stable. Suppose period-dou­
bling occurs (i.e., a = 0) when R = ! - E, then to 0 (E), we 
find 

E = (w2/48)(y + w2/4)::;::3X 10-3 , 

ify = 0.4, w2 ::;::0.5. In other words, the asymmetric solution 

R (1)-- s .. Fo •. iIol 
D.' 

I.' 

D.4 

'.1 

(a) 
D 

D ••• 1.D 1.5 (A' 

is created at the intersection with the symmetric solution at 
R = !, and loses stability due to period-doubling a very short 
distance away. 

Once period-doubling has occurred, we should seek ap­
proximate solutions of the formS 

x(t) = e + a' cos wt + b ' sin wt + g' cos !:!""t + h ' sin !:!""t 
2 2 

(where the corresponding vector v would be a fixed point of 
M2) and test its stability with respect to further period-dou­
bling, say represented by the perturbation 

S (t ) = ceiO)t 14 + c.c. 

However, the analogous situation in the case of maps has 
been extensively studied and one knows that a period-dou­
bling cascade develops and ends in chaos along a route exhi­
biting a rich pattern of regularities.9

•
11

•
12 

I. Global picture 

Putting the above together yields the following picture 
as F increases. For small F, only the lower branch AB of the 
symmetric solution is stable [Fig. I(a)]. As F increases, an 
island of stability appears [Fig. 1 (b)], consisting of a symmet­
ric solution (on curve D) which becomes asymmetric with 
decreasing w2 (on the curve 0) and finally undergoes a peri­
od-doubling sequence to chaos. In the situation shown in 
Fig. l(b), it may be expected that as w2 is decreased, the 
chaotic attractor may intersect the unstable solution C, re­
sulting in a crisis13 that drives the solution to the lower 
branch A. This state of affairs is confirmed by numerical 
computation at F = 0.110 using 100 predictor--corrector 
steps per cycle (Fig. 2). 

Upon further increase in F, the curve AB skews and 
develops vertical tangents, with the middle portion of AB 

R ..... 

ny .... tric 

' .• 31 

un 

' .• 1. 

..... 
(b) 

'.lZl 1.231 D.l" (A" 

FIG. 2. (a) Actual relation between Rand /lI2 obtained by numerical solution of ODE at F= 0.110. (b) The island of stability enlarged. 
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FIG. 3. (a) Actual relation between Rand 1l)2 obtained by numerical solution of ODE at F= 0.115. (b) The island of stability enlarged. 

being unstable; the island of stability remains [Fig. 1 (b) ] . In 
this situation, the response curve should consist of three dis­
joint parts, as is confirmed by numerical computation at 
F = 0.115 (Fig. 3). The features in Fig. 2 and Fig. 3 would 
have been difficult to foresee or locate without the approxi­
mate stability analysis. At even larger F, CD and AB touch 
and rejoin. The high-frequency part of the symmetric solu­
tion (B) joins directly onto the asymmetric solution (G), 
which period-doubles to chaos [Fig. 1 (c) ].6 

As Fincreases further, AC recedes to the left [Fig. l(d)]. 
Then the chaotic attractor born out of the period-doubling 
sequence has no opportunity for a crisis going down to 
branch A, rather a crisis may develop when the chaotic at­
tractor intersects the unstable solution D and becomes driv­
en to infinity. The branch AC eventually disappears. 

All these features are confirmed by numerical simula­
tion, though the transitions do not necessarily occur at the 
precise values predicted. 

IV. DISCUSSION 
The stability analysis reveals two general properties. 

Consider in general 
x= -rx+F(x)+G(t). (4.1) 

Whenx(t) is perturbed tox(t) + 5(t), 

t= -rt+F'(X)5' (4.2) 
For a Hopfbifurcation, we use (3.6) for 5 and retain only 
terms of the type e ± int in (4.2). Since n#O,w/2, ... , only the 
time-independent part of F' (x) will generate a term of the 
right type, so that with the same notation as before, 

a 2 + 2ian - .02 = - y(a + in) + (F'(x) , (4.3) 
whose imaginary part gives a = - r 12 < O. Thus Hopf bi­
furcations never occur in systems of this type. 14 

For period-doubling bifurcations, .0 is replaced by w/2. 
Now if x has only odd harmonics and F(x) is odd in x, then 
F'(x) does not contain the frequencies ± w, so the ewtl2 and 
e - i.,t 12 terms are not coupled, and again (4.3) holds, giving 

506 J. Math. Phys .• Vol. 27. No.2, February 1986 

a < O. So a symmetric solution must first lose parity invar­
iance before it can undergo period-doubling. 14,1S 

The essential idea of this paper may be summarized as 
follows. The search for limit cycles using approximate solu­
tions of the form say a cos wt + b sin wt with constants a, b 
is classic, and the study of their stability by allowing slow 
variation of a, b is also well known. However, such perturba­
tions reveal only one of the possible ways to lose stability. 
The Poincare map provides simple test functions for the 
study of other instabilities. The technique is shown to be 
reasonably accurate in depicting the global features in the 
case of the Duffing equation. Just as the approximation for 
the solution can be improved by retaining more terms in say 
(2.1), so the stability criterion can likewise be improved by 
retaining more terms in say (3.3), leading to a finite-dimen­
sional eigenvalue problem for a, which is always soluble. 
This method should be useful for analyzing other forced vi­
brating systems described by ODE's (including coupled 
ODE's). 

10. Y. Hsieh, J. Math. Phys. 16,275 (1975). 
20. Y. Hsieh, J. Math. Phys. 18, 1093 (1977). 
3D. Y. Hsieh, J. Math. Phys. 19, 1147 (1979). 
40. Y. Hsieh, J. Math. Phys. 21, 722 (1979). 
sJ. N. Elgin, D. Forster, and S. Sarkar, Phys. Lett. A 94,195 (1983). 
6For Duffing equation, see, e.g., B. H. Huberman and J. P. Crutchfield, 
Phys. Rev. Lett. 93, 1743 (1979). 

7ForBrusseiator, see, e.g., B-L. Haoand SoY. Zhang, Phys. Lett. A 87, 267 
( 1982). 

8For example, D. D'Humieres, M. R. Beasley, B. A. Huberman, and A. 
Libchaber, Phys. Rev. A 26,3483 (1983). 

9E. Ott, Rev. Mod. Phys. 53, 655 (1981); B. Hu, Phys. Rep. 91, 233 
(1982). 

IOFor example, P. Hagedorn, Non-linear Oscillations (Oxford U.P., Oxford, 
1982); R. E. Mickens, An Introduction to Non-linear Oscillations (Cam­
bridge U.P., Cambridge, 1981). 

11M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1979); see also works cited in 
Ref. 9. 

12K. L. Liu, W. S. Lo, and K. Young, Phys. Lett. A 105,103 (1984). 
13C. Grebogi, E. Ott, and J.A. Yorke, Phys. Rev. Lett. 48, 1507 (1982). 
14J. W. Swift and K. Wiesenfeld, Phys. Rev. Lett. 52, 705 ( 1984). 
ISS. Novak and R. G. Frelich, Phys. Rev. A 26, 3660 (1982). 

K. L. Liu and K. Young 506 



                                                                                                                                    

Relativistic brachistochrone 
Harris F. Goldstein and Carl M. Bender 
Department of Physics, Washington University, St. Louis, Missouri 63130 

(Received 4 September 1985; accepted for publication 16 October 1985) 

The trajectory joining two points a l and~, which minimizes the transit time for a particle, 
initially at rest, to fall in a uniform gravitational field from a l to a2, is called the brachistochrone. 
Johann Bernoulli was the first to find an analytical form for the brachistochrone; in 1696, he 
discovered that the trajectory is a cycloid. In this paper the relativistic generalization of this 
classic problem is presented. Four separate curves are actually identified: a particle falling in both 
a uniform electric and uniform gravitational field is considered. The curves that minimize the 
times offtight measured by an observer in a laboratory in which a l and a2 are fixed and also the 
curves that minimize the proper times of ftight are found. 

I. CLASSICAL BRACHISTOCHRONE 

The brachistochrone problem is perhaps the most fam­
ous problem in the calculus of variations. It concerns a parti­
cle in a uniform gravitational field constrained to slide with­
out friction along a curve joining the points a l = (XI' y.) and 
a2 = (X2' h). The problem is to find the curve that minimizes 
the time of fall. 

We begin this problem by setting up a line-integral rep­
resentation of the time of fall T: 

rX"y,) ds 

T = J1x" y,) v(s) , 
(1) 

where s is the path length and vIs) is the velocity of the parti­
cle. It is convenient to choose the coordinates so that (XI' y.) 
is the origin and so that the force field points along the X axis, 
as in Fig. 1. If we designate the path as y(x) then the expres­
sion for Tbecomes an ordinary integral 

i"" [1 + (y')2] 1/2 
T[ y] = dx ~..:..-...:..:......:.--=--

o V 

+ E[ y(O)] + , [y(x2) - Y2] . (2) 

Here, E and , are Lagrange multipliers that impose the con­
straints that y(O) = 0 and that y(x2) = h. Taking the func­
tional derivative of (2) with respect to y(w) gives 

lJT (X'd y'(d /dx)lJ(x - w) lJ() rlJ( 
lJy(w) = Jo X [1 + (y'f]I/2V(X) + 6 W +!>. w - x2), 

(3) 

y 

x 

FIG. 1. The configuration and choice of coordinate system for the brachis­
tochrone problem. 

where by conservation of energy we can make the crucial 
assumption, also valid in the relativistic cases, that the parti­
cle velocity v is a function of X but is independent of y. 

Integrating by parts we obtain 

lJT (X, d { , } 
lJy(w) = - Jo dx lJ(x - w) dx [1 + (~2p/2V(X) 

y'lJ(x - w) IX=x, 
+ ,2 1/2 + ElJ(w) + 'lJ(W - x2)· 

[1+(y)] Vx=o 
(4) 

To minimize T we require that the functional derivative (4) 
vanish identically. From the interior of the interval 
o <x <X2 we obtain the differential equation 

d { y' } 
dx [1 + (y')2] 1/2V(X) = 0 , 

(5) 

and from the end points X = 0 and X = X2 we obtain the 
values of the Lagrange multipliers 

E = lim y'(x) v(x) , , = - y'(x2) v(x2) . 
x-o ~1 + [Y'(xW ~1 + [y'(x2W 

The solution to (5) is 

iX'd kv(x) 
y= x , 

o ~1 - k2[V(XW 
(6) 

where k is an integration constant. 
This derivation of(6) is general; it is valid for any v(x). In 

the classical case we take the force field to be a uniform 
gravitational field, and therefore, v = (2gX)I/2. The path y(x) 
is then a cycloid of the form 

x = a( 1 - cos e ), y = a( e - sin e ) , 
where the parameter a is determined by the end point (X2' h). 

In this paper, we investigate the somewhat more diffi­
cult case of a particle falling under the influence of a uniform 
force field, but we do not neglect relativistic effects. In Sec. II 
we discuss the simplest case in which the particle falls in a 
vertical straight line. We discuss the physical differences 
between a particle falling in uniform electric field and a par­
ticle falling in a uniform gravitational field. In Sec. III we 
consider the general problem; we examine the curves that 
minimize the time of fall in the lab frame and also in the 
frame moving with the particle, for both a uniform electric 
field and a uniform gravitational field. 
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II. VERTICALLY FALLING RELATIVISTIC PARTICLES 

To convey some intuitive understanding of the motion 
of a particle falling in a gravitational or an electric field we 
begin by studying the motion of a vertically falling particle. 
Since this is a study of realtivistic kinematics we will of 
course ignore the effects of energy lost due to radiation. To 
determine the motion of a relativistic particle falling in a 
uniform field we use Newton's Law: 

dp =F. 
dt 

(7) 

Consider a particle ofchargeq and rest mass m. If this parti­
cle falls in a uniform electric field of magnitude E the equa­
tion of motion (7) becomes 

d { mv(t) } _ E (8 ) 
dt ~1-[v(tWle2 - q. a 

On the other hand, if this particle falls in a uniform gravita­
tional field g then Eq. (7) becomes 

d { mv(t)} mg 
dt ~1 _ [v(tWle2 = ~1- [v(tWlc2 . (8b) 

Note that (8a) and (8b) are different because the gravitational 
force is proportional to the relativistic (velocity dependent) 
mass and not the rest mass. Thus, as the particle's speed 
increases the gravitational force becomes stronger. No such 
effect occurs in (8a) because total electric charge is a relativis­
tic scalar. 

It is easy to obtain analytical solutions to both differen­
tial equations (8). If the particle is at rest at t = 0, we have 

velec(t) = cEqt l~m2c2 + E2q2t , 

vgrav (t ) = c tanh( gt I c) . 

(9a) 

(9b) 

In the nonrelativistic case, C-+oo, Eq. (9) reduces to the usual 
results Velec (t ) = Eqt 1m and vgrav (t ) = gt. The results in (9) 
could have been derived just as easily from a conservation of 
energy argument. In fact, we will use the principle of conser­
vation of energy in Sec. III when we derive the equation for 
the relativistic brachistochrone. 

If we integrate (9) with respect to t and assume that at 
t = 0, the particle is situated at x = 0, we get the position of 
the particle as a function of t: 

xelec(t) = (mc2IEq)(~1 + E2q2t 2/(m2c2) - 1), (lOa) 

xgrav(t) = (c2Ig) log [cosh( gt Ie)] . (lOb) 

To compare the results in Eqs. (10) let us take the gravita­
tional and electrical forces to be equal for stationary parti­
cles: Eq = mg. Eliminating Eqlm from (lOa) and examining 
the large t behavior of x grav (t) - Xelec (t ) gives 

lim [Xgrav(t)-Xelec(t)] =(c2Ig)(1-ln2). (11) 
t~", 

The right side of (11) is positive because the gravitational 
force gradually increases with time while the electric force 
remains constant. 

III. RELATIVISTIC BRACHISTOCHRONE 

A. Uniform electric field 

As we saw in Sec. II it is simplest to consider the case of a 
velocity-independent force. Consider a particle of charge q 
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and rest mass m falling under the influence of an electric field 
of magnitude E. Energy conservation gives 

mc2 = mc2/~1 - v2le2 - qEx. 

Solving for v we get 

v=c~l- [1/(1 +axW, (12) 

where a = qE l(mc2). Substituting (12) into (6) gives 

- dx' 1x k 2( 1 + ax')2 - k 2 

y - 0 (1 - k 2)( 1 + ax')2 + k 2 ' 
(13) 

where we have absorbed c into the constant k. There are 
three distinct regions of values of k 2, where the function y(x) 
has very different behaviors: 0< k 2 < 1, k 2 = 1, and k 2 > 1. 

1. Region 1:0<kz< 1 

In this region we have 

y=s LX dx' 
(1 + ax')2 - 1 

(1 + ax')2 + S2 

=- du , sII+= ~2_1 
a I u2 + S2 

where 

S2=k 2/(1 _ k 2) 

(14) 

is determined from the condition y(x2) = Y2. Here, as x be­
comes large, the integrand approaches 1 and the graph of y 
approaches a straight line of slope S. The solutions in this 
region are very different from the classical case, since they 
increase without bound, while the classical solutions are 
bounded and cyclic. 

2. Region 2: kZ = 1 

For this value of k 2, y(x) reduces to 

1 II +ax 
y=- du~, 

a I 

which can be expressed in terms of simple functions as 

y=_l_ [(t +ax)~(l +axf -1 
2a 

-log [(1 + ax) + ~(1 + ax)2 - 1]] . (15) 

Forax>l, 

y~(1/2a)(a2x2) =! ax2 , 

a parabola. This function is the boundary between the region 
1 solutions, which increase without bound in the x direction, 
and those in region 3, which tum around and return to the y 
axis. Note that in the c1assicallimit a-+O, this boundary 
approaches the x axis, which is the vertically falling case 
described in Sec. II. 

3. Region 3: kZ> 1 

In this region we have 

y-- du 2 2' 
_sl,l+ax ~2_1 

a I S -u 
(16) 

where 
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Im(u) 
Complex-u Plane 

FIG. 2. The complex-u plane showing the path of integration necessary to 
compute the entire graph of the brachistochrone. 

52 = k 2/(k 2 - 1) . 

Since the integrand must be real, we have a lower bound on 5 
of 1 + ax2• We must be cautious with this solution, however, 
because there is a singularity in the integrand at u = 5. No­
tice now that there is a branch cut in the complex-u plane 
connecting u = 1 and u = 5. If we integrate around this 
branch cut (see Fig. 2), we get a graph of y(x) that curves 
back to the y axis, just as the cycloid does in the classical 
solution. 

Figure 3 shows the family of curves in all three regions 
for a = 10. As we approach the nonrelativistic limit the 
curve corresponding to region 2 moves toward the x axis, 
region 3 expands, and region 1 shrinks in area. In the ex­
treme nonrelativistic limit (e = 00, a = 0), region 1 disap­
pears entirely, region 2 lies on the x axis, and the curves in 
region 3 become the cycloids discovered by Bernoulli. 

Figure 4 shows the solutions for a given end point (X2' Y2) 
and several values of a. For a small, the curve is indistin­
guishable from the classical cylcoid. 

B. Proper-time electric-field brachlstochrone 

In relativistic mechanics it is possible to pose two differ­
ent brachistochrone problems. We can now ask what is the 
curve that minimizes the elapsed proper time as measured by 
an observer moving with the particle. For this we must back­
track slightly and look at our original expression for Tor, 
more precisely, the expression for dT, namely dT = dslv. 
The element of proper time, dr, is given by 

dr = dT ~1 - /l/c2 
, 

so 

r-____ -r ____ ~2~ _____ 3.-_____ y 

Region 3 

x 
~=5.0 

~=1I.5 

'Region 2 
(~. CD) 

(17) 

FIG. 3. Relativistic brachistochrones corresponding to a = 10. Curves in 
regions 1,2, and 3 are shown. 
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FIG. 4. The lab-time brachistochrones for the electric field with fixed end­
points and various values of a. The case a = 0.01 is indistinguishable from 
the cycloid. 

This is the generalization of (2). 
Performing the variations as before and solving for an 

arbitrary v(x) we get 

L
x k2V2 

Y= 0 dx' 
(1 - V2/c2) - k 2v2 

For the electric field, we have 

or 

v=e~l- [1/(1 +axW 

~1 - V
2/c2 = 1/(1 + ax). 

Substituting, we find 

Y= LX dx' 

= t+ ax !!!!. ~, 
)1 a V 52 - u2 

where 

52 = (k 2 + l)1k 2
• 

(18) 

This result is interesting because except for the missing 
factor of the parameter 5, this solution is identical in form to 
that of region 3 in the lab-time case. We see then that we have 
lost the phenomenon of unbounded solutions by considering 
proper time! 

Figure 5 shows the solutions for fixed (X2' Y2) and var­
ious values of a. 

c. Uniform gravitational field 

The problem of determining the relativistic brachistoch­
rone in a uniform gravitational field is somewhat more com-

o I 
r-----------------~y 

FIG. S. Proper-time brachistochrones for the electric field. Observe that the 
lab-time brachistochrones become less concave as the field strength E in­
creases while the proper-time brachistochrones in this limit become more 
concave. 
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r----------------y 

dy 

- - mg X 
Fgrov-~ 

x 

FIG. 6. Relativistic force diagram for a particle on a relativistic brachis­
tochrone in a uniform gravitational field. 

plicated than the same problem for a a uniform electric field. 
The additional complexity occurs because, as discussed in 
Sec. II, the gravitational force depends on the relativistic 
mass of the particle, which is a function of velocity, while the 
electric force is only dependent on the total charge, which is 
invariant. Consequently, we must find the expression for the 
velocity of the particle. 

First, by conservation of energy, we have 

me2 = me2/~1 - v2/e2 
- 'li , 

where we define 'li to be the energy gained by the particle 
from the force field, given by 

'li = f F· ds. 

Now, the force on the particle due to gravity and acting in 
the direction of motion is (see Fig. 6) 

F= (mg/~l - V
2/c2 

) cos (J, 

where (J is the angle between the direction of motion of the 
particle and the x axis. But since y' = tan (J we must have 

cos (J = (1 + tan2 (J )-1/2 = [1 + (y')2]-1/2, 

and since ds = ~dX2 + dy2 = ~ 1 + (y'f dx we get 

'li =fdX' mg 
~1 - v2/e2 

Now we have two equations in 'li and v. Solving the energy 
conservation equation for v and eliminating v, we get 

'li = r mg ( 1 + :2) dx' . 

Differentiating with respect to x, we obtain a differential 
equation for 'li, 

'li' = mg(l + 'li /me2) , 

r-____ -T~----~2------~3~--~4 y 

/ Region I 

X ,=1.0 

Region 3 

~=12.183 

"'=10.0 j . 
Region 2 
(e- = co) 

FIG. 7. Several curves in the family of brachistochrones for the gravita­
tional field with a = 2.5. 
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X 

FIG. 8. The lab-time brachistochrones for the uniform gravitational field 
with fixed endpoints and various values of a. The case a = 0.01 is indistin­
guishable from the cycloid. 

whose exact solution with 'li (0) = 0 is 

'li = me2(elIx1c' - 1) . 

Substituting this back into the energy conservation equation, 
we finally have an expression for vex): 

v=e~l-e-2ax , 

where a = g/c2
• 

Putting this into our general expression for the brachis­
tochrone for lab time we get 

y= iXdX
' (19) 

As in the uniform electric field case, the family of solutions is 
divided into three regions: 0 < k 2 < 1, k 2 = 1, and k 2 > 1. 

The boundary region k 2 = 1 in this case gives a brachis­
tochrone whose analytical solution is 

(20) 

which behaves like an exponential for large x, in contrast to 
the boundary region for the uniform electric field, which 
behaves like a parabola. (See Figs. 7 and 8.) 

D. Proper-time gravitational-field brachlstochrone 

By a slight modification of the procedure for solving the 
uniform-electric-field proper-time brachistochrone we find 
the expression for the uniform-gravitational-field proper­
time brachistochrone to be 

y= fdX' e2ax' - 1 
S2 _ e2ax' 

The behavior of this solution is unexpected. Let us exa­
mine this integral for large x. We have 

y< dx' e <_ u L
x ax' 1 f.s d 

o ~ S 2 _ e2ax' a 1 ~ S 2 _ U2 

1[ . 1 .1] = -;; arCSIll - arCSIll ""f 

1 [11' . 1] 11' = -;; "2 - arcsIll""f < 2a . 

Since we must integrate along both sides of the branch cut, 
the curve is bounded in the y direction by twice this quantity 
or 11'/a. At first glance, this result appears absurd; it seems 
that there are no brachistochrones that pass through points 
where Y2 > 11'/a. However, we do have brachistochrones to 
points lying in the region Y2> 11'/a. We can see in Fig. 9 that 
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x 

FIG. 9. The family of proper-time gravitational-field brachistochrones for 
a = 1.0. 

as s-00, the brachistochrones become deeper. The limit of 
these curves is a path that falls vertically to infinity on the x 
axis, moves to y = 11'/ a while at x = 00, and then returns to 
x = 0 along the line y = 11'/a. The proper time experienced 
by the particle along this path is 
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L
ao ~1 - vZ/CZ 2 Lao e- ax 

l' = 2 dx = - dx -;:;:==~~ 
o v C 0 b-e 2aJC 

2 rao 
= aC)1 -u-./-u-2---1 = -a-c 

11' 

which is finite. Because the particle is traveling at the speed 
of light at x = 00 it experiences zero proper time while mov­
ing in the y direction, independent of the distance traveled in 
that direction. Therefore, we can go to any point (x2, Y2) for 
which Y2 > 11'/a by going to infinity along the x axis and 
coming back up along the line Y = 12. 

Similar solutions do not exist for the proper-time elec­
tric-field brachistochrones. The proper time for a particle to 
fall to infinity in an electric field is infinite so all brachistoch­
rones in the electric field must have finite length. 
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The front form and the point form of dynamics are studied in the framework of predictive 
relativistic mechanics. The noninteraction theorem is proved when a Poincare-invariant 
Hamiltonian formulation with canonical position coordinates is required. 

I. INTRODUCTION 

Instantaneous relativistic dynamics of particles with di­
rect interaction was initiated in a celebrated paper by Dirac, 1 

entitled "Forms of relativistic dynamics." The line of 
thought set up there was further developed by Bakanjian, 
Thomas, and Foldy, 2 in the framework that Dirac had called 
"instant form." 

The subsequent development of the theory met the im­
portant drawback of the so-called "no-interaction 
theorem." 3 In general terms, it states that, if the position 
coordinates of the particles are to be canonical coordinates, 
and the particle worldlines must be Poincare invariant, then 
the only systems that are compatible with both requirements 
are those consisting of free particles. 

One attempt to circumvent this problem was initiated 
by Currie,4 and later on it has generated a rather wide stream 
of literature, which is known as predictive relativistic me­
chanics (and maybe, it should be called an instant form of 
PRM). It consists, first, in giving up the Hamiltonian for­
malism, which was taken for granted in former approaches, 
and starting from a more elementary level. The fundamental 
assumptions in predictive relativistic mechanics are (i) the 
equations of motion of the particles are Newton-like, that is, 
the acceleration of each particle is a given function of posi­
tions and velocities of all particles; and (ii) Poincare invar­
iance, which is understood to mean two things: the accelera­
tion functions must be formally the same in all inertial 
reference frames, and particle worldlines must be Poincare 
invariant. These requirements imply that some condition 
(the so-called Currie-Hill equations5

) must be fulfilled by 
the acceleration functions. In addition, they also ensure the 
possibility of setting up a realization of the Poincare algebra6 

on the system's tangent space (the one spanned by positions 
and velocities). Now, the no-interaction result can be ob­
tained again 7 if one seeks for a Hamiltonian formalism such 
that the aforementioned realization of the Poincare algebra 
is canonical, and the position coordinates can be taken as 
canonical. 

As far as we know, all proofs of the no-interaction 
theorem hitherto derived share a common feature, namely, 
physical variables are assumed to be simultaneous in a given 
inertial frame. This is a specific trait of the "instant form" of 
relativistic dynamics. However, in the pioneering paper by 

Dirac,l two other possibilities were considered, namely, the 
"front form" and the "point form" (in fact, a later paper by 
Leutwyler and Stem 7 increases that number by two more 
"forms"). 

One then wonders whether the no-interaction theorem, 
or a related result, also holds in these two alternative forms 
of relativistic dynamics. Although this is, indeed, an interest­
ing point to be elucidated, it seems not to have been proven 
yet. Indeed, in a relatively recent paper by Leutwyler and 
Stem 7 we can find the following sentence: "Although this no 
go theorem has been established only for theories of class (i) 
(i.e., the "instant form" of relativistic dynamics) it likely also 
holds for the remaining four forms of Hamiltonian dynam­
ics." 

In the present paper we intend to give an answer to the 
question that is more or less implicit in the quoted sentence, 
and derive a no-interaction theorem in the front form as well 
as in the point form. The master lines of our proof are the 
same as those of the proof given by Hill5 for the no-interac­
tion theorem in the "instant form." 

In a natural way, the paper is divided in two parts. The 
first one (Secs. II and III) is devoted to the front form, and 
the second one (Secs. IV and V) to the point form. Besides, 
each part is organized in two sections: one devoted to deve­
lop what could be called the front (resp. point) form of pre­
dictive relativistic mechanics, and the other to prove the no­
interaction theorem. 

II. FRONT FORM OF PREDICTIVE RELATIVISTIC 
MECHANICS 

In the instant form of predictive relativistic mechanics8 

(which has been its only formulation up to now), the ex­
tended configuration space of N spinless particles is spanned 
by the 3N + 1 variables: t, x~, b = 1, ... , N, i = 1,2,3; where 
the evolution parameter is the time ,coordinate as measured 
in a given inertial frame, and the x~ are the space coordinates 
of the event determined by the intersection of the worldline 
of particle b and the space hyperplane x 4 = t. 

The equations of motion are then required to be second­
order differential equations, that is, 

(2.1) 
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Thus the space of initial data is spanned by the following 
6N + 1 variables: 

t, xL u~, b,e = 1, ... , N, i,k = 1,2,3. 

If the space hyperplanes x 4 = t characterize the instant 
fonn, likewise the null hyperplanes x 3 + X 4 = A will playa 
central role in the front fonn of relativistic dynamics (here t 
and A are two real parameters). So, the extended configura­
tion space in the front fonn will be coordinated by the 
3N + 1 variables: A, x~, b = 1, ... , N, i = 1,2,3; where A is the 
evolution parameter and xL i = 1,2,3, are the space coordi­
nates of the event where the worldline of particle b meets the 
null hyperplane 

X 3 +X 4 =A, (2.2) 

or, using the notation introduced in (AS), 

x + =A 

(the same value of A for all particles). 
For convenience, our configuration space coordinates 

will be (see Appendix A) 

x;: , a = 1, ... , N, A = 1,2, - , 

rather than the Cartesian x~, i = 1,2,3. 
We now require the motion to be governed by a second­

order differential system, 

d 2xt A xl! _.D d~_A 
dA 2 = ab( a ,v;, ; A), dA = ITb , (2.3) 

a,b,e = 1, ... , N, A,B,D = 1,2, - . 

For every given solution of (2.3), we have a set of N 
worldlines describing the history of the system. Indeed, if 
lP:(x:,zf; A), A,B,D = 1,2, -, a,b,e = 1, ... ,N, is the solu­
tion of (2.3) corresponding to the initial data 

lP :(x:,u~;o) = xt , 
(2.4) 

alP: xl! D u1 
aA ( a,uc;O) = b' 

then, according to (2.2) and (AS), the worldlinexb(A) of par­
ticle b will be taken as 

X~(A ) = lP ~(x:,zf; A), i = 1,2, 

x~ (A ) = A /2 + lP b- (x:,u~; A ), 

x: (A ) = A /2 -lP b- (x:,u~; A ), 

which in the adapted coordinates (A4) reads 

xt(A) = lPt(X:,zf;A), Xb+(A) =A. 

(2.5) 

(2.6) 

Similarly to the instant fonn description, the principle 
of relativity will be used at two different levels. First, the 
"acceleration" functions at on the right of Eq. (2.3) must 
have the same fonn in every inertial frame. And second, the 
dynamic system must be worldline invariant. The latter re­
quirement means the same as in the instant fonn case, name­
ly, that if Sand S I are two inertial frames related to each 
other by a Poincare transfonnation (2'j,..ra1D ), A,Ii)) 
= 1,2, - , + -see the Appendix- and X:(A ), b = 1, ... ,N, 

A = 1,2, - ,+ are the worldlines of the particles in the 
frame S, when the system starts from a given set of initial 
data Zo=(X;:,u~), a,e = 1, ... ,N, A,D = 1,2, -; then the 
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Poincare-transfonned worldlines 

XbA(A) = 2'j(x!(J) _A:8) (2.7) 

must be obtained in the frame S I, when the system starts 
from the transfonned set of initial data Zo =(X~A ,U;D). 

Thus, as happens in the instant fonn, the mapping 
Zo -- Zo defines the induced action of Poincare transfonna­
tion (2'j,..ra1D ) on the space of initial data. 

In tenns of the adapted coordinates, this mapping reads 

(2.8) 

where ~,?G, 'E;F,G = 1,2, - , + denote the parameters 
characterizing the specific Poincare transfonnation-see 
Eq. (All). 

The infinitesimal generators are then obtained in the 
usual way: 

af~ B _.D a ag! _-11 _.D a 
PE = ---(Xb'l'c ;0,0) --+ --= (~b'U~ ,0,0) -, 

a~ ax;: a~ au: 
(2.9) 

JEF = af~ (x:,zf;O,o)~+ ag! (x:,u~,O,O)~. 
a~Fax;: a~F au: 

To obtain the specific expressions for these generators, 
we shall work out the condition of worldline invariance 
(2.7), together with the worldline equations (2.6). Intro­
ducing the latter into both sides of (2.7), we obtain 

lP~(zo, Aa (zo, A») = TX2'1 [ lP:(zo: A) _..ra1E ] 

+ 2'A+ [A - ..ra1+], A = 1,2, -
(2.10) 

It should be noticed that, since the "acceleration" func­
tions have the same fonn in frame S and in S I, the same 
general solution lP ~ has been substituted into both sides of 
Eq. (2.7). However, whereas in the right-hand side we take 
the initial data Zo = (x;: ,v:), which correspond to the frame 
S, in the left-hand side we have to put the transfonned initial 
data Zo = (X~A,UbB) which correspond to the worldlines as 
viewed from the frame S I. Moreover, the value of the evolu­
tion parameter in the left-hand side ofEq. (2.10), which we 
have written as Aa (zo, A), will be presumed different from 
the parameter A in the right-hand side. This is due to the fact 
that the worldline invariance only ensures that each world­
line transfonns into another one as a whole, no matter how 
the respective parametrizations are related to each other. 

In our case, the relation between parametrizations, i.e, 
the function Aa (zo, A), can be derived from the fact that the 
evolution parameter corresponds to the space-time coordi­
natex+; so that we have 

Aa (z()J A) = 2' it (lP : (zo, A) - dB) + 2'+ + (A - ..ra1+) . 

(2.11) 

By taking derivatives in (2.10) and (2.11) with respect to 
A we obtain the relation between velocities 

tP~(zo, Aa(Zo, A)) ·A.a(zo, A) = 2'1· tP :(zo, A) + 2'~ , 
(2.12) 
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with 

Aa(Zo,A) = 2': ·tP~(ZO,A) + 2'! , 
which, after one further differentiation, yields the relation 
between accelerations: 
q, :(zo, Aa (zo, A ))-t ~ (za, A ) + tP :(zo, Aa (zo, A Ma (zo, A ) 

.. B 
= 2'~lP a (Zo, A ) (2.13) 

and 

Aa(zo, A) = 2': q, ~(zo, A) . 

Since lP: is a solution of the differential system (2.3), 
Eqs. (2.13) can be written as 

.9/: ( lP g(zo, Aa (zo, A»); tP ~(zo, Aa (zo, A»); 
• 2 • A .. 

Aa (zo, A» • A a (zo, A) + lP a (zo; Aa (zo, A»). Ab (zo, A) 

= 2'~.9/~( lPf(zo, A), tP~(zo, A), A), (2.14) 
.. B' 
Aa (zo, A) = 2': .9/a (lP f(zo, A),lP ~(zo, A), A) . 

Equations (2.10)-(2.14), which hold for every value of 
A and for every Poincare transformation (2' ~ ,.9/ D), actual­
ly determine the functions!:, gg in (2.8). Although, apart 
from a few trivial cases, it would be impossible to derive 
explicit expressions for such functions, the above equations 
permit us to obtain the infinitesimal generators in a rather 
straightforward way. 

Indeed, introducing the infinitesimal expression (AI2) 
for the Poincare transformation (2'~,.9/D) into Eqs. 
(2.10)-(2.12) and keeping first-order terms only, we ob­
tain, after some manipulation, 

P+= L L u;:-+a:- , N [a a ] 
A = i,2, - a = I ax;: au;: (2.15a) 

N a 
P A = - L --, A = 1,2, - , 

a=1 ax;: 
(2.15b) 

(2.16a) 

(2.16b) 

(2.16c) 

N { a a 
J iz = L -Xaz -a I -Xal -a 2 

a= I Xa Xa 

a a } + Vaz -a I - Val -a 2 ' 
Va Va 

(2.16d) 

where r = 1,2. 
Notice that, as expected, there are seven kinematical 

generators PA' J 12, J r _, J + _, A = 1,2, -, r= 1, 2; and 
three dynamical ones P +' J +" r = 1,2; or Hamiltonians. 

Now, by introducing the same infinitesimal Poincare 
transformation (AI2) into Eqs. (2.14), we obtain the set of 
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differential equations 

PAa~ = 0, A,B = 1,2, - , 

J12a~ = a~l5f - a!l5f , 
Jr_ a~ = - a~l5~ , 

J + _ a~ = - (aa-l5~ + za~) , (2.17) 

which playa similar role as the Currie-Hill conditions5 in 
the instant form of predictive relativistic mechanics. 

III. NO-INTERACTION THEOREM IN THE FRONT FORM 
OF DYNAMICS 

Let us now assume that we have a symplectic structure 
in the space of initial data, such that the "position variables" 
X;:, A = 1,2, -, are canonical, i.e., the symplectic form is 

0' = dX;: 1\ dp~ , (3.1 ) 

wherep~ = p~(X:,v~,a,b,c= 1, ... ,N,A,B,D= 1,2, - ,and 
summation over repeated indices (A as well as a) is under­
stood. 

Let us furthermore assume that the realization of the 
Poincare group that we discussed in the previous section is 
canonical relatively to 0'. This implies that 0' is Poincare in­
variant or, equivalently, 

(3.2) 

where l]j = 1,2, - ,+ and 2' means "Lie derivative." 
As a consequence ofEq. (3.2), there exist ten generating 

functions PA(x,p), JAB (X, p) such that 

i(PA)O' = - dP;t and i(J AB)O' = - dJAB , 

or (3.3) 

PA = {PA, - 1 and JAB = {JAB' - I , 

where i means "inner product" and { ,lis the Poisson 
bracket associated to 0'. 

Now, using Eq. (3.3) and the expressions (2.15) and 
(2.16) for the Poincare generators, we arrive at 

IX;:'PB 1 = 15~, {X;:,J121 = - x~151 + x~I5~, 
{X;:,J + _ 1 = xa-I5~, {X;:,Jr- 1 = x~l5~ , 

IX;:, J +r 1 =xa-l5: + x~U;:, IX;:,P +1 = - U;:, 
r = 1,2, A,B = 1,2, - . 

(3.4) 

By applying the commutation relation of the Poincare alge­
bra and using the Jacobi identity and Eqs. (3.4), we find, after 
some calculations, 

{J +r,IX:,x;:}} = 15~ Ixa- ,X:I + u: Ix~,xgl + x~ I U;:,xgl 

- V:lxb,x;: 1 - Xb I v:,x;: 1 , (3.5) 

(3.6) 
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{X;:,an = {v:,v:} + ({v:.x:},P +) , 

- ({X:,V:}, J +r} + {Xb- ,V:M~ + {x~,V:M~ 
+ {x;,V:}V: + {x:.x:}x; 
= {va- 4M1 + V~ {v: 4} + V:{v~ 4} 

- a:{x~.xn - x~ {a:.xf} , 
- ({V:,V:},J + r) + {vb ,V:M~ + {VI"V:}V: 

+ {V:,V:}v; - {x;,V:}a! - {a!,V:}x; 
= {va- ,V:M1 + {v~,vnv: 

+ {v: ,V:}v~ - {x~ ,V:}a~ - {a: ,V:}X~ . 

(3.7) 

(3.8) 

(3.9) 

Since the coordinates x;: are assumed to be canonical, 
we have that {x;: 4} = 0, which, combined with (3.5) and 
(3.6), implies 

x~ {vt.x:} - x; {vt.x!} = 0, (3.10) 

whence 

{vt.x:} = 0, for a # b. 
From (3.8), (3.10), and (3.11), we obtain 

{a:, X:} = 0, a # b , 

which, introduced into (3.7), yields 

{v: ,v:} = ° , a # b . 

(3.11) 

(3.12) 

(3.13) 

Now, using the Jacobi identity with V:, V:, and P +' we 
can write 

{a:,v:} = {a!,V:} + {p +,{v:,v:n, 
which, with the help of (3.13), leads to 

{a:,v:} = {a!,V:}. 
Upon substitution into (3.9), this finally yields 

{a!,V:} =0, a#b. (3.14) 

Now taking into account the identity 

{J, g} = . ± {l1;,l1j} aaf aag 
, (3.15) 

',J = I 11; l1j 

where f and g depend on the variables 111 ... 11k only; we can 
write 

(3.16) 

whence, by using Eqs. (3.10)-(3.14) there follows that 

aa! 
-=0 
all! ' c 

aa! 
--=0, 
a~ 

c#b. (3.17) 

That is, the acceleration a:, B = 1,2, - , of each particle b 
does not depend on the positions and velocities of the re­
maining ones, but only on its own position xt and velocity 
vt. This conclusion would be enough to consider that the no­
interaction result is proven, since the motion of each particle 
is not affected by the presence of the others. However, in the 

515 J. Math. Phys., Vol. 27, No.2, February 1986 

case we are considering (i.e., front form) a little bit deeper 
analysis reveals that the accelerations actually vanish. 

Indeed, from (2. 15b) and (3.17), we have 

aaB 
_a_=O 
ax;: 

and using (2.16), (3.17), and (3.18), we arrive at 

a: = 0, a = 1, ... , N, A = 1,2, - , 

which completes the proof. 

IV. POINT FORM OF PREDICTIVE RELATIVISTIC 
MECHANICS 

(3.18) 

(3.19) 

In the instant and front forms of dynamics, the con­
struction of the configuration space was somehow linked to 
the choice of either the space hyperplanes X4 = t or the null 
ones x3 + X4 = A., respectively. In the point form, the hyper­
boloids xP xp = - A. 2 will be assigned a similar role. 

Each point in the extended configuration space will be 
characterized by 3N + 1 coordinates (x~ , A. ), 
a = 1, ... , N, i = 1,2, 3, where A. is taken as an evolution pa­
rameter and the x~ are the spacelike coordinates of the event 
where the worldline of the ath particle intersects the hyper­
boloid 

xP xp = - A. 2 • (4.1) 

As in the earlier two cases, the equations of motion are 
second-order differential equations 

2 . . 
dx~ ; i k dx~ i 
--2- = aa (Xb' Vc ' A.), --= Va , 

d...1. d...1. 
(4.2) 

where a, b, c = 1, ... , N, i,j, k = 1,2, 3. 
Now, let tp~ (xL V~,...1.o,...1.) be the general solution of 

( 4.2) determined by the initial conditions 

tp ~ (~, v~, ...1.0 ; ...1.0 ) = x~ , 

tP ~ (x~, v~, ...1.0 ; ...1.0 ) = v~ , 
(4.3) 

where an overdot means a partial derivative with respect to 
the parameter A.. As in the former two cases, the worldline of 
the ath particle is then defined by tp ~ (~, v~, ...1.0 ; A.), where 

O'k 2 "k 2 
{ 

3 } 1/2 

tpa (x'b' Vc'...1.o;...1.) = A. + i~1 tp~ (~, Vc'...1.o;...1.) 

(4.4) 

And, as before, we shall require Poincare invariance of 
worldlines that reads as 

tp~ (z~, ...1.a (zo, A.)) = LP v [tp ~ (zo, A.) - AV] , (4.5) 

where Zo and z~ are abbreviations of the initial data, (~, ~, 
...1.0 ) and (x~, v;\ A. ~), respectively. These initial data corre­
spond to two different inertial frames that are related to each 
other by the given Poincare transformation (LP v' AP). The 
mapping zo-z~ defines the induced transformation on the 
extended configuration space. 

The value of the parameter ...1.a (zo, A. ) on the left-hand 
side of Eq. (4.5) can be easily derived. Indeed, taking (4.4) 
into account, we have 

A. ~ (zo, A.) = - [tp ~ (zo, A.) - AP] [tpav (zo, A. ) - Av] . 

(4.6) 
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As is easily seen from this equation, and also from (4.4), the 
correspondence between A and the time coordinate qJ ~ is not 
one-to-one. In order to avoid the nondifferentiability in the 
branch point A = 0, we shall take hereafter ..10 and A positive. 
Moreover, the translation parametersAIt will be assumed to 
be small enough for A ~ (zo, A ) on the left-hand side of Eq. 
(4.6) to remain positive. 

By differentiating (4.5) with respect to A we obtain the 
transformation formula for the velocities 

Lit v 4; ~ (zo, A ) = 4;: (z~, Aa (zo, A )) Aa (zo, A) , (4.7) 

where 

Aa(zo,A) = [Aa(Zo,A)]-l[qJ~(Zo,A) _AV] 4;av(Zo,A). 
(4.8) 

And, differentiating again, we have the relationship 
among accelerations 

Lit v ip ~(zo, A) = ip:(z~, Aa (zo, A)) A ~(zo, A) 

(4.9) 

where 

x = a 

A2 -t- + -1- {(qJ~(zo,A) _AV) ipav 
a a 

+ 4; ~(Zo, A) 4;av(Zo, A)} . (4.10) 

Now using (4.3) and (4.4), taking (4.6)and (4.8) into ac­
count, and setting A = ..10' Eqs. (4.5) and (4.7) yield a set of 
6N implicit equations involving x~, ~,x;\ V~l, Ao, Lit v' AP. 
Similarly to the front form case, it will be generally impossi­
ble to derive explicit expressions 

for the action induced by a finite Poincare transformation 
(Lit v' AP). However, by introducing the infinitesmial expres­
sions 

Lltv =8'v +€"p(8'a 1/vp -8'p 1/va) + o (c), AP=~ 
(4.11) 

into Eqs. (4.5) and (4.7), we can easily derive the following 
expressions from ten infinitesimal generators: 

(4.12) 

1( .... v~~)a} + T ~ a~ + v~ v~ - -..1- av~ , 

{
.a ·a ·a ia} J .. = ~ xl -- - x' --+ v} - - v - . 

I} £.J a . a . aai aa j a ax~ a~ Va Va 
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Finally, substituting the infinitesimal Poincare transfor­
mation (4.11) into Eq. (4.9), and taking (4.10) and (4.12) into 
account, we arrive at 

where 

(
. a . a) a H=I V~-,-. +a~-i +-

a, i aXa ava aA 
(4.14) 

is the infinitesimal generator of A evolution. 
Equations (4.13) play a similar role as Currie-Hill condi­

tions in the instant form of dynamics. It can be easily proven 
that they are equivalent to the following requirements. 

(i) The generators Pit' JltV given by (4.12) generate a re­
alization of the Poincare algebra on the space of initial data 
(i.e., their commutation relations are the suitable ones). 

(ii) This realization is invariant under A evolution, that 
is, 

[H, Pit] = [H, J ltv] = ° . (4.15) 

v. THE NO-INTERACTION THEOREM IN THE POINT 
FORM OF DYNAMICS 

Let us now assume that by introducing some 3N mo­
mentap~ (xb , VC ' A), a = I, ... ,N, i = 1,2,3, the extended 
configuration space can be mapped onto the extended phase 
space, spanned by the 6N + I independent variables (x~, 
It, , A ). Let us further assume that the latter is endowed with 
the canonical structure defined by the elementary Poisson 
brackets 

{x~, xD = {p~,It,} = 0, {x~,It,} = 6ab 6ij (5.1) 

and the Poincare transformations as well as A evolution are 
both canonical relative to this structure. 

The latter condition implies the existence of 11 generat­
ing functions H, Pit' J"v, 1-', v = 1, 2, 3, 4, such that 

H = {H,}, PI' = {Pit'}' J"v = {J"v,}, (5.2) 
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where H, PI" andJl'v are given by (4.14) and (4.12), respec­
tively. 

According to (4.12), (4.14), and (5.1), we have 

{H,x~} =v~, 

{Po,x~} = [(A2+X;)1/2/A] v~, 

{ Pj , x~ } = - ~ v~ /..1. - oj ' 
{ 

; } ; k {:; . 
Jjk,xa =OjXa-UkXa, 

{J OJ' x~} = (A 2 + X;)1/2 0; . 

(5.3a) 

(5.3b) 

(5.3c) 

(5.3d) 

(5.3e) 

Now, writing down the Jocobi identity for Pj' x~, x~, 
taking (5.1) into account and using (5.2), we arrive at 

(5.4) 

Applying the same treatment to the functions Po, x~, xib, we 
have 

{x{" V~} = {x~, vi} , (5.5) 

which, once introduced in (5.4), implies 

{x{" v~} = 0, a"l=b. (5.6) 

Then, starting from the Jacobi indentity for ~, v~, x{, 
and using (5.2), (5.3), and (5.6) we obtain 

~ {x~, a~} = xib {v~, v~} , (5.7) 

which, substituted in the Jacobi identity corresponding to 
Po, v~, x{, leads us to 

{ k ;} {k; } Xb' aa = 0, Vb' Va = 0, a"l=b. (5.8) 
Finally, using (5.8) in,the Jacobi identity corresponding 

; k • 
to Pj' Va' Vb' we amve at 

(5.9) 

Since the Poisson bracket has rank 6N and the mapping 
(x~, vi, A )~(x~, P{, A ) is assumed to have rank 6N + 1, 
there follows from (5.8) and (5.9) that 

aai, 
-=0 ax; , 

a 

or, equivalently, 

(5.10) 

ai, = ai,(x~, v~, A), (5.10') 

which means that the acceleration of the b th particle does 
not depend on the state of motion of the remaining one. We 
can conclude that particles do not interact among them­
selves. 

However, the no-interaction theorem we are intending 
to prove goes further still. Indeed, not only does it state that 
particles do not interact but also that their worldlines are 
straight. 

The specific form of the acceleration a~ can be deter­
mined by introducing (5.10') into (4.13). This leads us to 

(5.11) 

which, since the acceleration is proportional to the velocity, 
implies that motions are rectilinear. A suitable reparametri­
zation of trajectories will yield uniform motions, and there­
fore, the proof is complete. 

In fact, the a priori knowledge that the above-mentioned 
suitable parameter will be the "physical time" rp ~, and its 
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relationship (4.4) to the "unphysical" scalar parameter A, 
will allow us to derive the general solution of Eq. (5.11). In­
deed, we can easily prove that 

c + b T(A, ..1.0 , c, b), (5.12) 

with 

T = (1- b2)-1{b.c - bo - ((h·c - to)2 

(5.13) 

and 

to = (A ~ - C2)1/2 

is the general solution ofEq. (5.11); the parameters b·c being 

related to the initial data Xb Vb according to 

C=Xb, 
o 

APPENDIX A 

o 0 

(5.14) 

In this Appendix we present the most useful expressions 
concerning the action of the Poincare group on the Min­
kowski space M 4, in terms of the set of coordinates and pa­
rameters which are most suitable for the null plane formal­
ism (or front form). Throughout this paper, we take c = 1 
and 1JI'V = (+ + + -), p, v = 1, 2, 3,4. 

If ~,p = 1, 2, 3, 4, are the Cartesian coordinates of an 
event in M 4 , then the Poincare transformation (LI' v' AI' ) 
changes them into 

(AI) 

A proper orthochronous Poincare transformation (LI' v, AV) 
is characterized by ten parameters (EA, ~v), 
A, p, v = 1, 2, 3,4, P < v. In the standard parametrization, 
and for infinitesimal values of these parameters, we have that 

La p = oa p + ~V (oa I' 1Jv{J - oa v 1Jpp) + O(~), 
(A2) 

Aa = ~ oa I' . 

Hence, in Cartesian coordinates, and in the standard para­
metrization, the infinitesimal generators are 

a a a 
PI' = - axl" JI'V = Xv axl' - xI' axv ' (A3) 

In the front form, it is more convenient to use the new 
adapted coordinates 

~ = MA.I' xI', A = 1,2, +, - , 
where 

(A4) 

x+ =x3 +X4, x- =! (x3 +X4), Xl =Xl, x 2 =x2 , 

(A5) 
that is, 

M'. ~(~ 
0 0 0 
1 0 

o ) 0 1 1 . 

0 1/2 -1/2 
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In these coordinates, the Minkowski metric is given by 

1fAB = (M-I)JJ A (M-I)v B TJJJv 

~(~ ~ ~ V. (A6) 

From this expression it is obvious that 

MAJJ=TJAB MBv rj-tV = (M-I)JJA. (A7) 

So, the lowering and raising of indices works as 

MI =MI, M 2 =M2, M+ =M_, M- =M+. 

(AS) 

Expressed in these new coordinates, the transformation 
(AI) reads 

X,A = .,?AB (XB - dB), 'Ii, B = 1,2, +, - , (A9) 

where 

.,?AB==MAI-' LJJ v (M-I)v B, dB==MBv 'Ii v . (AlO) 

According to these definitions, and performing the 
change of parameters, 

ii =MA
JJ e', e4B = e'v M A

JJ MBv , (All) 

the infinitesimal expressions (A2) transform into 

.,?AB = 8A
B + ECD(8A

c TJDB - 8A
[j 1fcJj) + O(c) , 

dA=Ec~. (A.I2) 

Hence, the corresponding generators are 

PA = - a~ JAB =XB a~-XA a~' (AI3) 

The relationship between the two sets of generators (A3) 
and (A13) can be easily derived from their definitions and 
Eq. (All); this relationship being 

PA = MAJJ P JJ' JAB = MAJJ MJjv JJJv . (AI4) 

Notice that the coordinates xA, 'Ii = 1,2, +, -, are 
specially suitable to work in the instant form approach, since 
the null hyperplane equation X3 = X4 = 0 is written in the 
new coordinates x+ = O. Moreover, the generators PA and 
JAB split in a natural way into kinematic ones (those pre-
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serving the null hyperplane) 

P _, PI' P2, J 12, J I_, J 2 _, J+_ 

and dynamic ones 

P +, J I +, J2 + . 

APPENDIXB 

In the future sheet of the light cone in Minkowski space 
defined by 

X
4 >0, xl-' xI-' <0, (BI) 

we introduce the following coordinates: 

i _ i . _ 1 2 3 4 - ( ..J1, )1/2 (B2) Y - X, I - , , , y - - A' xJJ . 

In terms of these coordinates, the generators of infinite­
simal Poincare transformations are 

P = II-

Ip. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949). 

(B3) 

2L. H. Thomas, Phys. Rev. 85, 868 (1952); B. Bakamjian and L. H. Thom­
as, Phys. Rev. 92, 1300 (1953); L. L. Foldy, Phys. Rev. 122, 275 (1961). 

3D.G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod. Phys. 35, 
350 (1963); H. Leutwyler, Nuovo Cimento 37,556 (1965). 

4D. G. Currie, Phys. Rev. 142, 817 (1966); R. N. Hill, Math. Phys. 8, 201 
(1967); E. H. Kerner, Math. Phys. 9,222 (1968). All the above references 
can be found in The Theory of Action at a Distance in Relativistic Particle 
Dynamics, edited by E. H. Kerner (Gordon and Breach, New York, 
1972). Also, P. Droz-Vincent, Phys. Scr. 2,129 (1970); L. Bel, Ann. Inst. 
H. Poincare XII, 307 (1970); XIV, 189 (1971). 

5R. N. Hill, Math. Phys. 8, 1756 (1967). 
6p. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949). 
7H. Leutwyler and J. Stem, Ann. Phys. 112, 94 (1978). 
8L. Bel, Ann. Inst. H. Poincare XII, 307 (1970); XIV, 189 (1971). 

Jaen, Molina, and Iranzo 518 



                                                                                                                                    

Realization of Poincare group induced by a second-order ordinary 
differential system. Noninteraction theorem 

x. Jaen and J. Llosa 
Grup de Relativitat de la Seccio de Flsica (SCC) lEG. Departament de Fisica Teorica, Universitat de 
Barcelona, 08028 Barcelona, Spain 

F. Marques 
Grup de Relativitat de la Seccio de Fisica (SCC) lEG. Universitat Politecnica de Catalunya (ETSECCP), 
08028 Barcelona, Spain 

A. Montoto 
Grup de Relativitat de la Seccio de Fisica (SCC) lEG. Departament de Fisica Teorica, Universitat de 
Barcelona, 08028 Barcelona, Spain 

(Received 31 January 1985; accepted for publication 16 October 1985) 

A generalization of the predictive relativistic mechanics is studied where the initial conditions are 
take? on a general hypersurface of M4. The induced realizations of the Poincare group are 
obtamed. The same procedure is used for the Galileo group. Noninteraction theorems are derived 
for both groups. 

I. INTRODUCTION 

The generalization of the no-interaction theorem pre­
sented here is undertaken in the framework of predictive 
relativistic mechanics (PRM), 1 that is, the same Newtonian 
equations of motion remain valid for every inertial observer. 
Relativistic invariance is then understood as referring to 
worldlines, thus adopting the standpoint first stated by Min­
kowski2 that " ... physicallaws might find their most perfect 
expression as reciprocal relations between these worldlines." 

In the usual formulation of PRM, the configuration 
space for an N-point particle system is spanned by the 3N 
simultaneous position coordinates of the particles (simulta­
neity here presumes an inertial observer describing the dy­
namics of the system). In this respect, the usual PRM ap­
proach is similar to the instant form of Dirac3 for 
Hamiltonian relativistic dynamics. 

Also, in most of the various derivations of the noninter­
action theorem, the instant form assumption plays a crucial 
role: the simultaneous position of particles are assumed to be 
either canonical coordinates in the Hamiltonian ap­
proaches4 or the variables spanning the configuration space 
in the Lagrangian formulations. 5 

Other derivations of the theorem, that will not be con­
sidered here, correspond to the covariant formalism ofPRM 
(see Ref. 6) or to the Hamiltonian relativistic systems with 
constraints approach.7 An interesting review on the subject 
can be found in Ref. 8. 

Dirac proposed3 two other possible formulations ofHa­
miltonian relativistic dynamics besides the instant form: 
namely, thefrontform and thepointform. So the question 
arose of whether the instant form assumption was essential 
to the noninteraction result, or if a similar output could be 
obtained in the framework of the other two Dirac forms. 
This point has been studied in a recent work9 and the answer 
is yes. 

At this point, why should we restrict ourselves to the 
three Dirac forms of Hamiltonian relativistic dynamics? 
From a historical point of view, it becomes apparent that 

Dirac proposed these three forms as different possible ways 
of simplification for a wider problem: the derivation of Pois­
son realizations for the Poincare algebra. Nevertheless, 
Dirac himself proposed, and later developed, a technique--­
relativistic Hamiltonian dynamics with constraints 10_ 

which permits us to obtain a much wider solution to this 
problem, beyond the rigid restrictions of the above-men­
tioned three forms of dynamics. 

So, as far as the noninteraction result is concerned, the 
following question becomes legitimate: Does it hold beyond 
the narrow framework of the three forms of Dirac? 

A first answer to this question has been given partially7 
in the framework of Hamiltonian relativistic systems with 
constraints. Under some assumptions it has been proved by 
an example that some mass-shell constraints and fixations 
could be chosen such that, albeit positions of particles are 
taken as canonical coordinates, the noninteraction implica­
tions are circumvented. However, that model has not any 
interest beyond the mathematical one: not only is it unphysi­
cal, but also the procedure to reconstruct the particles' 
worldlines from the phase space trajectories is rather sophis­
ticated, owing to the fact that the fixations are chosen not to 
have a clear kinematical meaning, but to yield some wanted 
specific Dirac brackets. 

We are going to undertake another generalization of the 
noninteraction theorem, now always keeping in mind the 
kinematic aspects of the problem, that is, the way any given 
inertial observer will have to recover the particles' world­
lines from the COnfiguration space trajectories. To this end, 
let us analyze how it is done in the instant form approach. 
For every given value A of a certain parameter, an inertial 
observer takes the space coordinates x~ (A), a = 1, ... ,N, of 
each particle when 

x~ =x~ = .. , =x~ =A, (1.1) 

and the configuration space curve (x; (A ), ... ,x~(A)) describes 
the evolution of the system. Conversely, the N worldlines are 
recovered from a given configuration space trajectory 
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(x; (A ), ... , x~(A II, by merely taking (A,x~(A)), a = 1, ... ,N. 
Other requirements in PRM are (i) that the trajectories 

of the system are the integrals of a second-order differential 
system on the configuration space and (ii) the relativistic in­
variance in terms of worldlines. A further development of 
the latter two conditions yields the so-called induced realiza­
tion of the Poincare group on the cophase space and the 
Currie-Hill equations. 1 

The/ront/orm (resp. point/orm) approach operates in a 
quite similar way.9 For every given value A of a certain pa­
rameter, an inertial observer takes the space coordinates 
x~(A), a = 1, ... ,Nwhen 

x~ +x~ =,1, (1.2) 

(resp. X~2 - x~ =,1, 2). (1.3) 

The evolution of the system in the configuration space is 
then given by (x; (A ), ... ,x~(A II. Conversely, for a certain con­
figuration space curve, the worldline of the ath particle is 
given by 

(A-x~(A),x~(A)), a=I, ... ,N, (1.4) 

[resp. (~A 2 + X~(A), x~(A)), a = 1, ... ,N]. (1.5) 

Similarly, the requirements of relativistic invariance and 
that configuration space trajectories fulfill the second-order 
differential system 

d 2x i 

dA; = a~(xb'vc.A), 

also lead to an induced realization of Poincare group on the 
extended cophase space and to some restrictions on the acce­
lerations that play the same role as the Currie-Hill condi­
tions do in the instant form approach. 

In Sec. II, we shall start from an analysis of the common 
features of these three approaches, in order to generalize the 
predictive relativistic mechanics framework. Then, in Sec. 
III, we prove a generalization of the noninteraction theorem. 
Finally, in Sec. IV, we extend the previous study to Newtoni­
an dynamics, analyzing the noninteraction theorem in this 
case. 

II. THE GENERALIZED PREDICTIVE RELATIVISTIC 
MECHANICS FRAMEWORK 

The three approaches we commented on at the end of 
last section (resp. instant, front, and point forms) share the 
following common features. 

(i) Newtonian equations 0/ motion: The configuration 
space of the N-point particle system is spanned by the 3N 
position coordinates of the particles x~, a = 1, ... ,N, 
i = 1,2,3, and the evolution is governed by a second-order 
differential system 

dx~ i dv~ i i k 

dA = Va' dA = aa(xb,vc.A), (2.1) 

whose functional form does not depend on the inertial ob­
server describing the dynamics. 

(ii) A specific rule to construct the worldlines: For each 
particular solution 

(2.2) 
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of (2.1) with the initial condition 

i( .A;A) i aq;~( 1.1) i q; a .f,1I 0 0 = .fa' aA .f,II,A-o;'·o = lIa, (2.3) 

the worldline x: (A) for the ath particle is obtained by taking 
the space coordinates (2.2) and finding the time coordinate 
x~ (A) ==q; ~ (.fi ,\!~ .A0;A) from 

h (x ~(A )) = A, (2.4) 

where h (x I-' ) is a fixed function on space-time M 4-the same 
function for every inertial observer and every particle [re­
member Eqs. (Ll), (1.2), and (1.3) for the three forms com­
mented on above]. 

Intuitively, this means that each inertial observer con­
structs his configuration space by taking the space coordi­
nates of all particles when their worldlines cross a previously 
chosen parameterized set of space-time hypersurfaces: 
h(xl-')=A. 

In order that x~ (A ) can be obtained from the implicit 
equation (2.4), the partial derivative ah / axo must not vanish. 

(iii) Relativistic in variance o/worldlines: Let Y and Y' 
be two inertial observers connected by the Poincare transfor­
mation 

X '1-' = L I-' v • (XV _ A V). (2.5) 

Let us assume that the worldlines q; :(xb,vc.Ao;A) are ob­
tained by Y from some initial data (Xb'Vc.AO)' Then, the 
transformed space-time curves 

(2.6) 
must be such that are obtained by Y' starting from another 
set of initial data (x~, v~ .Ao). That is, 

LI-'v' [q;~(xb,vc.Ao;A)-AV] =q;:(x~,v;.Ao;A~), (2.7) 

for every A. The parameter A ~ of the right-hand side is deter­
mined by the condition 

A ~ (xb,vc' Ao;L I-'v,A I-';A) 

= h(L I-' V • [q; ~ (xb,vc.Ao;A) - A vp, 
which stems from requiring (2.4) to hold also for Y'. 

lt can be easily obtained from (2.4) that 

(2.8) 

A ~(xb,vc.Ao;t5:,O;A) = A. (2.9) 

The new Y' initial data (x~,v~.Ao) will depend on the 
former Y ones (Xb'Vc.AO) and on the Poincare transforma­
tion, (L I-' v,A I-' ) E (!ll, which relates Y' to Y. That is, 

(2.10) 
v~ =i,(xb,vc.Ao;L I-'v,A 1-'). 

Weare not going to derive explicit expressions for these 
functions, f~ and g{, which define the Poincare transfor­
mation induced by the given (L I-' v' A 1-') E (!ll on the ex­
tended cophase space r( 6N + 1), nor are we going to prove 
by a direct manipulation that they form an actual group real­
ization. Instead, a close examination of commutation rela­
tions will ultimately prove this point. 11 

Note that induced Poincare transformations act as 

(Xa , Vb .AO)-(X~, V~ .Ao) 

thus leaving invariant, by prescription, the sheets A = const, 
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ofr(6N + 1). In any parametrization (L '\ (E[), A IL(EJ »), 
I.J = 1, ... ,10, the infinitesimal generators for induced Poin­
care transformations are given by 

[(B!~) B (Bi.) B ] At= 2: -- '-1- + - .-. 
a BE[ (E) = 0 BXa BE[ (E) = 0 Bv~ 

(2.11 ) 

[summation over repeated space (Roman) or space-time 
(Greek) indices will be hereafter understood]. 

The coefficients on the right-hand side of (2.11) can be 
obtained by taking partial derivatives with respect to E [ and 
then making (EJ) = (0) in the expression 

lP: (!~ (X,V,Ao;E[), g~ (X,V,Ao;E[ ),Ao; 

h (L P tT • [lP ~ (x,V,Ao;A.) - A tT]» 

=L lLy ' [lP:(xb,vc,Ao;A.) - AY], (2.12) 

which results from considering (2.7), (2.8), and (2.10) togeth­
er. 

Since Eq. (2.12) holds for every value of A-at least in an 
open neighborhood-it can be proved easily that any in­
duced Poincare transformation commutes with dynamical 
evolution. That is, the diagram 

(xaO,vbo,Ao)--induced Poincare - (X~,Vbo,AO) 

dynamical 

evolution 

~ 

(L lLy,A IL) 

dynamical 
evolution 

(xal,Vbl,Ad--induced Poincare --•• (X~I,Vbl,Ad 

(LlLy,AIL) 

is commutative. 
In terms of infinitesimal generators, this condition is 

equivalent II to the vanishing of the Lie brackets 

[At,D] = 0, (2.13) 

where 

D= 2: [v~.~ +a~(x,v,Ao).-;] + a~o (2.14) 
a BXa ava 

is the infinitesimal generator of dynamical evolution on 
r(6N + 1). 

In order to find out the coefficients of the generators At, 
we infer from (2.12) that 

Atx~ = c~o 'lP~ + C~j ·x~ - C~ - v~ . (A[h )(xa'lP~)' 
(2.15) 

where 

(2.16) 

lP ~ =lP ~ (xa ,Ao) is the solution of 

h (xa'lP~) = Ao, (2.17) 

and the meaning of (A[ h ) is explained in detail in the Appen­
dix. 

Second, from (2.13) and (2.14) we have that 

A"v~ = At(Dx~) = D(A"x~), 
and therefore 
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Atv~ = C~o . (DqJ~) + C~j . v~ - v~ . D((A[h )(Xa'V~)) 

- a~(Xb'Vc,AO)' (A[h )(xa,lP~)' (2.18) 

Finally, by applying the commutator (2.13) to v~, we obtain 

Ata~ =DAtv~ 
j 2 0 j j j h = C [0 • D lP a + C [j • 8a - (Daa) . (A[ ) 

- 2D(A[h) . a~ - v~ • D2 (A[h), (2.19) 

which must be understood as necessary conditions on the 
accelerations a~ (xb, v c,A ) for the relativistic worldline invar­
iance (2.7) to be accomplished. These conditions will play the 
same role as Currie-Hill equations I in the instant form of 
PRM. 

At this point, we can prove that the commutation rela­
tions among the generators A,., 1= 1, ... ,10, are precisely 
those of the Poincare group. First, after a simple but rather 
tedious calculation, we arrive at 

[A• A·] j C K A· j [ , J Xa = IJ' KXa, (2.20) 

Second, taking (2.13) and (2.20) into account, we have 

[A,.,A1]v~ = ct . Atv~, (2.21) 

and, since A1Ao = 0, we finally obtain 

[At,A1] = ct· At, (2.22) 

where C t,l.J,K = 1, ... ,10, stand for the structure constants 
of the Lie algebra of Poincare. (See the Appendix.) 

III. NON INTERACTION THEOREM 

Let us now assume that there is a Poisson bracket struc­
turel2 of maximum rank on r(6N + 1) such that we have 
the following. 

(i) The coordinate Ao of r( 6N + 1) is neutral relative 
to this Poisson bracket, i.e., 

{Ao./} =0, 

for every function on r(6N + 1). 
(ii) Induced Poincare transformations are canonical. 

That is, there exist ten generating functions At(x,v,Ao), 
1= 1, ... ,10, such that 

At! = {A1'/}, (3.1) 

for every function f 
(iii) The 3N position coordinates x~ can be complement­

ed with 3N conjugated momenta pJ(x,V,Ao) thereby obtain­
ing a set of canonical variables whose elementary Poisson 
brackets are 

{p~,pj} = O. 

(3.2) 

(3.3) 

As is well known-the proof can be found in any treatise on 
advanced analytical mechanics13-Eq. (3.2) is the necessary 
and sufficient condition for the differential system (3.3) to 
have a solution. 

Substituting! in Eq. (3.1) by either x~ or v~, and taking 
(2.14H2.16) into account, we have 

{At,x~} = C~o 'lP~ + C~x~ - C~ - v~ • (A[h )(xa'lP~)' 
(3.4) 
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{AT,v~} = C}o . (Dtp~) + C}j • v~ - a~ . (A/h )(xa,tp ~) 

- v~ . D((A/h )(xa ,'I' ~)). (3.5) 

Since Ao is a neutral function relatively to the Poisson 
bracket, taking (3.2) into account and using a known proper­
ty of Poisson brackets, we can write 

{
" . k Bab 

x~,atJ = {x~,vcJ-, 
av~ 

(3.6) 

{ i j I {i k I Bab {' k Bab va,ab = va,xc -k + v~,vc 1-· (3.7) 
BXe av~ 

Then, by applying the Jacobi identity and taking (3.2) into 
account, we obtain 

(x~,{AT,xb}} + (xt,{x~,AT}} =0, 

which, using (3.4), yields 

[(A/h )(xa'tp~) - (A/h )(Xb'tp~)] . {Xb'V~} = 0. (3.8) 

This finally implies 

{x~,v~} = 0, Va#b. (3.9) 

By repeating the same treatment with (3.9) instead of (3.2), 
we obtain 

{x~,a~l + [V~,Vb} .(A/h)(xa'tp~)=O. 
Then, by considering together this expression and the 

one that results from interchanging the indices b and a, and 
by the same reasoning, that permitted us to pass from (3.8) to 
(3.9), we can write 

[x~,ab} = [v~,vil = 0, Va#b, (3.10) 

unless (A/h )(xa ,'I' ~) = (A/h )(Xb ''I' ~), for every I = 1, ... ,10. 
Again, by repeating exactly the same procedure to Eq. 

(3.10), we obtain 

[v~,abJ =0, Va#b. (3.11) 

Then, by substituting (3.9)-(3.11) into (3.6) and (3.7) and tak­
ing into account the fact that (x~ ,Vb .Ao) is a complete set of 
independent variables (Ao being a neutral function), after 
some manipulation we have that 

Bab Bab 
- =0 - =0 Va#b. 
BXi 'Bvi ' a a 

(3.12) 

Therefore, the acceleration of a particle can only depend on 
the variables of the particle itself, 

ab = ab(xb,vb.AO)' b = 1, ... ,N, 

and, consequently, there is no interaction between particles. 
Moreover, these accelerations must be required to satisfy Eq. 
(2.19 )-analogous to the Currie-Hill equation-which will 
imply further restrictions on them. Since the function h (x I-' ) 

is unspecified, it is rather cumbersome to analyze in detail 
what these restrictions are like. However, once h (x 1-') is 
made explicit, the analysis is easier in the well-known three 
forms of Dirac-instant form4 (xo = A), front form9 

(xo + x 3 = A), or point form9 (A 2 = - X I-' X 1-'). Introduc­
ing (3.12) into (2.19), we obtain that accelerations must be 
parallel to velocity, that is, motions of particles are rectilin­
ear and uniform. 

The clue of what has been proved hitherto lies in the fact 
that for some generator of Poincare group we have 
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(3.13) 

Indeed, let us assume that there is a function h (x I-' ) such that 

(A/h)(xa'tp~ (xa.Ao») = (A/h)(Xb'tp~ (xb.Ao»), 

VI = 1, ... ,10, 

or, according to Eq. (A2), that 

hl-'(xa'tp~)· [CJ;x~ +Cfo .tp~ -Cf] 

= hI-' (xb,tp ~) . [C J; • xb + C /~ . 'I' ~ - C f], 

which, in the case of translations, yields 

hl-'(xa'tp~) = hl-'(Xb'tp~), 
the most general solution of which is 

h (x 1-') = av • XV + b. 

(3.14) 

(3.15) 

The requirement that (3.44) is to be fulfilled in case of rota­
tions, I = (YI, restricts a little bit more the form of h (x), spe­
cifically 

h (xl-') = aoX° + b. (3.16) 

Finally, Eq. (31.4) specialized for boosts leads to 

which implies that 0 0 = 0. 
We have arrive at h (x 1-') = b, constant, which contra-

dicts the previous assumption that 

Bho (x 1-')#0. ax 
Consequently, we have proved that is not possible in any 

way to choose a hypersurface-defining function h (x I-' ) such 
that the noninteraction result can be avoided, provided that 
a canonical realization of the Poincare algebra and the ca­
nonical character of position coordinates are simultaneously 
assumed. 

IV. A "NON INTERACTION THEOREM" IN GALILEAN 
DYNAMICS 

The three forms of Dirac for relativistic dynamics coin­
cide when the Galilean limit (c-oo) is taken, thus leading to 
the natural form used by physicists for centuries. In spite of 
this, we shall devote this section to the seemingly academic 
task of extending the results formally obtained to Galilean 
dynamics. The outcome will be pleasantly surprising. 

Since the results obtained in Secs. II and III have been 
derived in a rather generic way, similar results will hold for 
any transformation group of space-time, e.g., the Galilei 
group. 

So, we can also speak of induced Galilean transforma­
tions on the extended cophase space and all that has been 
presented in Sec. II holds by changing "Poincare" to "Gali­
leo" -this change affects the coefficients C tv and C f and 
the structure constants C~. 

Also, as has been remarked at the end of Sec. III, in 
order to avoid the no-interaction result, we must find a func­
tion h(x,t) on space-time fulfilling Eq. (3.14). 

As we did in the last section, specializing (3.14) to space 
rotations and space-time translations, we obtain that h must 
be 

h(x,t) =a·t+b, (4.1 ) 

Jaenetal. 522 



                                                                                                                                    

if (3.14) is to be fulfilled. 
And, since the generators of Galilean boosts in space­

time are - t(a laxi
), (3.14) is identically satisfied in this 

case. 
We have therefore arrived at the interesting result that, 

even in Galilean dynamics, we could wind up with a nonin­
teraction result if we had not chosen the suitable form-Le., 
the function h (x,t ). However, contrary to the relativistic case, 
Galilean dynamics permits only one way-instant form-to 
escape from noninteraction, and this is precisely the one that 
has been naively used from the beginning of Hamiltonian 
classical mechanics. 

v. CONCLUDING REMARKS 

The starting point of the present paper has been that the 
equations of motion for an N-point particle system are sec­
ond-order differential equations and that the configuration 
space of each inertial observer is constructed by taking parti­
cle positions when their worldlines cross a given space-time 
hypersurface h (x ,. ) = const. Relativistic invariance then 
has been imposed by requiring the equations of motion and 
the space-time hypersurface to have the same functional 
form for every inertial observer. 

The outcome is a generalization of predictive relativistic 
mechanics,1 which is recovered as a particular case of the 
framework here developed, by taking h (x ,. ) = Xo. And in 
this generalized framework we have obtained the conditions 
that accelerations must fulfill if worldline relativistic invar­
iance is required. These conditions appear as the counterpart 
of the well-known Currie-Hill equations of predictive rela­
tivistic mechanics. 

We have proved then that the requirement of having a 
canonical formulation for induced Poincare transforma­
tions, where position coordinates can be taken as canonical 
ones, unavoidably implies noninteraction. 

As a consequence of the general manner as the problem 
has been dealt with; the results obtained in the first part of 
the paper for the Poincare group can be easily translated to 
the case of any other group of space-time transformations. 
We thus have written them for the case of the Galilei group, 
thus concluding, in Newtonian dynamics, the only way of 
avoiding noninteraction theorems in the usual "instant 
form," which always has been used as the natural one in 
classical Hamiltonian mechanics. 
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APPENDIX 

For a given function h (x I" ) on the Minkowski space and 
for the standard realization of Poincare group, we have 

(AJh )(x)=(a,.h )(x) [C f"xv - C 1']. 
According to this, we define the shortened notation 

(AJh )a =(AJh )(xa ,ip ~) 

(AI) 

=(a,.h)(xa,ip~)[CJlx~ +Cl'oip~ -cn, (A2) 

where ip ~ (xa ,Ao) is obtained by solving (2.17). 
On the other hand, in the usual parametrization of the 

Poincare group 

L ,. v =~,. v + {J)afJ~:1JvfJ + 0 ({J)2), (J)afJ = - aJ1a, 
(A3) 

A "=EP~~, 

A" = EP~~, 

we have that 

C t:'Plv = ~:1JvfJ - ~G1Jva' C t;'lv = 0, 

c (':,p) = 0, C tp) =~::. 
(A4) 
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Generalized Holstein-Primakoffrealizations deduced by Deenen, Quesne, and Papanicolaou are 
obtained directly from the algebraic identities satisfied in collective subspaces by the infinitesimal 
generators of the corresponding dynamical groups. 

I. INTRODUCTION 

During the last few years it was possible to observe an 
increasing role played by dynamical groups in such fields of 
physics as the theory of collective motion in nuclei 1-12 or the 
study of liN expansions in quantum mechanics and field 
theory. 13.14 

In all these works, the construction of boson realizations 
of the various irreducible representations of dynamical Lie 
algebras proved to be very useful. Among all boson realiza­
tions, the Holstein-Primakoff realizations are the most in­
teresting, because they are Hermitian and minimal, i.e., they 
utilize the minimum number of bosonic operators. Holstein­
Primakoff realizations have been obtained by Deenen and 
Quesne3 for the collective representations of the real-sym­
plectic Lie algebras sp(2d,R ) and by Papanicolaou 14 for the 
orthogonal algebras so(2d;R ); for the Lie algebra sp(4;R ), the 
Holstein-Primakoff realization has been obtained by Mlo­
dinow and Papanicolaou. 13 

It is the aim of the present paper to prove that Holstein­
Primakoff realizations can be derived in a purely algebraic 
way. This fact had already been observed by Okubo,15 who 
deduced a Holstein-Primakoff realization for the complete­
ly symmetric irreducible representations of the unitary Lie 
algebras u(d ), utilizing the second-degree polynomial identi­
ties satisfied by their infinitesimal generators. In the present 
paper, we point out a method by which this approach can be 
extended to all dynamical Lie algebras and to all their finite­
or infinite-dimensional representations with maximal 
weight vector, the generators of which satisfy second-degree 
polynomial identities. 

The classical analog of the Holstein-Primakoff realiza­
tion gives a method for an algebraic determination of the 
canonical coordinates on the symplectic manifold in the dual 
space of the dynamical Lie algebra, defined by the classical 
polynomial identities, which correspond to the quantum 
polynomial identities satisfied by the representations. This 
problem has been considered by Mukunda. 16 

In previous papers,17.20 we obtained a classification of 
all second-degree polynomials on the dual space of a Lie 
algebra (or in the universal enveloping algebra of a Lie alge­
bra), which can lead to identities in the classical case (in the 
quantum case). Using this result, we identified the second­
degree polynomial identities among the generators of the 
collective subrepresentations considered by Deenen and 
Quesne3 or by Papanicolaou. 14 Taking these identities as our 
starting point, we derived the fundamental equations ob­
tained in Refs. 3 and 14 in a purely algebraic way. 

II. DEFINITIONS AND NOTATIONS 

We shall treat both algebras-the symplectic and the 
orthogonal-on an equal footing and study their boson real­
izations simultaneously. To do that, we shall use a unifying 
notation, by introducing a parameter E defined by 

{
-I, for sp(2d;R), 

E-- + 1, for so(2d;R). 
(2.1) 

Thus, let FE be the Fock space for a system with Nd degrees 
of freedom, on which representations of the canonical com­
mutation (E = - 1) or anticommutation (E = + 1) relations 
are defined 

[bis,bj,]E = [b~,b.t]E =0, 
(2.2) 

[bjs,b j~]E = o;/>st I (i,j = I, ... ,d; s,t = I, ... ,N). 

On FE' reducible skew-adjoint representations of sp(2d;R I 
and so(2d;R I are generated by 

N 

Aij = L b ~bjs - E(N /2)c5ij I, 
s= I 

N 

Bij = L b~b;:, 
s= 1 

N 

Cjj = - E L bjsbjs · 
s= 1 

(2.3) 

To simplify notations, we write bjs,Aij,Bij' Cij' and Iinstead 
of b~, A ij, B ij, Cij, and I E, as a consequent use of conven­
tion (2.1) would require. 

The structure relations for the two algebras will be writ­
ten in the unified form 

[Aij,Akl] -1 = Ojk Au - Ou Akj , 

[Aij,Bkl] -1 = OjkBu - EOjl B jk , 

[Aij,Ckd_1 =EOil c;k -Ojkc;l' 

[Bij ,Ckl ] _I = - 0jk Au - Oil Ajk 

+ EOlk Ajl + EOjl A ik · 

(2.4) 

We shall use, for both algebras, the matrix notations 

A = (Aij)' B=(Bij)' C=(Cij) 

(i,j = l, ... ,d), (2.5) 

i.e., A, B, and Care d X d matrices, the elements of which are 
the operators (2.3). We shall denote by Mt the transpose of 
M, and by M· the matrix, the elements of which are the 
adjoints of the corresponding elements of M. With these no­
tations, we have 
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Bt= -EB, C t = -EC, At=A*, 

B*=C, C*=B. 

III. THE RESULTS OF DEENEN, QUESNE, AND 
PAPANICOLAOU 

(2.6) 

The representations (2.3) of sp(2d;R ) and so(2d;R ) are 
reducible on FE' The Fock space FE can be decomposed into 
subspaces in which the algebras act in an irreducible way. 
Such an irreducible submodule F~ has been considered in 
Refs. 3, 13, and 14 (and called collective subspace in Ref. 3); 
F~ is spanned by vectors ofthe form 

Bij Bkl ... BpqvE, (3.1) 

the vector VE E FE (called the vacuum state) being defined by 

b;rvE = 0 (i = 1, ... ,d; r = 1, ... ,N). (3.2) 

The irreducible representation on F~, labeled by the positive 
integer N, is an infinite-dimensional representation [a spin­
orial representation with Dynkin indices (O, ... ,O,N)] of 
sp(2d;R )[ofso(2d;R n, which belongs to theholomorphic dis­
crete series representations associated with the Siegel half­
plane.21 

In Refs. 2,3, 13, and 14, a bosonic Fock space fjj E has 
been introduced, on which the following representation of 
the canonical commutation relations acts: 

(3.3) 
[ aij atl] -1 = (~jk~jI - E~i1 ~jk)1, 

whereaij = - Eaj;,at = - Eaft [i.e., wehaved(d - E)/2in­
dependent pairs of bosonic creation and annihilation opera­
tors]; the operators 

Aij = -E Ctl a~aSj + ~ ~ij)' 
N N 

Bij = L Xjsa: = L a~ YSj ' (3.4) 
s= 1 s= 1 

N N 

Cij = L ajsXSj = L YjsaSj 
s= 1 s= 1 

(i,j = 1, ... ,d), 

defined on fiJ E' generate a representation equivalent with 
the action of(2.3) on the collective subspace F~; Xij(Yij) are 
u(d I-vector [u(d I-covariant vector] operators; the subalgebra 
u(d) being generated by Aij(i,j = 1, ... ,d). Their expression 
results from the following Louck-Biedenharn theorem22

: 

Any u(d I-vector or u(d )-covector operator is of the form 
d-I 

Xij = L xk(Tr(a*a), ... ,Tr(a*a)d)(a*a)~, 
k=O 

Yk the corresponding scalars, the following equations hold: 
d-I 

L I ~Xk = ~/; + N - d - 1, (3.6) 
k=O 

on the irreducible u(d)-submodules labeled by the Young 
indices (fl, ... ,fd)' where I; = /; + d - i (i = 1, ... ,d). The 
fundamental equations satisfied by the matrix 
X = (Xij )(i,j = 1, ... ,d) has been obtained in Ref. 3 as acon­
sequence of the explicit description summarized above; in 
matrix notation this equation is 

X 2 = a*a + (N - d - I)/, (3.7) 

IV. THE ALGEBRAIC DETERMINATION OF THE 
HOLSTEIN-PRIMAKOFF REALIZATION 

We shall first characterize the collective subspaces F~ 
by the algebraic relations satisfied, on these spaces, by the 
generators of the representations of the algebras sp(2d;R ) 
and so(2d;R ). 

Theorem 1: In the collective subspace F~, the generators 
of the representation of the algebras sp(2d;R ) and so(2d;R ) 
satisfy the second-degree polynomial identities 

AB-BAt= -E(AB-BAT, (4.1) 

CA-AtC= -E(CA-AtC)', (4.2) 

A 2 + ((A t)2)t -BC - (CBY 

= (l/d )Tr(A 2 + ((A t)2)t - BC - (CB )t)1 

= N((N /2) + Ed - I)/, (4.3) 

Proof: Let us denote 

!!fl = AB - BA t + E(AB _ BA t It, 

1f = CA -A tC+ €lCA -A 'CY, 

Y =A 2 + ((A tf)t -BC- (CB)t 

- (l/d)Tr(A 2 + ((A t)2)t - BC - (CB )t)1. 

(4.4) 

(4.5) 

(4.6) 

We have to prove that !!fl = 0, 1f = 0, and Y = 0 on all 
vectors (3.1). 

Let us observe that the commutators between the gener­
ators B ij and the polynomials !!fl kl, 1f kl, and Y kl are linear 
combinations of the polynomials !!fl kl, 1f kl, and Y kl : 

[!!fl ij ,Bkd -I = 0, 

[1f ij ,Bkl] -I = - E~kjY Ij + E~IjYkj 
+ ~JjY kj - ~kjYJj, 

[Y ij ,Bkd -I = ~jk!!fl iI - E~jl!!fl;k' 

(4.7) 

Hence, in order to prove that !!fl kl = 1f kl = Y kl = 0 on the 
vectors (3.1) it is sufficient to prove that !PkIVE = 1fkIVE 
= YklVE = O. This will be proved by direct computation. 
We have 

or 
d-I 

Yij = L Yk(Tr(a*a)" ... ,Tr((a*aYld) 

(3.5) AijVE = - E(N /2)~ijVE' 

CijVE = 0, 

(4.8) 

(4.9) 
k=O 

x((a*a)')~, 

respectively, where Xk (Yk) are functions having as argu­
ments the u(d I-invariants Tr(a*a)k [Tr((a*a)t)k] [cf. (2.5)]. 

Onanirreducibleu(d)-submoduleoffiJ _1,Xk andYk are 
scalar multiples of the unity operator.lfwe denote by X k and 
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whence 

(4.10) 

(CA -A tC)vE = (d - E)CVE, (4.11) 

(A 2 + {(A t)2)' - BC - (CB )t)VE = ((N 12) + Ed - 1 )1vE. 
(4.12) 
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The operator Tr(A 2 + ((A 'f)' - BC - (CB n is the Casimir 
operator; hence 

Tr(A 2 + ((A ')2)' -BC- (CB)') =dN((N 12) + Ed - 1). 
(4.13) 

It follows that 9J v £ = ~ V £ = :T v£ = 0 and the proof is 
complete. 

Remark 1: For the algebra sp(2d;R ), another proof of 
Theorem 1 can be given, using a concrete realization ob­
tained in Ref. 3 for the Hilbert subspace F~ as a space of 
square integrable holomorphic functions of d (d + 1)/2 col­
lective variables wij' i,j = 1, ... ,d. In this concrete realization, 
the operatorsAij , Bij , and Cij are differential operators: 

A =wD+(N/2)I, B=w, 

C=D(wD+(N d-l)1), (4.14) 

wherew=(wij ),D=(1 +8ij )(alawij )(i,j= 1, ... ,d).Bydi­
rect computation we obtain 

AB - BA ' = (d + 1)B, CA - A 'c = (d + 1 )C, 
(4.15) 

A 2 + ((A ')2)' - BC - (CB)' = N((N 12) - d - 1)1, 

whence the identities (4.1)-(4.3) follow immediately. 
Remark 2: The equations between matrix elements ob­

tained from the matrix equations (4.1 )-( 4.3) provide the 
polynomial identities associated with the subrepresentation 
A2 of (ad ® ad)s of the algebra sp(2d;R) (see Ref. 20) and 
to the subrepresentation (2A I ) of (ad ® ad)s of so (2d;R ). 
(The Ai's denote fundamental weights.) 

Our main result is that Eq. (3.7) and all properties of the 
operators X and Y can be obtained directly by imposing on 
the boson realization that the algebraic identities be satisfied 
by the collective representation. 

Theorem 2: The generators of the boson realizations 
(3.4) satisfy the algebraic identities (4.1 )-(4.3), which charac­
terize collective representations, if and only if 

X 2 = a*a + (N + Ed - 1)1, (4.16) 

and 

y2 = (a*a)' + NI. (4.17) 

Proof; From the relations (3.4), which impose a form on 
the boson realization, and from 

A' = - E(aa* + ((N 12) + Ed - 1)1), 

it follows that 

Aa* - a*A' = (d - E)a*, 

aA - A ta = (d - E)a, 

XA -AX=O, 

YA'-A'Y=O. 

Hence 

AB BAt=(d-E)B, 

CA -AtC=(d-E)C. 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

FromB t = _ EB, C' - EC, (4.23) and (4.24) we get (4.1) 
and (4.2). Finally, from the identities (4.3) and the structure 
relations (2.4) we obtain the equations (4.16) and (4.17). In­
deed, from the commutation relations for Aij it follows that 
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(4.25) 

and from the commutation relations between Bij and Cij it 
follows that 

(CBY =BC+ (d - 2ElA + (Tr A)I. 

From relations (3.4) we obtain 

BC = Xa*aX = - X 2(EA + (N 12)1). 

The identities (4.3) are now equivalent to 

( - EA + ((N 12) + Ed - l)1)(EA + (N 12)1) 

=X2(€A + (N 12)1), 

whence 

X 2 = - EA + ((N 12) + Ed - 1)1 

=a*a+(N+Ed-l)1. 

Similarly 

y2 = _ €A ' + (N 12)1 = (a*a)' + NI, 

and the proof is complete. 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

To obtain the Holstein-Primakoff realizations, we must 
solve Eqs. (4.16) and (4.17). The operators Xij' i,j= 1, ... ,d 
(Yij, i,j = 1, ... ,d) form a u(d )-vector operator [a u(d )-covar­
iant vector operatorp,23; the theorem of Louck and Bieden­
harn2z therefore can be applied in a form due to Okubo15

: 

The vector (covariant vector) operators I, a*a, 
(a*af, ... ,(a*a)d - I [I, (a*a)', ((a*a),f, ... ,((a*a),)d - I] are lin­
early independent and (a*a)d [((a*a)t)d] is the linear combi­
nation of these operators, given by 

(a*a -ll)(a*a -Izl)·n (a*a -ldI) = 0, (4.31) 

[(Ca*a)' - il)((a*a)' - izl) •.• «a*a)' - idI) = 0], 
(4.32) 

where, as previously, Ii = /; + d - i OJ 
= -!d-J+I +d-i), and <!I,ji, ... ,jd) are Young in­

dices for irreducible representations of u(d). In fact, we 
must consider that /1,lz, ... ,ld are functions of the u (d) -invar-
iant operators Tr(a*a), ... ,Tr(a*a)d); in each irreducible 
representation of u (d) these functions are scalar multiples of 
the unity operators, the scalars being equal to 1\>lz, ... ,ld , re­
spectively. 

Assuming for the vector operator X an expression of the 
type (3.5), we have 

2(d - \) 
X 2 = L uk (Tr(a*a),Tr(a*a)2, ... ,Tr(a*a)d)(a*a)k, 

k=O 

(4.33) 
where Uk = :Ik • + k, = kXk, xk,' But, from the Louck-Bieden­
harn theorem 

d-\ 

(a*a)m = L Cm,q (Tr(a*a), ... ,Tr(a*a)d)(a*a)q, 
q=O (4.34) 

where 

Cd,d-' = I, + 12 + ... + id, 

Cd,d_2 = - (1,/2 + 11/3 + ... + Id_,id ), 
(4.35) 

and 
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Cm+I,k =Cm,d-ICd,k +Cm,k_1 (k= 1, ... ,d-1), 

Cm+ 1,0 = Cm,d_ICd,O' 

ifwe use (4.35) inX 2
, we obtain 

d-I 

(4.36) 

X 2 = L gk(Tr(a*a), ... ,Tr(a*a)d)(a*a)k, (4.37) 
k-O 

where 
2(d-l) 

gk = Uk + L UmCm,k' k = O,l, ... ,d - 1. (4.38) 
m=d 

Then, from Eq. (4.16) it follows that gk = 0 for 
k = 2,3, ... ,d - 1,gl = 1, and go =N + d - 1. 

Theorem 3: Equations (4.16) and (4.17) admit the solu­
tions 

d-I 
X = L xdTr(a*a), ... ,Tr(a*a)d)(a*a)k, (4.39) 

k=O 
d-I 

Y = L Yk(Tr(a*ay, ... ,Tr((a*aY)d)((a*a)t)k, (4.40) 
k=O 

where, in each irreducible representation of u(d ), the scalars 
Xk,Yk, k = 1, ... ,d - 1 are the solutions ofthe equations 

Ct: I: Xk r = Ij + N + Ed - 1, 

and 

(
di I1: yk )2 =lj+N, 
k=O 

respectively. 
Proof: We have 
d-I d-I 2(d-l) d-I 
L I:gk = L I: Uk + L Um L I:Cm,k 

k=O k=O m=d k=O 

=Ij +N+Ed-1, 

and we can prove by induction (for m>d) that 
d-I 
L I: Cm,k = Ij (j = 1, ... ,d). 

k=O 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

For m = d, relation (4.44) reduces to an evident algebraic 
identity. Let us assume relation (4.44) valid for m = n. We 
have 
d-I d-I d-I 
L I:Cn+I,k =Cn,d_1 L I:Cd,k + L I:Cn,k_I' 

k=O k=O k=1 

(4.45) 
Taking into account the identity [(4.44); m = d] we obtain 
from (4.45) the relation (4.44) for m = n + 1. Then 

(
d-l )2 

= L I:Xk =Ij +N+Ed-1. 
k=O 

(4.46) 

The proof of relation (4.42) is analogous. 
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APPENDIX: ELEMENTARY TENSORS OF SECOND 
DEGREE 

The elementary tensors form irreducible subspaces un­
der the action of the adjoint representation on the enveloping 
algebra. The spectral analysis of this extended adjoint repre­
sentation has been obtained in an abstract setting by Kos­
tant. 24 Partial concrete results have been obtained in Refs. 
15, 22, 25, and 26. 

A systematic description for elementary tensors of sec­
ond degree has been given in Ref. 19, using a simple method, 
which exploits the equivalence between the adjoint represen­
tation on the enveloping algebra and the adjoint representa­
tion on the space of all polynomials on the dual of the Lie 
algebra. This equivalence allows a commutative calculus of 
the elementary tensors in this last representation. Using a 
projection technique (followed by a symmetrization, in the 
quantum case) the elementary tensors in the enveloping alge­
bra have been obtained. 

For the Lie algebras of type Dn, to which the present 
paper refers, the calculation has been performed in the basis 
Mij, i,j = 1, ... ,N = 2n, with Mij = - ~i' the generators 
M ij satisfying the structure equations 

[Mij,Mkl] = ~i/Mjk + ~jkMii - ~ik~1 - ~j1Mik' 

(AI) 
In the space of second-degree polynomials in the enveloping 
algebra there are four invariant subspaces on which the ad­
joint representation acts by irreducible subrepresentations of 
types (0), (A4 ), (2A I ), and (2A2), where A1, ... ,An denote the 
maximal weights of the fundamental representations. 

The elementary tensors of second degree corresponding 
to all these representations have been deduced in Ref. 19. 
That corresponding to the subrepresentation (2AI) is given 
by the polynomials 

N 1 
Tps = L MPiMis --~psC, (A2) 

i=1 N 

where C = I.fj= ,Mij Mji is the Casimir invariant. 
These expressions can be transformed to a Cartan-Weyl 

basis by means of the formulas 

M 2i,2j _ I = (Ff 12)(Bij + Cij - Aij - Aji ), 

M 2i _ I,2j = (Ff/2)(Bij +Cij +Aij + Aji ), 

M 2i - I,2j-l =!(Bij - Cij -Aij + Ajj)' 

M 21,2j = !(Bij - Cij +Aij -Aji ). 

(A3) 

By performing the transformation (A3), we obtain from the 
polynomials (A2), after symmetrization, the matrix equa­
tions (4.IH4.3) with E = 1, ifthis tensor vanishes in a given 
representation. 

A similar calculation gives the tensor with respect to Cn 

algebras, which corresponds to the subrepresentation (A2) 

and from which the matrix equations (4.IH4.3) with 
E = - 1 follow, when the tensor vanishes in a given repre­
sentation. 
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This paper studies the mathematical properties of Moyal product defined in the space R2n. They 
correspond to the properties of quantum mechanics and permit us to consider classical mechanics 
as a limit of quantum mechanics when Planck's constant vanishes. A table of formulas and two 
algebras give in particular the necessary results for the approximation of the Moyal product and 
for the spectral resolution. 

I. INTRODUCTION 

First let us remind the reader of the motivations of the 
definition of the Moyal product and state the considered 
quantum problem before showing the obtained results and 
the plan of this paper. For a long time, the Schrodinger pic­
ture of quantum mechanics has looked extraneous to classi­
cal mechanics. "The usual probabilistic interpretation of 
quantum mechanics contrasts with the deterministic charac­
ter of classical mechanics. I" On the other hand, the Heisen­
berg picture brings to light a correspondence between the 
operators, the quantum observables, and the measurable 
quantities. This principle of correspondence is not satisfac­
tory.2 In fact, the algebra of operators is not commutative; 
on the contrary, the set N of functions defined on the phase 
space R2n has a structure of commutative algebra defined by 
the usual product. 

Let us consider a dynamic system with constraints inde­
pendent of time and n degrees of freedom. The quantization 
suggested by the authors of the paper I consists of deforming 
the algebra Nby means of a star-product or Moyal product 
*", where v (i1i/2) is the parameter of deformation, such as 
(*",N) is a noncommutative algebra and N is a Lie algebra 
with respect to the Moyal bracket: 

[u,v] = (2V)-I(U*"V-v*"u). 

Thus the observables t .- u (t) are functions of R + into R2n, 
such that 

du ""dt = [u(t),H], u(O) = uo, (1.1 ) 

where H is the Hamiltonian function. This relation is similar 
to the equation of classical dynamics3

; it corresponds to the 
fundamental equation of quantum mechanics in the Heisen­
berg picture by the Weyl map.4 

The aim of this paper is the mathematical analysis of 
Moyal product in the space R2n, in order to prove the hoped 
results: the relation (1) generally admits stationary solutions 
because of the spectral resolution of the real elements (see 
Sec. VI); thus there is really quantization. Classical mechan­
ics appears as a limit of quantum mechanics, when the pa­
rameter v vanishes; for in some cases the Moyal product is an 
analytic function of v at 0 (Sec. II D), or more generally a 
Taylor's formula is verified (Sec. III B). For example, in the 
case of the harmonic oscillator, the limit of the stationary 
solutions I is the classical solution. 

The Moyal product is defined here with the twisted con­
volutionS and studied by a "kernels composition law." This 
method gives a table offormulas for the functions belonging 
to the spaces L 2(R2n) and Y(R2n) (Sec. II C). The inhomo­
geneous symplectic group leaves the Moyal product invar­
iant. 1,6 The extension of the Moyal product to the Fourier 
transforms of distributions with compact support (in parti­
cular the polynomials) gives the well-known formal defini­
tion l (Sec. II D). 

The spaces Y(R2n) and L 2(R2n) are algebras; this prop­
erty is important for the following: the above formulas are 
verified by the pairs of tempered distributions, at least one of 
which belongs to the space t7~ of star-multiplication opera­
tors in Y(R2n). The study of this space proves, under suitable 
assumptions, that the formal definition gives a pth approxi­
mation of the Moyal product (p E N) (Sec. III B). 

Some of these formulas are applicable to the distribu­
tions belonging to the space f!lJ " of the star-multiplication 
operators in L 2(R2n) (Sec. IV). The projections and the reso­
lutions of identity belong to this normed linear space 
equipped with an order relation (Sec. IV C). 

The necessary results are collected to define resolvent, 
spectrum, eigenvalue, and eigenelement and to show in par­
ticular the existence of a greater eigenelement (Sec. V). 
Thus, it is easy to prove the spectral resolution of the real or 
unitary elements of f!lJ " and of the real elements of t7 ~ (Sec. 
VI). 

II. THE STAR-PRODUCT 

Notations: The greek letter v indicates a complex num­
ber (v = - v#O); n an integer. If x is in R2n, a in N2n,let us 
set x = (X I ,x2)' a = (a l ,a2). Besides the ordinary symbols, 7. 
TaJ, and fa, let us set It(x) =/( - x), fIx) =/(x2,x1), 

f(x) = I(X2,xt!, II: u ........ I(xl,u). 

A. The operators :Tv. :T: 

If I is a function of R2n in C, let us set 

..rvl(x) = 12vln/2/(xl + ivx2,x1 - ivx2), 

..r: I(x) = 12vl- n12/((x I + x2)12, (XI - x2)/2iv). 
(2.1) 

If I is a tempered distribution, ..r v I and ..r~ I are defined 
by the relations 
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V; E Y(R2n ), 

(.:Tv /';) = (/,.:T~¢), (Y~J,¢) = (/'Yv ¢)' (2.2) 

The maps.:Tv and Y~ are continuous and inverse each oth­
er of Y(R2n) [resp. Y'(R2n)] into itself. They are unitary 
operators of L 2(R2n) into itself. 7 

The operators Y I, Y 2, Y, and F: Let /E Y'(R2n ). We 
denote by Y 1/ (resp.Y 2/) the image of the tempered dis­
tribution h. (resp.h) by the Fourier transform 
[h,h. E Y'(Rn

)]. Let us write 

Y = Y IY 2, F= YIY!, F* = YrY2. (2.3) 

Many relations exist between these operators; an example is 

Y!.:Tv = Y 2.:T -v' Y~Y! = Y~vY2' (2.4) 

Theimageofthereal,8n = l41rvl-n/2underthemap.:T~Y2 
is the distribution {j!>. : 

V¢ E Y(R2n ), ({j!>.,¢) = i ¢(u,u) duo (2.5) 
R" 

B. The laws of composition 0, *", and *" 
Let / E L 2(R2n). Let us denote by /0 g the kernel of the 

integral operator, product of the operators the kernels of 
which are / and g: 

Vx E H2n, /0 g(x) = r f(xl,u) g(U,X2) duo (2.6) 
JR" 

Let J, gEL I(R2n); / * v g is the twisted convolution of these 
functions: 

Vx E JR2n, flv g(x) = ( f(t) g(x - t) exp(vt 1\ x) dt, 
JR2n 

(2.7) 
t 1\ x = t IX2 - t~ I' The star-product f * v g of two func­
tions J, g that belong to Y(L I(R2n)) is the function5

•
8 

f*v g = (211')"F*(F flvFg). (2.8) 

Let J, g E Y(JR2n ). We have the relations 

f*v g = 111'/vln/2Yr.:Tv(Y~3'do Y~ 3'1 g), 
(2.9) 

C. The algebras Y(R2,,), L2(R2") 

Products 0, *v' and *v give a structure of algebra to the 
spaces Y (JR2n) and L 2 (R2n) (see Refs. 9-11); these alge­
bras are isomorphic to each other [( 2.9) ]. Each of these 
laws is a linear continuous map of Y(R2n) xY(JR2n ) into 
Y(JR2n ) and of L 2(R2n) XL 2(JR2n ) intoL 2(JR2n). The star­
product has the properties 

(a) VJ,gEL 2 (R2n ), 

530 

(f*v g)t =ft*v gt, Ta (f*v g) = (Taf)*v(Ta g), 

f*v g(x)eiax =/(xi - iva2, X2 + ivai) 

X*v(g(x)eiax), aER2n, (2.10) 

f*(/*vg)i/V =ft*v(F'g)i/V = (Ffli/V*vg; 

f*ia2g= (!a*iga)l/a; a>O; 

f*v g =g*vJ, 
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(2.11 ) 

/*v g =l*v g, j*v g=j*v 'g, 

V¢ E Y(JR2n ), (/,g*v¢) = (f*v g,¢), 

(b) V J, g E Y(R2n ), , 
DaU* g)= I a. DPf*vDa-Pg, 

v p<a ,8 !(a - ,8 )! 

a!vlPI 

xa.U*vg)(x) = I ,8'( -,8)! 
p<a . a . 

X( - 1)IP2ID P f(x)*v(xa-Pg(x)); 

(c) V J, g E Y L I(R2n), 

J*v g"= (211') - n(j _ iv *vF*gluv' 

D. First properties 

(2.12 ) 

(2.13 ) 

(2.14) 

(2.15) 

Let Sp(n,JR) be the group of linear maps s to R2n into 
itself such as Vx, y E R2n, sIx) 1\ s( y) = x 1\ y (see Ref. 12). 

, 16 
For all J, gEL 2(R2n), for all s such as's E Sp(n,R), we have' 

Vx E R2n, /*v g(sx) =f(sx)*v g(sx). (2.16) 

Then, the star-product of two functions, which have the 
spherical symmetry, has this spherical symmetry. It is easy 
to extend the twisted convolution to two distributions, at 
least one of which has a compact support.8 In particular, 
3'~"(R2n) is a *v-algebra. We have V J, g E Y~"(R2n) or 
fE qxfn

, g E Y'(R2n ), 

/*vg=/'g+ i ~pq(J,g), in Y'(R2n ); 

q= I q. (2.17) 

pq(J, g) = Ailh ... Aiqiqaii .iq/· ail-.ojq g, 

Ni = 1 if j = i + n, - 1 if i = j + n, 0 in the other 
cases. This relation has been defined for a long time.13 Let 
/E YIf'(R2n ); themap¢ -+ f*v; is continuous of Y(R2n ) 
into itself. For example, 

Vp, l<p<n, xp*v g =xp g + vap+ n g. 

III. ALGEBRA OF STAR-MULTIPLICATION 
OPERATORS 

Let g E Y(R2n); the map ¢ f-+ g *v¢ of Y(R2n) into itself 
is continuous. The image of a tempered distribution f under 
the transpose of this map is the distribution / * v g such that 
the relation (2.13) holds. An example is 

{j*v¢(x) = 1211'vl- n(F ¢)(ix/v). (3.1) 

Likewise it is easy to define fa ¢ and /*v¢; then, V f 
E Y'(R2n ), V g E Y(R2n ), the relations (2.9), (2.10), (2.14), 
and (2.15) hold. 

Proposition: Let S E .. Y"(R2n ); the following properties 
are equivalent: 

(i) S = 0, (ii) V¢ E Y(R2n ), S *v¢ = O. (3.2) 

It is natural to consider the set d M of distributions S 
such as the map ¢ f-+ S * v¢ is continuous of Y (R2n) into 
itself. This set is different from the space d M (R2n) of multi­
plication operators 14. 15; in fact, the sets Y(R2n ), 
Y(If'(R2n »), 1f'(R2n ), and the dual of d M(H2n ) are subsets 
of d M (see Ref. 16); butthe function x f-+ exp(xlx2/V) does 
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not belong to &'~. Likewise it is easy to define.JV1' (resp. 
&' ;;') as the set of distributions S such that the map 
t/J - So t/J (resp.S.vt/J) is continuous of Y(R2n) into itself.8 
These spaces are isomorphic to each other (2.9). In particu­
lar, the linear one-to-one map J, of.JV1' onto &'~ is defined 
by 

Tt-+!3n- 1Y1YvT, !3"ER (Sec.IIA). (3.3) 

Let fE Y'(R2n ), gE &'~; only one distribution f*v g 
is defined by the relation (2.13). The relations (2.9), (2.10), 
( 2.14), (2.15) hold in the same conditions. The linear space 
&'~ is a *v-algebra; the space y' (R2

,,) is a right-module on 
&'~. This algebra is nondegenerated3

: 

if SE&'~, S=O¢}S*vS=O. (3.4) 

Finally, let f be in tJ M vand gin tJ~; the relation (2.11) 
holds. Thus, let f be in tJ M vand g be a tempered distribu­
tion. Let us define f*v g by this relation (2.11). Therefore, 
the space Y'(R2

,,) is a left-mod~e 2.n &' M v. The relations 
(2.12) prove that the maps f t-+ f, f are isomorphisms of 
&'~ onto &' M v; these relations hold when f belongs to tJ M v 
and g to Y'(R2

"). 

A. The linear space &'" 

Let us consider the family of seminorms on the space 

tJ~: 

(3.5) 

where a E JR2n, B is a bounded set of Y(R2"), and TE &'~. 
Proposition: The set tJ~ is a complete Hausdorff topo­

logical vector space. It is isomorphic to the space Lb (Y(R")) 
(see Ref. 14 for notation). 17 

Prool The space tJ~ is isomorphic to the space.JV1', 
which is a complete Hausdorff TVS by a family of suitable 
seminorms. The restriction to .JV1' of the map T t-+ U T of 
Y'(JR2n) into L (Y(JRn), Y'(JRn)), defined by 

Vt/J, t/! E Y(JRn), (UT(t/J),t/!) = (T,t/! ® t/J), (3.6) 

is an isomorphism of.JV1' onto Lb(Y(R")). The map (f, g) 
t-+ f *v g of Y'(R2

,,) X tJ~ (resp. tJ~ X tJ~) into Y'(R2n) 
(resp. tJ~) is separately continuous. The maps 

Tt-+ T, Tt, TaT, eiaxT, DaT, xaT, (FT);lv, 

are continuous of tJ~ into itself. It is easy to obtain a charac­
teristic property of the distributions that belong to this 
space; for example, 1 ® f, ~ ® S, and their symmetrical 
when f E tJ M(JR2n), S E tJ ;;'(R2

"). 

Let us denote by ffthe space Y(Rn) ® Y'(Rn); it is a 
subset of.AfO and its topology is the topology induced by .JV1' 
as a subset of .JV1'. The map (t/J,s) t-+t/J 0 S of Y(R2n) 
X Y' (R2n) into ff is separately continuous; because ofthe 
map J (resp. P*J) (3.3), the application (t/J,s) t-+t/J*vS 
(resp. t/J*vS) of Y(R2n ) XY'(R2

,,) into Y1Yvff (resp. 
YTYvff) is separately continuous. Finally, let t/Jp' 
p = 1,2, ... , be a regularizing sequencel4

; this sequence con­
verges to ~ in &';;'. Consequently the space &'~ is 
Y1Yv(Y(JR") ® Y'(Rn»). 

531 J. Math. Phys., Vol. 27, No.2, February 1986 

B. Taylor's formula 

Since there is no associative local noncommutative alge­
bra,18 it is not surprising that the support of f*v g is differ­
ent from the support of f· g. For example, if f, g have com­
pact supports, the support of f*v g is R2n. In this case, the 
map v t-+ f * v g is not an analytic function of the variable v. 
Generally there is a Taylor formula. 17 

Proposition: Let f be a tempered distribution such that 
(i) 3vo, Vv E] O,vo], fE tJ~; and (ii) Va E N2

", VB bound­
ed set of Y(JR2n), 

3C, Sup Pa,B(f)<C. 
VE )o,vo) 

We have 

fE &' M(R2
,,), VS E Y'(R2n ), Vp E N, 3h~ (f OS), 

(3.7) 
p-I v'1 v p 

f*vS=f'S + L -P q(f,S) + -h~(f OS), 
q=1 q! p! 

If f and S are fixed, the remainder h ~ (f OS) lies in a bound­
ed set of Y'(R2n ), when v belongs to ]0, Yo]. 

For an example, let f be a tempered distribution: 

f(x)*v exp(iax) = exp(iax) . f(x 1 + iva2 ,x2 - ivad, 

a ER2", 

Prool Let t/J and t/! be some functions belonging to 
Y(R2n), X an element of JR2n; the map of lR into C, 

v t-+ r t/J(t )tP(x - t) exp(vt " x) dt, JR211 

is infinitely differentiable. Let P be a natural number, the 
Taylor formula gives the pth approximation of this function 
in a neighborhood of O. Then the twisted convolution of t/J 
and t/! is the sum of a polynomial in the variable v whose 
degree is p - 1 and of a remainder that lies in a bounded set 
of Y(JR2,,) when v belongs to ]0, yo] and t/J and t/! are in bound­
ed sets of Y(JR2n). Obviously an analogous result holds for 
the Moyal product of the functions t/J and t/!. Then it is easy to 
prove the above proposition by means of the duality between 
Y(JR2n) and Y'(JR2n). 

IV. THE SPACES ~v AND rrv 
Definition: Let us denote by f1j v the set of the distribu­

tions f such that the map t/J t-+ f * vt/J is continuous of Y(R2") 
equipped with the topology induced by L 2(R2n), into 
L 2(R2n). The natural norm is 

Ilfll~ = Sup{llf*v t/Jilit/J E Y(JR2n ), Iit/Jil = 1}. (4.1) 

It is quite obvious, because of the relations (2.10) and 
(2.12), that the maps 

t . .. .. - - .. 
ft-+f , e'OX 'f,Taf, F(J;v)' f (resp·f, f), 

are isometries of f1j v into itself (resp. f1j -). 

A. Characterization of ~v 

It is well known 14 that the completion of the space 
L 2(R") ® L 2(Rn), equipped with the norm 11·11".,11·11, II·IIE' is, 
respectively, the space n, L 2(R2n), or E; the space BE is the 
subset of distributions that is isomorphic, by the relation 
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(3.6), to the set of the bilinear continuous mappings on 
L 2(Rn). Let us remember that the space n is isomorphic to 
the dual of E and BE to the dual ofn. The usual bracket (.,.) 
will indicate, by extension, this duality. 

It is easy to show that the linear space L 2(Rn) ® L 2(a") 
is a o-algebra; because of the continuity of this map 0, the 
spaces nand E are o-algebras, respectively, isomorphic to 
space of nuclear and of compact operators. According to a 
classical result,19 

n = L 2(JR2n) 0 L 2(JR2n). (4.2) 
This product 0 is a continuous map of n XE into n, of 

E XL 2(R2n) into L 2(JR2n); we have 

V/,geE, Vhen, (/og,h)=(/,goh). (4.3) 

Let / e BE' gen. Since BE is isomorphic to the dual of 
n, /0 g is the distribution defined by the relation (4.3); it 
follows that the Banach space BE is also a C * -algebra, 20 iso­
morphic to the space L (L 2(JR")) by the relation (3.6). 

Proposition: (&1 V, * v) is a C * -algebra. 21 
Proof" The following properties are equivalent: 

:7!:Tv /e &1 v¢:> /e BE ¢:> 4> f---+ /04> e L (L 2(Rn)). 

Consequently the sets &1 v and &1 - v are equal; the sets 
L 2(JR2n ), Y L 1(JR2n ), {I} ® L 00 (Rn), {8} ® L l(Rn), 
and ~'0(JR2n) are subsets of &1 v. 

B. The topology of q; v 

Let us denote by n v, E v the image spaces of nand E by 

themapJ, by 11.11;, 11'111', II'II~ the image norms of the norms of 
the spaces n, L 2 (JR2,,), E. Since n v is the image of n, we 
have a more precise property than the relation (4.2) (see 
Ref. 19): 

~ n v ~ L 2(R2n) 

Jf t t 

n L 2(JR2n ) 

set of t t 
operators {nuclear} {Hilbert- } 

Schmidt 

c. An order relation In q; v 

Let us denote by fJ1 v the subset of n v 

fJ1v = {h Ih e nv
, 3k e L Z(R2n): h = k *)"d. 

Let us not define an order relation on &1 V, compatible with 
the linear structure. Let f, g e q; v, 

/< g¢:>VhefJ1 v, (f,h)v<.(g,h)v. (4.8) 

The elements of &1 V, 1, /*1'7 (/e &1 V), J( p ® p) 
[p e L 2(R")]' are "positive." The well-known properties 
of the self-adjoint operators hold again; in particular, these 
are the theorems on the bounded increasing sequences and 
the following result. 

Proposition: Let / be a real element of &1 v; there are two 
reals m and M such that 
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Vh e n v, 3kl, k2 e L 2(JRZn ), 

h = kl*vk2 and IIklll v = IIk211 v = (lih II;) 112. 
(4.4 ) 

The map (f, g) f---+ / * v g is continuous of nv X &1 v into 
n v and of &1 vXL 2(a2,,) into L 2(JR2n). The space &1 v is 

isomorphic to the dual of nv; let us denote by (.,.) v the 
bracket of this duality. It corresponds to element volume 
;, = (21rli) - n. 1/ (see Refs. 3 and 10): 

v / e &1 v, V h e nv
, 

(/,h)V =f3~ (:T~ :72f,:T~:7! h), (4.5) 

(/,4»1' = f3~ (/,4», (kJ'2) = f3~ (k1Ik2), 
(4.6) 

II/II~ = Sup( I</,h )Vl/lih II;) = f3" II :T~:72/11E' 

Because of the relation (4.4), the elements belonging to 
nv are continuous, bounded functions. This relation allows 
us to prove the following results. 

Proposition: Let G be a linear bounded map of L 2(JR2n) 
into itself; then the following two properties are equivalent: 

(4.7) 
(ii) Vkl,k2eL2(JR2n), G(kl*Vk 2) = G(ktl*vk2' 

The Weyl map 7, 8, 2~. Let us call n the compose of the 
mapJ -I of &1 v onto BE (3.3) and of the canonical map of BE 
onto L (L 2(JR"») (3.6); this map is an isometry. Let 1;" 
p = 1,2, ... , be a sequence in &1 v; the convergence ofthe se­
quence of the operators _n(/e) to n(/) is strong (resp. 
weak) iff the sequence (1;, - /) * v (1;, - /) (resp. 1;, - /) 
converges weakly on O. We present a summary statement: 

~ EV ---+ &11' ~ j"'(R2n ) 

t t 

E BE 

t t 
{compact} {bounded} 

m < / <M, II/II~ = Sup(lm/,M). (4.9) 

The reals m and M are the lower and upper bounds of the set 
of the reals < / ,h ) V, in which the element h belongs to the 
unit sphere of nv. 

An example-the projections: A projection is a real ele­
ment 1T of &1 v such as 1T* v 1T is equal to 1T. The four classical 
properties are always true; in particular the result on the 
inequalities between projections. A total sequence of projec­
tions is a sequence of projections such that 

Vp,qeN, p ¥- q, 
00 

1Tp*v1Tq = 0, L 1Tp = 1, in &1 v weakly. 
p=1 

We have 
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co 

VIE !f1J V, 1= L I. v 1Tp, in !f1J v weakly, 
p=l 

Vk e L 2(a2"), (Ilk IIV)2 = f (Ilk .v1Tp II vt 
p=l 

Resolution 01 the identity: A family of projections 
[t ...... e(t) is a map ofR into !f1J V] is called a resolution ofthe 
identity iff 

Vt, t' e R, t<t', e(t ).ve(t') = e(t); 

Vt E R, e(t + 0) = e(t), in!f1J V weakly; 

lim e(t) = 0, lim e(t) = 1, in!f1J v weakly. 
1_-00 1_00 

Here, 1T(a) = e(a) - e(a - 0) is a projection; for any 
hE IIv, t ...... (e(t),h)V is a function of bounded variation. 
Let us call the spectrum of the resolution of the identity 
t ...... e(t) the subset u(e) of the reals at which the family of 
projections is strictly increasing. Let us denote by e(a,b], 
e(b) - e(a), a <b. 

V. RESOLVENT AND SPECTRUM 

A. A preliminary result 

Let us denote by ~ v the set ~ ~ n ~ M ". 
Definition: Letl e ~ M v and let us denote by 0, and D, 

the operator and its domain, defined by the relations 

D, = Ik Ik eL 2(R2") and I.vk eL 2(R2n)J, 
(5.1) 

O,(k) =I*"k. 

The subset D, of L 2(R2n) is a right ideal; a similar property 
exists in the algebra !f1J v. The operator 0, is closed. 

Proposition: Let I e ~ ". There is only one element b in 
!f1J v such that 

(5.2) 

Proof: The domain D, is dense in L 2(a2
,,). It is well 

known that the operator 1+ 0 JOt admits a continuous in­
verse B, whose domain is L 2 (a2

,,) (see Ref. 23). The opera­
tor 07 is an extension of the operator 0 j; the operator B has 
the property ( 4. 7) (i). Therefore there is a b in !f1J "such that 
the relation (5.2) holds. 

Corollary: Let leO ". The adjoint operator 0 j is 07. 

B. Elgenvaluej Elgenelement 

Let Ie !f1J " u & v; the complex number a is an eigenval­
ue of I iff there is an element g ( =/= 0), belonging to !f1J V, such 
that 

I*v g = g*vl = ago (5.3) 
The corresponding element g is an eigenelement; obviously, 
it is not the only eigenelement. 

Proposition: Let us consider a normal element I 
E!f1J "u ~ "(/*,,1=1*,,/) and suppose thatthe complex a 
is an eigenvalue; then there is a greater projection 1T which is 
an eigenelement belonging to this eigenvalue a. For all eigen­
elements g (belonging to a), 

(5.4) 
Proof: If the complex a is an eigenvalue of the operator 

0, the projection operator on the corresponding eigenspace 
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is defined by a projection p (Sec. IV B); it is the same for the 
operator k ---. k *" f Let q be the associated projection; it 
remains to show the identity between p and q. For example, 
the duality between E" and IIv allows us to show that if I is a 
real element belonging to E V, one of the reals m and M 
[(4.9)], which has the largest absolute value, is an eigenvalue 
of I. 

Resolvent and spectrum: Let IE !f1J v U ~ v. A complex 
number z belongs to the resolvent set p(f) iff there is an 
element r(z) in !f1J v such that 

r(z)*v(z - I) = (z - I)*vr(z) = 1. (5.5) 

The spectrum U(/) of I is the complement of the resolvent 
set. Among the classical properties, we have, if I is a real 
element, 

p(f):::J C'\R, VzeC'\R, IIr(z)II~<llmzl-l. (5.6) 

VI. SPECTRAL RESOLUTION OF REAL OR UNITARY 
ELEMENTS 

First, let us define the set C C)(e). Let t ...... e(t) be a resolu­
tion of identity; COle) is the set of the continuous functions 
from some neighborhood n of u(e) into C. 

A. Elements of &J v defined by a resolution of Identity 

Proposition: Let t ...... e (t) be a resolution of identity and 
a e CO (e) be a bounded function on u( e). There is only one 
element I in !f1J v such that 

Vhenv
, (/,h)v= La(t)d(e(t),h)v. (6.1) 

We have the following properties: 

Ilfll~ = Sup la(t )1, Vt, I*ve(t) = e(t )*,J; 
tE~e' 

(6.2) 

VkeL 2(a2,,), (1I/*vk IIV)2 = L la(t) 12 d (e(t),k *), )v; 

(6.3) 

let g e !f1J v such that Vt, e(t)*vg = g.ve(t), 

then I*vg=g*vl; 

and 

if 1T(a) =/=0, then a is an eigenvalue. 

(6.4) 

(6.5) 

This comes about mainly because of the duality between 
!f1J v and IIv. If the element I (resp. g) is defined by the func­
tion a (resp. P), I * v gis defined by the function a . P; there­
fore I is normal. In particular, ifthe modulus of a(t) is the 
unity, I is unitary. If the function a is real (resp. positive), I 
is real (resp. "positive," see Sec. IV C). If a is the map t ...... t, 
the reals m and M [(4.9)] are the lower and upper bounds of 
u(e). 

B. Elements of ~ " defined by a resolution of Identity 

Fundamental result: Let t ...... e(t ) be a resolution of iden­
tity: a e COle), k e L 2(R2"). The two following properties are 
equivalent: 

(i) L la(t W d (e(t ),k *vk )" < 00; 
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and (ii) there is a real C such that for all k I E L 2(R2n), the 
integral 

f: co a(t) d (e(t)*vk,k ')V 

is convergent and has a smaller modulus than C Ilk I" v • Let us 
denote by D. (a) the set offunctions for which the assertion 
(i) is true. This set D. (a) is a linear dense subset of 
L 2(R2n). 

Proposition: Let t t-+ e(t) be a resolution of identity; 
a E CO(e). Let us suppose that an element I, belonging to 
& V, is such that Vk EDe (a), Vk I E Y(R2n ), 

(/*vk,k ')V = f: co a(t) d (e(t),k *vk ')V. (6.6) 

We have the following properties. 

VkEDe(a), l*vkEL2(R2n). Therefore, for all k' 
E L 2 (R2n ), the property (6.6) is true. The relation (6.3) is 
applicable to the elements belonging to De (a) . 

Y(R2n ) C De (a). Only one element belonging to & v, 
satisfies the relation (6.6). 

Va, bE R, I *ve(a,b] = e(a,b ]*v I E [?if v, 

Df = De (a). 

For all g E [?if v, such that 1* v g and g* v I belong to 
[?if v and such that 

Vt, e(t)*v g = eft )*v g, then/*v g = g~vl. 
Let f' be an element of [?if v, defined by the relation (6.1) 

with the function a'. We have I*vf' =f'*vf For each 
element k belonging to De (a), l*v{f'*Vk) is defined by the 
relation (6.6) with the function a . a'. 

C. Spectral resolution of the real or unitary elements of 
~"'u&." 

Proposition: Let I a real (resp. unitary) element of [?if v; 
there is only one resolution of identity such that the relation 
(6.1) is true for the function a: t t-+ t [resp. t t-+ exp(it )].21 

Proof: The method used by Riescz and Nagy23 for the 
spectral resolution of the self-adjoint operators applies here. 
This method is based on the order relation that we have in 
the space [?if v. 

Corollary: Let I a real (resp. unitary) element of [?if v; 
then we have the following. 

The converse properties of (6.4) and (6.5) are true; or to 
be more precise, if a [resp. exp(ia)] is an eigenvalue, 1T{a) is the 
greatest eigenelement. 

Ifl is unitary, u(e) C [0,217-]' 
Proposition: Let f be a real element of tJ v. There is only 

one resolution of identity t t-+ e(t) such that the relation (6.6) 
is true; the function a is t t-+ t. 

Proof: Let us use the Cayley transform. 24 The element 
1 + 2i r( - i) is unitary and does not admit the eigenValue 1; 
therefore, its spectral resolution 8 t-+ €(8) is continuous at 
21T. The spectral resolution of I is the map 

t t-+ e(t) = E(8), t = - cot(8/2). 

Then, it is easy to prove the relation (6.6). 
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Corollary: Let I be a real element of & v. The converse 
property of (6.4) is true. The real a is an eigenvalue iff 
1T(a) #0; 1T(a) is the greatest projection eigenelement of I. 

Spectrum: Let I be a real element belonging to 
[?if v u & v; then the sets u( e) and u( I) are equal. 

Proof: If the real a E p (e), the function t t-+ 1/ (a - t) 

belongs to the set CO(e) and is bounded on u(e); therefore 
r(a) exists. Then u(/) C u(e). Conversely, if a E u(e), 
there is a sequence of projections Pj,j = 1,2, ... , such that 

V jE N, Ilpjll; = 1, lim (1- a)*vPj = 0, in [?if v. 
J~ co 

Therefore, this real a belongs to u( I). 
These results on the eigenvalues and the eigenprojec­

tions have earlier been foreseen using the star-exponen­
tials; 1,3 the calculations have been made in the case of the 
harmonic oscillator and i~ the case of any element belonging 
to the inhomogeneous symplectic Lie algebra.2s 

VII. CONCLUSIONS 

Therefore it is possible to characterize the star-algebras 
of functions or distributions and real elements admitting a 
spectral resolution. The two algebras & ~ and [?if v have dif­
ferent properties towards, respectively, the spaces Y(R2n) 
and L 2(R2n). One of these spaces is nuclear, the other is not. 
The duality between [?if v and IIV has a physical meaning: the 
states are, up to a factor, projections belonging to IIV (see 
Refs. 3 and 10). The observables are in [?if Vor more generally 
in & ~. It is easy to prove the uncertainty relation of He is en­
berg. 
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Propagation coefficients for fixed-isospin (7; Tz ) average and related 
spectroscopic sum rules 
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The reduction relation for the fixed-isospin (T,Tz) average of a general operator in the model 
space of many fermions is described in two forms with and without recourse to factorization of 
isospin z components. Algebraic treatment is developed to deduce various types of expressions for 
each propagation coefficient that plays the role of the Green's function in each form of the 
reduction relation. Propagation coefficients are described also in relation to sum rules as to fixed­
isospin spectroscopic factors. These results lead to novel identities among n-j symbols and 
factorials. 

I. INTRODUCTION 

A many-fermion system is often described by the model 
space generated from several interacting particles being dis­
tributed over a definite number of single-particle orbits or 
lattice sites. 1-9 Typical cases are seen in the study of atomic 
and nuclear structures 1-8 and statistical mechanical treat­
ment of various phenomena.9 A striking feature of the model 
space is the existence of the reduction relation for the opera­
tor average,l-8 implying that a type of operator average in a 
many-body space could be expressed in terms of the same 
average in a few-body space. It, called propagation of opera­
tor average, underlies the statistical treatment of nuclear 
spectroscopy. 1-8 

The present work is devoted to the operator average in 
the model space with the total isospin T and its z component 
Tz being fixed, i.e., free from the average. The system of 
isospin-! fermions is treated. The discussion can be extended 
to the average with intrinsic spin being fixed, if the terms 
(T,Tz) are only replaced by (S,sz)' respectively. The orbit 
or the site in the model space need not be specified explicitly. 
We can keep in mind the Fermi-gas model, or the spherical 
or deformed shell model with the Pauli principle being rigor­
ously taken into account. 

The fixed-isospin average of a general k-body operator 
O(k) in the nobody space is defined by 

(O(k) )nITz= ~I' (nTTz pIO(k) InTTz p) , (1) 
d(nTTz) 

where the index p stands for a set of quantum numbers that 
specify, together with Tand Tz , the complete orthonorma­
lized states of the nobody space. The dimensionality of the n­
body states with a given T and Tz is denoted as d (n TTz ), a 
number independent of Tz • The propagation of the average 
(1) is expressed as l.7,8 

(O(k) )nITz = 2:. Z(nTTz,kttz ) (O(k) )kttz , (2) 
ttz 

where Z stands for the proportional coefficient, called the 
propagation coefficient. 1-7 The k-body state is specified by 
I kttzfJ) as the nobody state is by In TTz p). Some other types 
of averages, such as the fixed-seniority average,I,3,4 lead to 
the same type of reduction relations, The propagation coeffi­
cient Z fulfills an analog of the Chapman-Kolmogorov 

equation and plays the role akin to the Green's function. s It 
is possible to express Z as 

Z(nTTz,kttz ) = 2:.S'(nTTz,kttz +k't't;), (3) 
t' 

with k '= n - k, t; = tz - Tz ' and 

S'(nTTz,kttz + kit 't;) 

= (:) (tt ' tzt ; I TTz)2 ~, (ktfJ) + kit 1fJ)llnTp)2 (4) 

:;:(ttltzt;ITTz)2S(nT,kt+klt') , (5) 

where the symbol ( + I ) stands for the coefficient of frac­
tional parentage (cfp). 10 The quantity S I or S, in which the z 
components of isospins are reduced, represents the sum of 
spectroscopic factors with all the isospins being fixed. 

Previous works2,4.6 concerned, in place of (2), the alter­
native form 

~I' (nTpliO (r)(k)lInTp) 

d(nTT) 

= 2:. R(nT,kt,r) ~'" (ktfJ)IIO (r)(k)lIktfJ) , (6) 

t d(ktt) 

where the double-barred matrix element is reduced with re­
spect to isospins, and 0 (r)(k) is the k-body irreducible iso­
tensor of rank r. The coefficient R relies on r, while Z in (2) 
relies on Tz and tz • The relations (2) and (6) are associated 
with each other by virtue of the Wigner-Eckart theorem. 10 

French2 deduced the explicit form of R. Another for­
malism4 led to the same result. However, the result cited 
later [see Eq. (57)], is much involved and hardly manifests 
inherent properties. 

The purpose of the present work is to deduce various 
types of expressions separately for Z and R that characterize 
(2) and (6), respectively. Each of the new expressions mani­
fests itself in a transparent form and has the practical advan­
tage of ease of manipulation. The quantity S, defined by (5), 
is shown to be expressed in terms of dimensionality of repre­
sentations described by the same Young tableau,11 which 
gives a sum rule as to fixed-isospin spectroscopic factors. 
Another spectroscopic sum rule is given to the sum of Z 'so 
Apparently different expressions for the same quantity 
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Z (R), as well as the sum rules, lead to types of novel identi­
ties among n-j symbols and factorials. 

The search for the possibly simplest form of Z is intend­
ed for the use of (2) to the average of a product of several 
operators. Using (2) in place of (6), we can escape from 
complexity to decompose the operator product as a sum of 
irreducible isotensors. 

We interpretZ andS (or S') as spectroscopic factors for 
the nuclear fragmentation in the high energy nuclear reac­
tion. Simple expressions of Z and S will promote analyses of 
mass and charge distributions of the target or projectile resi­
dues. 

A survey on quantities S, Z, and R is given in Sec. II as a 
preparation for later discussions. In particular, these quanti­
ties are shown to be equivalent to each other. Sections III, 
IV, and V are devoted to getting new expressions for S, Z, 
and R, respectively. In Sec. III, a recurrence relation for S is 
presented. Solving it, we get the compact expression of S so 
that Z and R can be expressed in terms of a Clebsch-Gordan 
(CG) coefficient squared and a Racah coefficient, respective­
ly. In Sec. IV, we deduce a remarkably simple form of Z in 
the case of ITz 1= T or Itz 1= t, the most familiar case in 
nuclear physics. In Sec. V, this result is translated into an 
expression of R that involves a single CG coefficient. Subse­
quently, another form of R is deduced, which is particularly 
suitable in the case where the isotensor rank ofthe operator 
is small. The result is elucidated in terms of information 
propagation that obeys the difference equation for R. Section 
VI concerns the prescription to deal with the average of a 
product of several operators. In Sec. VII, the quantities Z 
and S are described as spectroscopic factors for the target (or 
projectile) fragmentation. 

New expressions for Z are given in (36) and (50). Those 
for R are in (37), (55), and (59), each of which is to be algebrai­
cally identical to the previous result (57). Spectroscopic sum 
rules are presented in (34) and (69). 

II. A SURVEY ON PROPAGATION COEFFICIENTS 

A general k-body operator 0 (k ) is written in the form 

O(k) = L(kyIO(kllky')A +(ky)A (ky') , (7) 
rr' 

where y = (ttzliJ), i.e., all the quantum numbers specifying 
the k-body state. The symbol A +(ky) indicates the state op­
eratorI2

•
13 that creates the state Iky) in case it acts on vacu­

um. The conjugate of A +(ky) is denoted as A (ky). It is pos­
tulated that A (k = 0) = 1. For the tensor analysis in the 
isospin space, it is convenient to define the operator A by 

A (kttzliJ) = (- 1)1-IZ A (kt( - tz}w). (8) 

The expression (2) in the case of 0 (k ) = A + A reduces to 

2: (nA.Jl I A + (kvliJ)A (kv'liJ'llnAjl) 
Jl-

= 8(v, v'jI5(liJ,liJ')Z (nA,kv) d (nA) , 
d(kv) 

(9) 

whereA = (TTz ) and v = (ttz ). An inherent feature of(9) is liJ 

independence of Z. The dimensionality d (kttz ) is given byl 
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d(nITz ) = (2T + l)(N 12 + 1)-1 

( N /2 + 1 ) (N /2 + 1) 
X n12+ T+ 1 n/2- T a(t-ltzlJ, 

(10) 

where N indicates the number of the single-particle states 
and 

ala) = 1, if a>O, and 0 otherwise. (11) 

In the fermion system, there exists a particle-hole sym­
metry ofthe matrix element I 

(nAjll A + (kvliJ) A (k 'v'liJ')ln'A 'jl') 

= (N - n'A 'jl'l A (k 'V'liJ') A + (kvliJ) IN - n Ajl) . 

(12) 

By virtue of (9) and (12) we get 

Z (nA,kv) = Z (N - kv,N _ nA) d (kv) . (13) 
dInA) 

The expression (9) is rewritten by virtue of (12) as 

{nAjl I~A + (kvliJ)A (kVliJ) I nA 'jl') 

= 8(.1, A ')8( jl, jl')Z (nA,kv) . (14) 

The matrix element of the state operator is proportional 
to cfp as12•13 

(nAjll A + (kvliJ)In'A 'jl') =..JfJ (kvliJ + n'A 'jl'lnAjl) , 

(15) 

where k + n' = n. The relation (12) with k' = 0 reduces to a 
particle-hole symmetry of cfp: 

..JfJ (kvliJ + n'A 'jl'lnAjl) 

= ~ (N ~ n') (kvliJ + (N - n) Ajll(N - n') A 'jl') . 

(16) 

Expressing the left-hand side (lhs) (14) in terms of cfp 
yields 

(;) ];" (kvliJ + k 'V'liJ'lnAjl) (kvliJ + k 'V'liJ'lnA 'jl') 

= 8(.1, A ')8( jl, jl')Z (nA,kv) , (17) 

which leads to (3) followed by (4). The factorization of cfpl4 
gives 
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(~) L (kvCt) + k 'V'Ct)'lnAjt) (kvCt) + k'v'Ct)'lnAjt') 
OJW' 

= 15( jt, jt') X a term independent of jt 

= 15( jt, jt')S '(nA,kv + k 'v') , (18) 

where (4) is used in the last step. We see that the quantity S' 
and, therefore, S are independent of jt. Substituting 
o (r)(k ) = [ A + A ](r) into (6) yields 

The inverse is given by 

R(nT,kt,r) = 
(2T + 1) 1:tz(trtzOlttz)Z(nTT,kttz) 

(2t+l) (TrTOITT) 

Combining (21) with (20) yields 

Z(nTTz,kttz ) 

= L (2r+ l)(trtzOlttz)(TrTzOITTz ) 
r 

(21 ) 

1: . (trt ;Oltt; )Z(nTT,ktt;) 
X t

z (22) 
(2t + I)(TrTOITT) 

It indicates that the set {Z(nTTz,kttz ); Tz = T} is sufficient 
to determine all the set of Z 'so Expanding the lhs of ( 19) in 
terms of cfp's, we get 

R(nT,kt,r) = (2T+ 1) L W(Trt't;Tt)S(nT,kt+k't') , 
t' 

which is inverted as 

S(nT,kt+ k't') = (2t' + 1) 

(23) 

1:r (2r + 1) W( Trt 't;Tt)R (nT,kt,r) 
X . 

(2T + 1) 

(24) 

We see from (20)-(24) that the quantities S, R, and Z with 
Tz = T are transformed into each other. 

The propagation coefficient Z fulfills8 

(
n -k) f; Z (nA,n'A ')Z (n'A ' ,kv) = n' _ k Z (nA,kv) , (25) 

a relation akin to the Chapman-Kolmogorov equation. The 
arguments n and A. play the roles of time and space, respec­
tively. The relation (25) with n' = n - 1 reads 

~ Z (nA,n - I A ')Z (n - 1 A ' ,kv) = (n - k )Z (nA,kv) . 

The quantity Z (nA.,n - 1 A. ') here is written as 

Z(nA,n - 1 A.') 

(26) 

= (T'lI2T;t ;ITTz)2S(nT,(n - I)T' + 1), (27) 

538 J. Math. Phys., Vol. 27, No.2, February 1986 

L (nTjtll [ A + (ktCt)) A (kt 'Ct)')] (r)lIn Tjt) 
I' 

= l5(t,t ')I5(Ct),Ct)')( - 1)2t~2r + 1 R (nT,kt, r) d (nTT) . 
d(ktt) 

(19) 

Applying the Wigner-Eckart theorem to the lhs of (9) to link 
(9) with (19), we get 

with 

S(nT,(n - I)T' + 1) 

= 2T' + 1 X {n/2 + T+ 1, 
2T+ 1 n/2 - T, 

for T' = T-!, 

for T' = T+!, 

(20) 

(28) 

where in (27) we have used (3) and (5), and in (28) the fixed­
isospin sum rule on one-particle cfp's.4 Substituting the ex­
plicit form of Z (nA,n - 1 A ') into (26), we get the recurrence 
relation,8 i.e., the difference equation for Z to be solved un­
der the condition 

Z (kv,kv') = l5(v,v'), (29) 

a property of Z seen from (9). The difference equation for Z is 
translated into that for R as 

(n - k) (2T + 1) R (nT,kt,r) 

= (n/2 + T + 1 W(2T - r)(2T + r + 1) 

XR (n - 1 T - !,kt,r) 

+ (n/2 - T)~(2T - r + 1)(2T + r + 2) 

XR (n - 1 T + !,kt,r). 

III. THE SUM OF FIXED-ISOSPIN SPECTROSCOPIC 
FACTORS 

(30) 

Here we express S, defined by (5), in a compact form that 
leads to a new expression for each of Z and R. 

Let us show the recurrence relation for S 

S(nT,kt+ (n - kIt') 

=S((n - k)t',(n - k - l)t" + 1)-I~(2t' + 1) 

X(2T' + 1) W(tTt"lI2;t'T')2 

xS (nT,(n - I)T' + 1) 

XS((n-l)T',kt+(n-k-l)t"). (31) 

Proof: We start from the identity 

(ilCy A (kttzCt))U) = ( - W (;1 A (kttzCt)) Cy Ij) , (32) 

where (il = «(n - k - l)t"t ;Ct)" 1 and U} = InTTzjt}. Ex­
pressing both sides of (32) in terms of cfp's, we factorize iso­
spin z components in cfp's. Then, we get 
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4. (ktw + (n - k)t 'w'lnTp.)( (n - k - l)t H w" + 1wol (n - k)t 'w') 
AI 

= I( _l)t-t"+T' ~(2t' + 1)(2T' + 1) W(tTt"!;t'T') 
T' 

X I (ktw + (n - k - l)t "w'l (n - 1 )T'p.')( (n - 1 )T'p.' + 1wolnTp.) . (33) 
p: 

Let us square the expression on each side and subsequently 
impose the sum over w, w", and Wo on each side. After carry­
ing out the sum by virtue of(18), we obtain (31). 

The recurrence relation (31) leads to 

S (nT,kt + k't ,)=(n) I (ktw + k't 'w'lnTp.)2 
k "",,' 

= (n) [(k,t)[(k',t') A.'(tt'T), 
k [(n,T) 

with 

( 
n + 1 ) [(n,T)=(2T+l) n/2-T. (n+l)-I, 

where A.' is the triangle condition among T, t, and t '. 

(34) 

(35) 

Proof: We use induction on n with k, t, and w being fixed. 
The expression (34) in the case of n = k properly reduces to 
unity. In the case of n = k + 1, it agrees with (28). Suppos­
ing (34) for n = p, let us deduce it for n = p + 1. We substi­
tute (34) for n = p into the right-hand side (rhs) of (31) for 
n = p + 1. After applying the orthogonality for the Racah 
coefficient to the sum over T' in (31), we obtain (34) for 
n =p + 1. 

The quantity [(n,T) is just the dimensionality of the re­
presentations described by the same Young tableau II [h l,h2], 
where hi - h2 = 2T and hi + h2 = n. In the branching dia­
gram,4 it is illustrated as the number of allowed paths 
between (n,T) and (q). We can elucidate (34) by the branch­
ing rule of the Young tableau. 

The relation (34) is viewed as the sum rule on spectro­
scopic factors with the involving isospin quantum numbers 
being fixed. Rewriting it in terms of intrinsic spins in place of 
isospins, we get the fixed-intrinsic-spin sum rule, which gives 
much fine information in comparison with the sum rule dis­
cussed in Ref. 15. 

The relation (34) incorporated into (3) and (23), respec­
tively, yields 

Z (nIT ktt ) = " (tt't t' I IT. )2(n) [(k,t )[(k ',t ') 
z, z f.' z Z z k f(n,T) 

(36) 

and 

R (nT,kt,r) 

=(2T+ IlL W(Trt't;Ttl(n) [(k,t)[(k',t'). (37) 
t' k [(n,T) 

We see from (34), (36), and (37) that allofS, Z, andR are 
independent of N, the number of the single-particle states. 
The relation (36) shows that the quantity 

Z (nTTz,kttz)[(n,T)I{ (2T + 1)[(k,t)} (38) 
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is symmetric with respect to the simultaneous interchanges 
of T and t and of Tz and tz • The similar symmetry property of 
R is found from (37). The expression of R given by (37) 
should be a solution of (30), though it is far from obvious. 

IV. THE PROPAGATION COEFFICIENT Z 

In this section, the propagation coefficient Z is shown to 
be a very simple form in the case of I Tz I = T, regardless of 
the magnitude of T relative to n. 

In order to deduce another type of expression (equa­
tion) for Z other than (36) [(26)], we utilize the p-n for­
malism that deals with protons and neutrons separately. The 
state operator of creating k I neutrons and k2 protons is writ­
ten as 

A + (klk2wIW2) = A + (kiWI) A + (k~2)' (39) 

where WI stands for all the quantum numbers specifying the 
kl-body state with isospin tl = tlz = k l/2, and W2 for the 
quantum numbers specifying the kz-body state with 
t2 = - t2z = k2/2. The operator defined by (39) produces 
the state Iklk2wlW2) of kl neutrons and k2 protons. Notice 
that this state does not have a definite isospin. 

The operator specified in the framework of isospin for­
malism is expanded as 

= LA + (klk2wIW2)A (kikiwiwi) 

X (klk2wlW21 A + (kttzw) A (kt't ;w')lk i kiwi wi), 
(40) 

where 

(41) 

and the same condition is applied to k i and k 2' The sum on 
the rhs of (40) is taken over WI' W2, wi, and wz. 

There exists the completeness relation 

= L In ln2p.IJL2)(n ln2JLIJL21, (42) 
1'''', 

where T on the lhs runs over I Tz I, 1 Tz 1 + 1, ... , and n/2. 
The condition (41) is applied to n l and n2• By virtue of (42), 
the transformation coefficient on the rhs of (40) fulfills 

= c5(r,r'), (43) 
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where y = (ttzw), etc. 
By virtue of (40) and (42), the Tz -fixed trace in the 

framework of the isospin formalism is transformed as 

I (nTTz,u1 A + (kttzw) A (kt 't ;w/)lnTTz,u) 
JJT 

= I (n ln2,u1 ,u21 A + (k l k2w IW 2) 

X A (k;k~w;wi)lnln2,u1,u2) 

X (k lk 2w lw21 A + (kttzw) A (kt 't ;w)lk; k iw; wi) , 
(44) 

where the sum on the rhs is taken over ,u1,,u2' WI' W 2' w;, and 
wi. The sum over,ul (,u2) is done by virtue of 

~(nrl A + (ky) A (ky/)lnr) = <5(y,y') (N:~ ~ k). (45) 

the well-known relation I that describes the propagation of 
the operator average with all the quantum numbers being 
summed. The subsequent sum over WI and W2 on the rhs of 
(44) is done by virtue of (43). Then, we get 

(46) 

Applying (9) to the lhs and using (41) to rewrite the rhs in the 
framework of the isospin formalism, we get the basic equa­
tion for Z, in a form different from (26), 

IZ (nTTz,kttz)d (nTTz) 
T 

( 
(N - k )12 - tz ) 

= d (kttz ) (n _ k )/2 + Tz - tz 

( 
(N - k )12 + tz ) 

X ==.F(N). 
(n - k )/2 - Tz + tz 

(47) 

The isospin T in any of (44), (46), and (47) runs over I Tz I, 
ITzl + 1, ... ,andt+(n-k)l2. 

It is a little too involved to solve (47) in a direct way. A 
device to circumvent the difficulty is to substitute 
N = n + 2To into (47), where To is a parameter fulfilling 

I Tz I < To < t + (n - k )12, 

and 

To + nl2 = an integer. 

This device yields 

IZ(nTTz,kttz)d (nTTz)N= n+ 2To =F(n + 2To), 
T 

(48) 

(49) 

where T runs only over I Tz I, I Tz I + 1, ... , and To' Deriva­
tion of (49) relies first on N independence of Z, and second on 
vanishing of d (nTTz) with N = n + 2To in the case of 
To < T: These are distinctive features seen in (36) and (10), 
respectively. 

Let us put To = Tz (;;~O) in (49) so that T can be fixed 
uniquely to Tz • Then, it follows that 
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(
(n - k )/2 + T + tz) (n12 + T + I) 

=(2t+ I) 2T kI2+t+ 1 

X (n12 + T + 1){(2T + 1)(nI2 + T + I)} -1 

kl2 - t 2T+ 1 

xa(t-Itzll. (50) 

The simple form on the rhs is worth notice. The rhs should 
be identical to that of (36) with Tz = T, though apparently 
very different. Combining (36) and (50) yields a novel identity 
involving a CG coefficient squared. The rhs of (50) with 
k = 1 reduces to nl2 ± T for tz = ±!, respectively, as is 
expected from the numbers of neutrons and protons of the 
state with Tz = T. Using (13) and (50), we get 

Z(nTTz,ktt) = (n - k)/2 + t + Tz) (n12 - 1\ 
2t kl2 - tJ 

X (n12 + T+ 1) 
kl2-t (

k 12 + t + 1) -1 

2t + 1 

Xa(T-ITzl) . (51) 

In this derivation, the N independence of the rhs is associat­
ed with the property that the rhs of (13), comprised of N­
dependent factors, does not depend on N. The symmetry 
property of the quantity (38) can be checked from (50) and 
(51). 

The expression (50) together with the symmetry 

Z(nT( - Tz),kt( - tz )) = Z(nTTz,kttz )' (52) 

seen from (3) or (36), will facilitate the statistical treatment 
of nuclear spectroscopy, since low-lying states in the nucleus 
are characterized by T = I Tz I, i.e., the lowest isospin. 

The propagation coefficient Z(nTTz,kttz ) in case Tz is 
close to T is easily deduced from (50) being incorporated 
with the recurrence 

(T+ Tz)(T- Tz + 1)Z(nT(Tz - I),kttz ) 

= 2IT(T+ 1) - T; - t(t+ 1) + t;}Z(nTTz,kttz) 

- (T - Tz)(T + Tz + I)Z(nT(Tz + I),kttz ) 

+ (t - tz)(t + tz + I)Z (nTTz,kt (tz + 1)) 

+(t+tz)(t-tz + I)Z(nTTz,kt(tz -1)), (53) 

which results from the n-body average of the identity 

T+A +AT_ 
= T_T+A +A - T_A +AT+ +A +AT+T_ 

- [T_[T+,A +]]A -A +[T _[T +, A]] 

- [T +, A +][T _, A] - [T _, A +][T +, A]. (54) 

v. THE PROPAGATION COEFFICIENT R 

In this section, types of expressions for R are shown, 
which are apparently different from (37). 

Substituting (50) into (21) yields 
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R(nT,kt,r) 
= .jr;"( 2~t-+----:l"""')-:-:;( 2=T=---r-=-).-;"1 (2=T;:;-+-:--r +--:-:-177) 1 

X( ~-T)!{( ~ _t)l(n;k+T+t+l)!rl 

X(~:2:~: Dt(trtzO'ttz ) 

(
n - k)/2 + T + tz) 

X 2T ' 
(55) 

where the CG coefficient is explicitly written as16 

(trtzOlttz ) 
= .j=(2-t +""""-;-1){ (2t - r)!(2t + r + 1)l} -1/2 

X ~( _ It(r + u)!(2t - u)! (t - tz)a(t + tz). (56) 
u u!(r- u)! u 

The explicit form of(TrTOI TT) is used to get (55). We notice 
that the CG coefficient of the form (56) appears also in the 
Gram expansion ofthe finite rotation operator. 17 

French2 got the following result [(7.40) of Ref. 2 being 

multiplied by ~2t + 1 ] : 

(2t - r)!(2T + r + 1)! R( T.k ) _ (2t + 1) (n12 - T)!(nI2 + T + I)! n , t,r - -'---'---'----'-'------'---'--
(n - k)!(k 12 - t)!(k 12 + t + 1)! (2T - r)!(2t + r + 1)! 

( -1)P(2t-p)!(n+2t-r-k-2p)! 
X~ . (57) 

P p!(2t- r- 2p)!«n - k)/2 + t- T-p)!«n - k)/2 + T+ t + 1 - p)! 

Comparing (55) with (57), we find that the involved sum in 
the latter is rewritten in the former as the sum of products 
comprised of a CG coefficient and a binomial coefficient. 

Let us carry out the sum over tz on the rhs of (55). We 
discuss first the case when the value of r is only a few. Ex­
panding the CG coefficient as a polynomial in tz , we make 
use of the identity 

± (n + k) = (n + 1 + t) _ (n - t) , (58) 
k=-t r r+l r+l 

etc. to sum over tz • The result for r.;;;;2 is summarized as 

R (nT,kt,r) 

= (2t + 1)(2T + 1) 
(2t+r+ 1)!(2T+r+ I)! 

(2t - r)!(2T - r)! 

XR '(nT,kt,r) , (59a) 
R , (nT,kt,r) 

= {(nI2 + T + 1) (n12 - T)B 
kI2+t+l kl2-t + 

- (nl:~~; 1) (k;:~~: l)B_} (2T+ 1)-1, 

(59b) 

{

I, for r = 0, 

B ± = - (n - k + 1) ± (2t + 1)(2T + 1) , for r = 1 , 
3(n - k + 1)2 =+ 3(n - k + 1 )(2t + 1 )(2T + 1) 

+ 16t(t+ I)T(T+ 1), for r=2. (59c) 

The expression for the case of r = 0 is particularly sim­
ple. It was deduced previously in Ref. 4 as the propagation 
coefficient for the average with T (but not Tz ) being fixed. 
We see from (59c) that the coefficient B_ is related toB+ by 

(60) 

From this we find that two terms in the bracket on the rhs of 
(59b) are interchanged under the replacement of T by 
- T - 1 and that the quantity R' is a polynomial in 
T(T+ 1). 
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Next, let us extend (59c) to a general r, retaining (59a) 
and (59b) as they are. In order to get the form of B+, we 
consider the case of (n - k )/2.;;; T + t, under which the term 
containing B_ vanishes. Substituting (56) into (55), let us 
sum over tz as 

(
t - k) ((n - k )/2 + T + tz) 

~ a(t+ tz ) 
t. u 2T 

= ((n - k )/2 + T + t + 1) 
2T+ u + 1 ' 

(61) 

valid only for (n - k )/2.;;;T + t because of existence of 
a(t + tz ) on the Ihs. We then get 

B+ = ± (-l)u (2t-u)!(r+u)! 
u=o (2t - r)! 

x('n - k)/: - T + t) eTr+':: 1). (62) 

We easily deduce the expression of B _, applying (60) to (62). 
The implication of (59a)-(59c) as well as (57) is elucidat­

ed in terms of solutions of the difference equation (30). As 
discussed in Ref. 4, every term with the definite p on the rhs 
of (57) fulfills (30). The linear combination of terms with 
various p's is to reproduce the condition (29). Each term with 
the definite p describes information propagation between the 
points (n,T) and (k + r - 2t + 2p,r/2) in the branching dia­
gram. 

The expressions (59a)-(59c) are split into two parts, one 
containing only B+ and the other containing B_. We find 
that each part fulfills (30). The part containing B + can be 
interpreted as information propagation between the points 
(n,T) and (k,t) in the branching diagram, as is seen from the 
vanishing of the expression in the case of n = k and T =f. t. 
Similarly, the part containing B_ describes the connection 
between (n,T) and (k, - t - 1). Notice that the point 
(k, - t - 1) is unphysical, since the isospin is negative. It is a 
mirror image of (k,t ) with respect to the isospin = -! axis. 
The mirror image takes the place of the condition that prop-

Masao Nomura 541 



                                                                                                                                    

agation should be confined to the region ofisospin>rI2. The 
symmetry (60) implies that the propagation between (n,T) 
and (k, - t - 1) is the same as that between (n, - T - 1) and 
(k,t). 

New expressions (37), (55), and (59) as well as the 
previous result (57), which are given to the same quantity R, 
are to be algebraically identical to each other, though we 
hardly see it except in the case of r = 0, the isoscalar opera­
tor. Combining two of them leads to a novel identity among 
n-j symbols and factorials. From the first two, for example, 
we get, for any integer p, 

L (2t' + 1) W( Trt 't;Tt) 

t' (p-t')!(p+t'+1)! 

(2T-r)!(2T+r+ I)! ~ ( 01 ) 
4.. trtz ttz 

( p + T + t + 1)! ( p + T - t)! tz 

(
P+T+t) X 2T z (2t+1)-1/2, (63) 

a relation somewhat akin to the novel identity ( 1) of Ref. 18. 

VI. THE FIXED-ISOSPIN AVERAGE OF THE OPERATOR 
PRODUCT 

The operator subject to the average is often a power of 
an operator or a product of several operators so that the 
direct use of (2) would not be available. Here, we present a 
prescription to deal with the n-body average of the operator 

o ==A +(nIYI) A(ni Yi) A + (n2Y2)···A(n; Y;), (64) 

where Y I = TI T lz Ji.1 , etc. and any of n I' n2' etc. can be zero. 
Usually, it is easy to express a given operator as a sum of 0 'so 

Averaging the operator 0 in the n-body space requires 
three steps. First, the extended Wick's theorem 13 is applied 
to 0 to rewrite it as a sum of normal products. The resultant 
expression is summarized in (38) of Ref. 13. The normal 
product that is relevant to the operator average is of the form 
(7) being subdivided as 

O(k)=O+(k)O_(k) (65) 

with 

O+(k) =A +(kla l) A + (k2a2)···A +(kfaf) (66a) 

and 

O_(k) =A(ki ai)A(ki ai)···A(k;a;) , (66b) 

whereal = tltlzliJ l ,etc. The sum of kl' k2,· .. , and kf is equal 
to k, the sum of k i, k i ,"', and k; . Next, the reduction rela­
tion (2) is applied to the n-body average of O(k) so as to 
express it as a sum of k-body averages. The last step concerns 
modification of the resultant k-body average, which is rear­
ranged as 

(O(k)kttz = (OIO_(k)P(ttz)O+(k)IO)ld(kttz) ' (67) 

where P(ttz ) stands for projection operator onto the 
isospin-ttz space. Operating P(ttz) to the right, we state it in 
terms of CO coefficients so that Wick's theorem can be ap­
plied to the antinormal ordering form 0_ 0 + in the matrix 
element. The n-body average of 0 is finally given as a sum of 
vacuum expectation values. 
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Notice that rearranging any operator as a sum of iso­
tensors is not required in the first two steps. This advantage 
becomes remarkable when the number of A + 's and A 's con­
sisting of 0 increases. 

VII. USE OF Z AND S AS SPECTROSCOPIC FACTORS 
FOR NUCLEAR FRAGMENTATION 

Here, we point out that it is available to use Z and S ' as 
formation factors of target (or projectile) residues in high 
energy nuclear reaction. 

Let us consider the case when the mass-n target nucleus 
in any state with isospin (T,Tz ) is fragmented into two pieces 
(residues), one being a cluster of k nucleons coupled to iso­
spin (t,tz ) and the other a cluster of k' ( = n - k) nucleons 
coupled to (t', t;) . We assume that specification of the tar­
get residue by angular momentum, etc. other than isospin is 
not a matter of concern, which will be meaningful in analyses 
of mass and charge distributions of target (projectile) resi­
dues. 19 

We set up three types of spectroscopic factors for the 
fragmentation. The first, used in the prevalent treatment, 19 

is of the hypergeometric expression 

(68) 

The condition (41) is applied to n l, k l, etc. That is, the argu­
ment n I (n2 ) implies the number of neutrons (protons) of the 
target nucleus and k I (k2) the number of neutrons (protons) of 
one of residues. The second and the third types of spectro­
scopic factors are Z(nTTz' kttz) and S'(nTTz' kttz 
+ k ' t' t;) . These are to be used for inclusive and exclusive 
analyses, respectively, regarding isospin t. 

None of the isospins t and t' are taken into account in 
(68) contrary to Z or S ' . From this, we infer the spectroscopic 
sum rule 

(69) 

To prove it, we have only to substitute (13) into the Ihsof(47) 
after replacing nand k in (47) by N - nand N - k, respec­
tively. The relation (69) linked with (36) leads to a novel iden­
tity containing a CO coefficient squared. 

It has little been discussed how the fragmentation pro­
cess is influenced by the magnitude oft relative to that oftz . 
It is, however, known that the nucleus with t> 1 tz 1 has fairly 
large excitation energy and is unstable as to particle decays. 
Considering this, we present an extreme model that target 
residues are formed mainly under the condition Itz 1 = t. The 
relevant spectroscopic factor is expressed as 

Z (nTT,kt Itz 1 = t) 

= (nl + 1)(k' - k" + 1) (nl)(n2), 
(k' + l)(nl - k" + 1) kl k2 

(70) 

where k ' (k ") indicates the larger (smaller) number between 
k I and k 2• The relation (50) is used to get (70). Comparing (70) 
with (68), we find that the former leads to a slight enhance­
ment of production of f3-unstable nuclei. Existing experi­
mental data is not sufficient to support further discussion on 
this point. 
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It is easy to extend (34) so as to get spectroscopic factors 
for a nucleus being fragmented into several clusters. We 
present here only the expression 

S(nITz,kltltl + k2/2t2 + ... + k iIi ( - t i) 
+kiti( -/2) + ... ) 

= (tl'I-I'IITz )2 

nlf(kl.tl )/(k2h) ... j(ki,ti)/(ki,t2) .•. 
X • (71) 

k l!k21 .. 0 k ilk i!" o/(n,n . 

where I (I ') stands for the sum of 11./2.000 (I i. I i. 0 0 0). 
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The known general formula for the Clebsch-Gordan coefficients of the three-dimensional 
rotation group involves one summation that results in explicit summation-free expressions for the 
coefficients where either one of the angular momenta is the sum of the other two or the magnetic 
quantum number corresponding to one of the angular momenta takes its maximum value in 
magnitude. By using very different techniques, explicit expressions for the coefficients 01,0; j2' 
01 j, 0), 01' !;j2' -! I j, 0) are also obtained where the integral or half-integral nature of the j's is 
indicated by the magnetic quantum number involved. Here the expressions depend upon whether 
jl + j2 + j is an even or an odd integer. For these coefficients, the magnetic quantum numbers 
involved take their minimum value in magnitude. By using the recursion relation for the 
coefficients of the form (j I' m, j2' - m, Ij, 0), these coefficients can be calculated in terms of the 
above known ones provided the explicit value of the coefficient (jl' 1; j2' - Ilj, 0) is known, 
where jl + j2 + jis an odd integer. (The recursion relation for these coefficients in terms of (jl' 
0; j2' - Ilj, 0) becomes a triviality since (jl' 0; j2' Olj, 0) vanishes when jl + j2 + jis an odd 
integer.) The main purpose of this paper is to give an explicit expression for the coefficients 01' 1; 
j2' - Ilj, 0), where jl + j2 + jis an odd integer. This expression is obtained by using a 
complicated transformation between hypergeometric functions, which seems to have been 
neglected so far. For the coefficients where the magnetic quantum numbers have their minimum 
value in magnitude, this transformed expression becomes summation-free and the explicit values 
of the three already known coefficients and the fourth so far unknown are obtained. Further study 
of this transformation may be useful on its own because it provides a link between very different 
types of expressions. For completeness, explicit expressions for the coefficient (j I> 1; j2' - 11 j, 
0), where jl + j2 + jis an even integer, and of 01,1; j2' Ilj, 2) and (jl,!; j2' - ~Ij, 0), where 
jl + j2 + j is an even or an odd integer, are given. 

I. INTRODUCTION 

Many equivalent expressions for the general Clebsch­
Gordan (CG) coefficient (jl> ml; j2' m21j, m) of the three­
dimensional rotation group are known. I-3 All of these in­
volve a single summation which degenerates in special cases 
of types I and II, which are exemplified by j = I j I ± j21 and 
j = Iml, respectively, as is clear from the Van derWaerden4 

form for these coefficients. Van der Waerden4 shows that 
there are nine quantities that appear in the form of a symmet­
ric 3 X 3 array (the Regge array)S and the coefficient is given 
in a closed form whenever any of the elements of this 3 X 3 
array vanishes. In the special CG coefficients of type I, one of 
the angular momenta takes its extreme value (maximum or 
minimum), which is simultaneously an extreme value of its 
magnitude since the value of any angular momentum is al­
ways non-negative. However, for the CG coefficients of type 
II, the magnetic quantum number corresponding to one of 
the angular momenta involved takes its maximum value only 
in magnitude. A question naturally arises whether we can 
have summation-free explicit expressions for at least those 
CG coefficients where the magnetic quantum numbers of the 
angular momenta involved take their minimum possible val­
ues in magnitude. Such an expression for the coefficients (j I' 
0; j2' Olj, 0) is already known.6 This is obtained by using 
very different techniques than those used for obtaining the 
general expression. These coefficients are nonzero only 
when j I + j2 + j = an even integer, as follows easily from a 

known symmetry of the CG coefficients. In addition, explicit 
expressions for the CG coefficients 01' ~; j2' - ~Ij, 0) for 
the two cases whenjl + j2 + j is an even or an odd integer 
are also known.7,s In this paper, we give such an expression 
for the CG coefficients 01' 1; j2' - Ilj, 0), where 
j I + j2 + j is an odd integer, which are then the nonzero CG 
coefficients with least value in magnitude of the three mag­
netic quantum numbers. The three already-known coeffi­
cients and the fourth one given in this paper are needed as 
starting coefficients in a recursion scheme for the coefficients 
(jl> m; j2' - mlj, 0). For these coefficients, we arrive at 
explicit expressions (for different cases) involving one sum­
mation only, which is of a very different type than the known 
general expression using a transformation of hypergeome­
tric functions. It seems that this transformation has not been 
applied in the past. Since, in the expressions for (jl' m; j2' 
- mlj, 0) obtained in this paper, the range of the single 

summation is restricted by m (m -!> for a positive integral 
(half-integral) value ofm, for the coefficients for which m is 
small in magnitude, these formulas might be computational­
ly easier to operate with even when the j's are larger. 

For completeness, we also have given closed form ex­
pressions for the coefficient (jl' 1; j2' - Ilj, 0), where 
jl + j2 + jis an even integer and for the coefficients 01' 1; 
j2' Ilj, 2) and VI'!; j2' !Ij, 1), where jl + j2 + jiseither an 
odd or an even integer. The last two cases are obtained from 
simple recursion relations in terms of 01,1; j2' - Ilj, 0) 
and 01' !; j2' - !Ij, 0), respectively. 
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The special coefficients (j .. D; jz, DJj, D), (j .. 1; jz, 
- Ilj, D), and (jl'!; jz, - !Ij, D), and the ones that can be 

obtained from these using the various symmetries, are useful 
from the point of view of the theoretical discussion of the 
physical problem of angular correlations. Indeed, the above 
three coefficients occur in the study of angular correlations 
of spinless particles, of photons, and of conversion electrons, 
respectively. For unpolarized correlation measurements, we 
require these coefficients for jl + jz + j = an even integer 

only. (The coefficient (jl' D; jz, DI j, D) vanishes otherwise as 
follows from its symmetries, but the other two do not.) For 
polarized correlation measurements, we require, in addition, 
the latter two coefficients for jl + jz + j = an odd integer 
and also the coefficients (jl' 1; jz, 11 j, 2) and (j\> !; jz, !I j, 
1), where jl + jz + j is an even or an odd integer.9 This 
paper is organized as follows. In Sec. II, we present the re­
sults, whereas in Sec. III, the derivation of the results is sum­
marized. 

II. RESULTS 

(a) 

(i) (j1,D;jz,Dlj,D) = (_1)(1/Z)(i,+i2-i) 
(2j + 1) (jl + jz - j)!(jl - jz + j)!( - jl + jz + j)! 

(jl + jz + j + 1)! 

(!(jl + jz + j»)! 
x------------~--------------------

(!(jl + jz - j»)!(!(jl - jz + j»)!(!( - jl + j2 + j»)!' 

if jl + j2 ± j is an even integer, or = D if jl + j2 ± j is an odd integer. In the above, all three j's are integral.6 

(ii) (jl,I;j2' _ Ilj,D) = ( _ 1) (liZ) (j, + i2- i-I) (2j + 1) (jl + j2 - j)!(jl - j2 + j)!( - j + j2 + j)! 
(jl + j2 + j + I)!jl(jl + I)j2(j2 + 1) 

(1) 

2(!(j1 + j2 + j + I»)! 
X . (2) 

(!(jl + j2 - j - I»)!(!(jl - j2 + j - I»)!(!( - jl + j2 + j -1))! 

In the above, the three j's are integral and jl + j2 ± j is an odd integer. This result seems to be new. 

(iii) (j .. I;j2' - Ilj,D) = (jl' - I,j2,Ilj,D) = J..j(j + I~ -/I(jl ~ 1). - j2(j2 + 1) (j .. D;j2,Dlj,D), (3) 
2 h(h + 1)hU2 + 1) 

where the three j's are integral, jl + j2 ± j is an even integer, (see Ref. 10) and the coefficient (jl' D; j2' Dlj, D) is given in 
(a) (i). 

(b) 

(2j + 1) (jl + j2 - j)!(jl - j2 + j)!( - jl + j2 + j)! 

(jl + j2 + j + 1)!(j1 + 1) (j2 + 1> 

(!(jl + j2 + j»)! 
x--------------~-----------------------

(!(jl + j2 - j»)!(!(jl - j2 + j - 1))!(!( - jl + j2 + j - 1))! 
(4) 

In the above, j is integral whereas jl' j2 are both half-integral, jl + j2 ± j is an even integer, and ± jl ± j2 + j is an odd 
positive integer. 

(2j + 1) (jl + j2 - j)!(jl - j2 + j)!( - jl + j2 + j)! 
(j1+jz+j+I)!(jI+!) (j2+!) 

(!(jl + j2 + j + 1))! 
x------------~----------------------

(!(jl + jz - j - 1))!(!(j1 - j2 + j»!(!( - jl + j2 + j»)!' 
(5) 

where jisintegral whereas jl' jz are both half-integral and jl + jz ± jisanoddintegerbut ± jl =+= jz + jis an even positive 
integer. 

All the above results are invariant under the interchange of jl and j2 as follows from the known symmetries of the CO 
coefficients. 7,8 

(c) 

(i) (j .. !;jz,!jj,l) = [(jl + jz + 1)/~j(j + 1)] (j .. !;jz, - !lj,D), if jl + jz ± jis an even integer, (6) 

(7) 
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(ti) (j,,1;j2,1 1j,2) = j(j + 1) [jl (jl + 1) + j2(j2 + 1)] - [(jl - j2) (jl + j2 + 1) ]2 (j,,1;j2' - 1 Ij,O) , 

~(j - l)j(j + 1) (j + 2) [j(j + 1) - jl(jl + 1) - j2(j2 + 1)] 

if jl + j2 ± j is an even integer, (8) 

= (jl - j2) (jl + j2 + 1) (jl' I;j2' - 11 j,O), if jl + j2 ± j is an odd integerY (9) 
~(j - l)j(j + 1) (j + 2) 

III. SUMMARY OF THE DERIVATION OF THE RESULTS IN SEC. II 

From the general expression for the CO coefficient, we have 

(2j + 1) (jl + j2 - j)!(jl + m)!(j2 - m)! 

(jl + j2 + j + 1 )!(jl - j2 + j)!( - jl + j2 + j)!(jl - m)!(j2 + m)! 

X ~I(-1)s (2jl-S)!(-jl+j2+j+S)! 
] s S!(jl +m -s)!( - jl + j-m +S)!(jl + j2 - j-s)! 

(

_.+.+ ·+1 
~(2 . )1 it 12 ] , 

X J. it· :J: 
r( - jl + j2 - m + 1) 2 2 . 

- it, - jl + j-m + 1 

Using the transformation 12 

(

20, 2b, 

3F2 

2c, ! + a + b - c - n 

-n 

) ( 

a,b, 
.1 (c-a+!)n(c-b+!>n 
, = 4F3 

(c +!>n (c +! - a - b)n c,~ + a - c - n, 

and the duplication formula 13 

r(2x) = [r(x)r(x+!)/[1T]22x
-

1 

for the gamma functions, we arrive at 

-jl-m 

-c-n, 

~+b-c-n 

(2j + 1) ( - jl + j2 + j)!(j2 - m)! 

;1) 

-n 

( 10) 

(11 ) 

;1) 
(12) 

(13 ) 

(jl + j2 + j + I)!(j, + j2 - j)!(jl - j2 + j)!(jl + m)!(jl - m)!(j2 + m)! 

. 22j, r(j, + l)r(1 + !(jl + j2 + j»)r(!(jl + j2 - j + 1) + m)r(! - m) X (- I)h+m ______________________ _ 

[1T r(1 +!( - jl + j2 + j) - m)r(!( - jl + j2 + j + 1)) 

(

!( 1 - jl + j2 + j), 

X4F3 

-jl' 

-m 

(14) 

Case I: j 1 + j2 ± j is an even integer. We first assume that m is a non-negative integer. The hypergeometric function 4F3 in 
Eq. (14) is well defined and is a terminating Saalchiitzian, for which we have the transformation 

{

X, y, z, -n ) (v-z)n(w-z)n {U-X, u-y, z, 
4F ;1 = 4F 

u, v, W (v)n(w)n u, I-v+z-n,I-w+z-n 

-n ) 
;1. (15) 

We use the above transformation for the 4F3 in Eq. (14), taking 

X = (1 - j, + j2 + j)/2, y = - j, - m, z = ( - j, - j2 + j)/2, n = m, 

u = 1 + ( - j, + j2 + j)/2 - m, v = - j" w = (1 - j, - j2 + j)/2 - m, 
to arrive at 

(j"m;j2' - mlj,O) 

= ( _ 1) (1/2) (j, + j, - j) (2j + 1) (j, + j2 - j) (j, - j2 + j)!( - j, + j2 + j)!(j, - m)!(j2 - m)! 

(j, + j2 + j + I)!(j, + m)!(j2 + m)! 
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-m ) 
; 1 . (16) 

The advantage of the above form is that it applies equally when m is a non-negative integer or a non-negative half-integer, 
although, in the above derivation, we assumed, to start with, that m is a non-negative integer. In fact, had we started with the 
transformation 14 

b, ! -c -n, 
-n ) 

; 1 , (17) 

!+a -c-n, l+b-c-n 

and followed the steps identical to the ones mentioned above, we would have gotten exactly the expression in Eq. (16) under 
the assumption that m is a non-negative half-integer. 

Finally expanding the hypergeometric function 4F3 in Eq. (16), we can write 

(j1,m;j2' - mJj,O) 

= ( _ 1)(1/2) (j, + i,- i) (2j + 1) (jl - j2 + j)!( - jl + j2 + j)!(jl + j2 - j)!(jl - m)!(j2 - m)! 
(jl + j2 + j + 1)!(j1 + m)!(j2 + m)! 

(1 ( . + . + .) + )1 
X (2m)!2:( _I)' 1 it 12 J s. 

, (2s)!(2m - 2s)!H(j1 + j2 - j) - s)!H( - jl + j2 + j) - m + s)!H(j1 - j2 + j) - m + s)! ' 

which obviously satisfies the symmetry 

(j1,m;j2' - mJj,O) = (j2,m;jl' - mlj,O), 

since in the above, jl + j2 ± j is an even integer. 

(18) 

(19) 

Case II: jl + j2 ± j is an odd integer. In this case, the ratio of the 4F3 appearing in Eq. (14) to r( ( - jl + j2 - j + 1 )/2) 
is a finite quantity that shows, after a careful analysis, that (assuming that m is a non-negative integer) 

(j1,m;j2' - mlj,O) 

= ( _ l)i, + i,- j+m 22i, mr(! - m)r(l + !(jl + j2 + j»)rH(3 + jl + j2 + j») 

[iT r(!( 1 - jl + j2 + j»)rH( - jl - j2 + j»)rH(3 + jl - j2 + j) - m) 

r(1 + !(jl - j2 + j»)rH(1 + jl - j2 + j») (2j + 1) ( - jl + j2 + j)!(jl - m)!(j2 - m)!(jl + m)! 
x----~--------~------------

r(jl + 2)r(2 + !(jl + j2 + j) - m) (jl + j2 + j + 1)!(j1 + j2 - j)!(jl - j2 + j)!(j2 + m)! 

(

!(3 + jl + j2 + j), 1 + !(jl - j2 + j), jl + 1 - m, 1 - m ) 

X4F3 ;1 . 
jl + 2, 2 + !(jl + j2 + j) - m, !(3 + jl - j2 + j) - m 

We now follow the same procedure as for case I to arrive at 

547 

= (_1)(1/2)(i.+i>-i-1)(2m) (2j + 1) (jl + j2 - j)!(jl - j2 + j)!( - jl + j2 + j)!(jl - m)!(j2 - m)! 

(jl + j2 + j + 1)!(j1 + m)!(j2 + m)! 

I-m, !-m 
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which can be expanded in the form 

(j1,m;j2' - mjj,O) 

= ( _ 1) (1/2) (j, + j2 - j - 1) (2j + 1) (jl + j2 - j)!(jl - j2 + j)!( - jl + j2 + j)!(jl - m)I(j2 - m)! 

(jl + j2 + j + 1)!(j1 + m)!(j2 + m)! 

X (2m)!I( - 1)s 
S 

(!UI + j2 + j + 1) +s)! 
x------------------------------------------------------------------------

(2s + 1)!(2m - 2s - 1)!(!UI 7- j2 - j - 1) -S)!(!UI - j2 + j + 1) - m +s)!(!( - jl + j2 + j + 1) - m +s)! 

where jl + j2 ± j is an odd integer. Note that as for case I, 
the expressions in Eqs. (21) and (22) apply when m is a non­
negative integer or a non-negative half-integer. 
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In this paper, simple analytic expressions for the radial functions r/~dl (r») and G l~/, (f (r»), 
which appear in the expressions for ff"!;1(V) Ir, (r) Yi:"(r) and V2nff"!;I(V) It, (r) Yi:"(r) when 
expressed as linear combinations of Yj(r), where ff"!;1(V) is obtained from the solid harmonic 
ff"!;1(r) = r/l YI.'I(r), are derived by replacing x,y, andz in its representation as a polynomial of 
degree II by a lax, a lay, and a laz, respectively. Writing r/~/, (f (r») = r/~/,o (r) I (r) and 
Gl~d/(r») = G t/,o (r) I (r), the expression for r/~/,o (r)(G l~/,o (r») is found to be 
(2/r) II( (2/r) II + 2n) times a product of commuting factors containing the single operator !r(d I dr) 
and not two noncommuting operators rand (1/r) (d Idr) in the many equivalent previously 
obtained results which are thus synthesized in this approach. Also, expressions for these operators 
manifest the symmetries in the problem. In addition, a simple connection G l~/,o (r) = r/~ + 2nl,O (r) 

between these two operators and the corresponding radial functions G l~/, (f (r») and r l:/, (f (r») is 
found. 

I. INTRODUCTION 

Because of its usefulness in many problems of theoreti­
cal physics, 1-5 many authors have calculated3

•
6

•
7 the effect of 

applying the spherical tensor gradient ~I.'I(V) of rank lion a 
spherical tensor Fi:"(r) of rank 12, Here ~I.'I(V) is obtained by 
replacingx,y, andzin the polynomial of degree II inx,y, and 
z for the solid harmonic ~1.'1(r) = r/l YI.'I(r) by a lax, a lay, 
and a laz, respectively. Thus ~I.'I(V), like the solid harmonic 
~1.'1(r), is a spherical tensor of rank II' Also 

where (/1,md/2,m21/,m) is the Gaunt coefficient given by 

(/1,m I I/2,m21/,m l + m2) 

Fi:"(r) = 1r,(r)Yi:',(r). (1) 

Indeed, from angular momentum considerations, we 
can write 

~1.'1(V)Fi:"(r) = L (/l>m I I/2,m21/,m) 
I 

(2) 

by factoring out the Gaunt coefficient as shown in Eq. (2). 
The above expression for rl: /, (f(r)) contains a single summa­
tion over q. By utilizing Fourier transform techniques, they 
were able to arrive at many equivalent expressions for the 
same radial function that do not involve any summation. 
These could be exemplified by9 

r/ld/(r») = -- -- r/l+I,+I+ I 
I 1 (1 d) (II + I, - 1)/2 

r l + 1 r dr 

x (~!{,)(li -I, + 1) /2 1r, (r) 
r dr rl, 

(5) 

= ~(2/1 + 1)(2/2 + 1)l41r(21 + 1) 

(3) 

in terms of the Clebsch-Gordan coefficients as given in Eq. 
(2.5) in Ref. 6. 

In Eq. (2), the radial function r/I, (f (r») is independent 
of the magnetic quantum numbers ml and m2 and the sum-
mation variable I takes the values 11 +/2, 

II + 12 - 2, ... ,1/1 -/21· Thus !(/I + 12 -I) and 
!(/I -/2 + I) are both non-negative integers. 

Bayman3 derived an explicit analytic expression for 
r l: /, (f (r)), wherein he factored out only the Clebsch-Gordan 
coefficient (/1,m l ;/2,m21/,m) in Eq. (2). Weniger and Stein­
born have recently obtained an equivalent but somewhat 
simpler expressionS 

(4) 

( 
1 d )(11 -I, + 1)12 

= rl -- r/l-I,-I-I 
r dr 

( 
1 d )(11 + I, - /)/2 

X -- rl,+ 'It (r). 
r dr ' 

(6) 

In addition, the same technique gave them similar but 
more complicated expressions for the radial function, which 
appears in the equation 10 

V2n~I.'I(V)Fi:"(r) = ~ (/1,mII/2,m21/,m) 

XG l71, (Ir, (r»)Yjl + m,(r). (7) 
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We note that in Eqs. (4)-(6) above, rl~I,(f(r») is ex­
pressed in terms of products of two noncommuting operators 
rand (1/r)(d /dr) operating on f(r). In this paper, we have 
expressed rl~I, (f(r») as (2/r)I, times a product of commut­
ing factors involving the operator !r(d /dr) only from Eq. 
( 4) directly and without application of Fourier transform 
techniques. This operator !r(d /dr) has the additional ad­
vantage that it does not change the degree of any term in 
f (r). Thus each term in the expansion of f (r) is acted upon 
independently. Exactly the same remarks apply to our 
expression for G ::1, (f (r»). Ifwe write 

(8) 

G::,,(f(r») = G:~I,O (r)f(r), (9) 

our expression for the radial operators rl~I,o (r) and G ~71,o (r) 
manifestly exhibit their symmetries, unlike the expressions 
of Bayman and Weniger and Steinborn. Also, we find the 
relationship 

G :~I,O (r) = r:~ + 2nl,O (r), (10) 

which is not evident in the expressions derived by Weniger 
and Steinborn. 

This paper is organized as follows. In Sec. II, we present 
the derivation of our results for rl~I, (f (r») and G ~~I, (f (r»). 
From our results, the symmetries of the corresponding oper­
ators rl~I,o (r) and G ~~I,O (r) are evident. In Sec. III we sum­
marize our conclusions. 

II. DERIVATION OF THE ANAL YTle EXPRESSION FOR 
r/".( f(r» AND G,~( f(r» 

From 

.l ~ (.If(r)) = _2 - (.l r ~ - .llz)f(r), 
r dr rl, r l,+2 2 dr 2 

we note that the operator (1/r)(d /dr) replaces 1/rl, by 
1/rl, + 2 and fIr) by 2(!11d /dr) - !Iz)f(r). Repeating the op­
eration of (1/r)(d /dr) then gives 

( 
1 d)2 lid [ 1 {( 1 d 1 ) }] 22 (1 d 1 ) ( 1 d 1 ) -- -f(r)=-- -- 2 -r---/2 fIr) =-- -r---/2 -1 -r---/2 fIr) 
r dr r I, r dr r I, + 2 2 dr 2 r I, + 4 2 dr 2 2 dr 2 

22 (1 d 1 ) =-- -r---/2-1 fIr), 
r l,+4 2 dr 2 2 

where we have used the Pochhammer symbol defined by 

(a)n = na + n)/na). 

The above procedure results in the generalization 

(.l ~)k (.l fIr)) 
r dr rl, 

2k ( 1 d 1 ) =-- -r---/2-k+ 1 fIr). 
rl,+2k 2 dr 2 k 

In the above, we take k = II - q and mUltiply the result by 
2qr I, + I, - 2q to arrive at 

2qr I, + I, - 2q (.l ~)/' -q .l fIr) 
r dr rl, 

= (~)/' (.l r~ -II - .l/2 + q + 1) fIr). 
r 2 dr 2 I,-q 

Thus Eq. (4) becomes 

r/~/, (f(r)) 

= (~)/' (.l r ~ -.l (/1 + I) + 1) 
r 2 dr 2 (/,-1,+/)/2 

x(.lr~ +.l (-II + 1+3)) fIr). 
2 dr 2 (/,+1,-/)/2 

(11) 

(12) 
In deriving the above result, we have performed the for­

mal finite summation in q in Eq. (4) by using a special case of 
Vandermonde's summation theorem for the terminating hy­
pergeometric function zEl in the form II 

zEI( - n,a;e; 1) = (e - a)n /(c)n . (13) 
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I 
Note that in Eq. (12) both the Pochhammer symbols contain­
ing !r(d / dr) are well defined since WI + 12 - I) and 
WI - 12 + I) are integers and each symbol can be expressed 
as a product off actors containing the operator !r(d /dr). Nat­
urally all these factors commute and we can place them in 
any order, which results in many different equivalent expres­
sions of the type given in Eqs. (5) and (6). In our single equa­
tion (12), we have synthesized all the different equivalent 
expressions obtained by Weniger and Steinborn9 for 
r/I (f(r)). 

" To exemplify the usefulness of our result, we rederive 
Hobson's result by specifyingl2 

F~'(r) = 1/r, 

i.e., 12 = m2 = 0, Jr, (r) = fo(r) = 1/r. Consequently I = II' 
and we obtain 

r/o(1/r) = (- 1)/(2/- l)!!/rl+ 1, 

which finally results in 

~i(V)(1/r) = ( - In(2/- 1)!!/rl+ I] Yi(r). (14) 

Next we derive an analytic expression for Gt/,(f(r»), 
which appears in Eq. (7) above. For this purpose, we note 
that 

V2 
[( ~ r + 2kf (r)Yi(r)] 

= (~)/' + 2k + 2 Yi(r) (.l r ~ _ .l (/) + I) _ k) 
r 2 dr 2 

(
1 d 1 ) X -r-+-(-/I+I+1)-k fIr). 
2 dr 2 

(15) 

We apply the above result repeatedly on both sides in 
Eq. (2), and utilizing Eq. (12) we finally arrive at 
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( 
2 )/, + 2n ( 1 d 1 ) ( 1 d 1 ) G~~/,(f(r)) = - -r---(/) + I) -n + 1 -r-+-( -I) +1+ 3) - n I(r). 
r 2 dr 2 (I, + 1- I,V2 + n 2 dr 2 (I, + I, - 1)/2 + n 

In Eqs. (8) and (9) above, we defined the radial opera­
tors rl:/,o(r) and Gl~/,o(r), which are just the right-hand 
sides of Eqs. (12) and (16) without the I(r). Evidently, 
these operators satisfy the symmetries 

rl:/,o(r) =ri;i,b-1(r) =rl:_I,_IO(r), 

and the relationship 

G l~/,o (r) = r l: + 2nl,O (r), 

(17) 

(18) 

from which the symmetries given in Eq. (17) are also evi­
dent for G l~/, (r). 

We can now obtain expressions similar to those given in 
Eqs. (5) and (6) for G:~/,(/(r») by just replacing I) by 
I) + 2n. These expressions are to be compared with the more 
complicated ones given in Eqs. (4.28) and (4.29) in Wen­
iger and Steinborn6 and in Eqs. (3)-(6) in Niukkanen,7 
which give an expression obtained from the one given in Eq. 
(4) above with the replacements ofrl:/, j(r), I (r)lr l" I), 
and q by r!, +2nr,(/(r»), I(r), I) + 2n, and 
!(l) + 12 -I) - q, respectively. Note that while considering 
powers of ( - !r 2 fP) in the expansion of the Laguerre po­
lynomial L ~ + 112 ( - !r 2 fP) in Eq. (3) of Niukkanen,7 we 
assume that r 2 and fP = (1/r) (d Idr) commute, i.e., 
(_!r 2fP)k= (_r2/2)kgk. 

III. DISCUSSION 

The main results of this paper are contained in Eqs. (12) 
and (16), which express the radial functions rl:/,(/(r») and 
G l~/, (I (r») in terms of the repeated operations of factors 
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(16) 

I 
containing !r( d 1 dr) on I (r). Since no other operator exists 
between these factors, the factors can be permuted at will. 
This results in a synthesis of many expressions derived by 
Weniger and Steinborn using Fourier transform techniques. 
Also our expressions for the radial operators rl:/,o (r) and 
G :~/,O (r) exhibit the symmetries present in the problem, i.e., 
these operators are manifestly invariant under the transfor­
mations I ~ -1- I, and 12 ~ -/2 - 1. We have also ob­
tained a relationship between rl:/,o (r) and G l~/,o (r) that 
shows that the second operator can be obtained from the first 
by replacing I) by I) + 2n. We have not been able to find any 
physical reason for the existence of this relationship. 

Since our results are expressed in terms of the operator 
!r(d 1 dr), operation on any function that can be expressed as a 
power series in r becomes trivial-each term of the power 
series being operated upon independently. We have exhibit­
ed the usefulness of our approach by rederiving the classical 
Hobson result. 
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The possibility of confining a quantum particle in an optical potential, the imaginary part of 
which would be related to the existence ofinelastic reaction channels coupled to the elastic one, is 
considered. Pure imaginary potentials of various (constant, linear, and parabolic) radial shapes 
are studied. The numerical dependence ofthe energies and mean-lives ofthe confined states is 
explicitly shown. Analytical expressions for such dependence are also given in some cases. 

I. INTRODUCTION 

Since the discovery of the J /'" (3095) and its interpreta­
tion as a charmed quark-antiquark bound state, there has 
been a considerable interest, increased by the subsequent de­
tection of more and more members of the charmonium and 
bottomonium families, in confinement mechanisms. Efforts 
to understand the nonobservability of free quarks have given 
rise to two kinds of models: bag and potential models (for 
recent reviews, see Refs. I and 2, respectively). In the first 
kind of model, confinement is imposed via boundary condi­
tions on the surface of the bag; in the second, confinement is 
produced by the tail of the potential, which goes to infinity as 
r increases. Both confinement mechanisms are rather ad hoc, 
although they can be made plausible in terms of color flux 
bubbles or strings. 

The physical idea behind those models of confinement is 
very simple: Free quarks cannot be observed, for instance, by 
breaking the quark-antiquark pair in a meson because new 
quark-antiquark pairs are created as the original quark and 
antiquark are pulled out. In other words, reaction channels 
are opened as the quark and antiquark in the elastic channel 
are separated. In nuclear physics, the presence of coupled 
reaction channels is commonly represented in the elastic one 
by means of an optical (complex) potential, the imaginary 
part of which is related to the channel coupling. 

Motivated by those considerations, we forward the pos­
sibility of producing qq confinement by adding to the quan­
tum chromodynamics (QCD)-supported Coulombian poten­
tial an imaginary part acting only at distances larger than the 
"radius" of the meson. Such an imaginary part would in­
crease with the distance, so as to represent the fact that more 
and more inelastic channels are opened. 

Before trying to fit the masses of the hadrons by assum­
ing a complex phenomenological qq potential, it has seemed 
to us worthwhile to explore some specific examples in order 
to understand how those optical potentials, of various 
shapes, would work to produce confinement. Moreover, we 
have taken purely imaginary potentials to avoid the effect of 
the imaginary part of the potential being masked or distorted 
by that of the real part. 

In the examples discussed in Secs. II-VI, spherical sym-

·'On leave of absence from Universidad de Zaragoza. 

metry is assumed. To facilitate the solution of the Schro­
dinger equation, we have considered only constant, linear, or 
quadratic dependence on the radius. The information so ob­
tained allows us to draw some conclusions in Sec. VII. 

II. PARABOLIC SHAPE 

Let us start by considering an analytically solvable case, 
namely, an imaginary potential with quadratic dependence 
on the radius, 

(2.1) 

This is a very simple example, the solutions of which are the 
same as for the harmonic oscillator, with the only difference 
being that the frequency cv is now complex. The physically 
acceptable solutions for the I-wave radial function are writ­
ten, in terms of the dimensionless variable z = r2mcv/fI, in 
the form3 

"'n,/(r) = Zl12e -z/2 )F)( - n;l + ~;z), 
n,l = 0,1,2, ... , (2.2) 

where )F) denotes the confluent hypergeometric function.4 

The corresponding values of the energy are given by 

En•1 = (2n + 1 + ~)fIcv. (2.3) 

The energy spectrum is, therefore, trivially related to the real 
harmonic oscillator one: it can be obtained from this one by a 
rotation of angle 

ArgEn,1 = Argcv = -1T/4 (2.4) 

in the complex-energy plane. 
The potential given by Eq. (2.1) produces, therefore, an 

infinite number of quasibound states, of equally spaced ener­
gies, whose mean-lives are inversely proportional to their 
energies. 

III. LINEAR SHAPE 

As a second example, let us consider an imaginary po­
tential of the form 

VIr) = ar, Arg a = - 1T/2. (3.1) 

Real potentials with a linear dependence on the radial vari­
able have been widely used to explain the quark-antiquark 
bound states, mainly due to the fact that such a dependence 
is supported by (nonrigorous) QCD calculations on a lattice. 
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The SchrOdinger equation for such a radial dependence can 
be solved5 exactly for angular momentum 1 = 0 and approxi­
matelyforl #0. TheresultingeigenenergiesE",/ arepropor­
tional to a2/3

, with coefficients of proportionality depending 
on the label n and on the angular momentum I. The treat­
ment made for real a can be immediately extended to com­
plex a. We can conclude in this way that 

Arg E n,/ = - 1T13, (3.2) 

which shows that the infinity of quasibound states originated 
by the imaginary linear potential are even shorter lived than 
those due to a parabolic one. 

IV. STEP SHAPE 

The potential to be considered now is of the form 

V(r)=O(r-b)V, Arg V= -1T12. (4.1) 

The solutions of the resulting Schrodinger equation can be 
expressed in terms of Bessel functions in both inner (r < b ) 
and outer (r > b) regions. Ifwe denote by k =(2mE )1/211iand 
k' =£2m(E - V)p/211i, respectively, the wave numbers in 
these two regions, then the radial wave function for angular 
momentum 1 can be written as 

1/J(r)a:.j/(kr), r<b, 
(4.2) 

rf!(r)a:.hll)(k'r), r>b. 

The continuity at r = b of the reduced logarithmic derivative 
of the wave function requires 

aj;(a)/j/(a) = a'h 11)'(a')/h 11)(a'), (4.3) 

with 

a =kb, a' =k 'b. 

An equivalent form of writing Eq. (4.3) is 

aJ~(a)IJ,da) = a'H~)'(a')IH~)(a'), 

with 

A =I+~. 

(4.4) 

(4.5) 

(4.6) 

Obviously, the values of a satisfying Eq. (4.5) correspond to 
the poles, in the complex wave number plane, of the S matrix 
for the potential given in Eq. (4.1). Plots of the reduced loga­
rithmic derivatives of the cylindrical Bessel and Hankel 
functions6,? are of great help in obtaining approximate solu­
tions of Eq. (4.5). It can be seen that an infinity of complex 
values of a, lying below the real axis, satisfy that equation. 
Weare interested only in solutions corresponding to decay­
ing states (1m E < 0), that is, those with Re a > O. 

Approximate solutions ofEq. (4.5) can be obtained ana­
lytically in the limiting cases of extremely weak or very 
strong potential. In the first case, I V I <~ 12mb 2, it is evident 
that the values of a satisfying Eq. (4.5) must go to infinity as 
V-O, in view of the Wronskian relation for the Bessel and 
Hankel functions. Therefore, asymptotic expansions8 for 
these functions and their derivatives can be used to obtain 

tan { a - (/ + 1)1T12) = - i(l - m Vb 2/~a2), (4.7) 

from which it follows that 

Re a=n1T + (/ + 1)1T12 - !Arg(mVb2/2~a2), (4.8a) 

Ima=!loglmVb2/2~a21. (4.8b) 
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These equations show that, as V -0, the solutions go to infin­
ity in the lower half of the a plane along the asymptotes 

Re a = (n + 112 + !)1T. (4.9) 

In the case of very strong potential, I V I >~ 12mb 2, the right­
hand side ofEq. (4.5) can be expanded? in the form 

Hil)'(a') . I i(4A 2 - 1) 
a' =la'--- +O(a,-2), 

Hil)(a') 2 8a' (4.10) 

which clearly shows that it tends to infinity as la' 1-+ 00. 
Therefore, the solutions of Eq. (4.5) tend to that of 

J,da) = 0 (4.11) 

as I V 1-+ 00. That is, the imaginary potential acts in the limit 
as a rigid box. Let us denote by a 00 the solutions ofEq. (4.11). 
It is not difficult to obtain, in the case of strong pOtential, an 
approximate expression for the difference 

8 =a - a oo (4.12) 

between a solution of Eq. (4.5) and its limit position 
fori V 1-+00. The left-hand side ofEq. (4.5) can be written in 
the form 

aJ~(a)IJ,da)=a(1 - 8/a oo )/8(1 - 8/2a
00

) (4.13) 

by introducing Taylor expansions for JA. and J ~ around the 
point a 00 and making use of the Bessel differential equation 
and of Eq. (4.11). If only lowest-order terms are retained in 
the right-hand sides ofEqs. (4.10) and (4.13), it turns out that 

8= - a 00 lilb (2m V)1Iz. (4.14) 

Of course, more accurate expressions of 8 can be obtained by 
retaining higher-order terms, 

We have solved Eq. (4.5) numerically for intermediate 
values of the intensity of the potential, The results, for angu­
lar momenta 0 and 1, are shown in Figs. 1 and 2, respective­
ly. For the reduced logarithmic derivative of the Bessel func­
tion we have used its continued fraction expansion8 

o 

-5 

aJ ~ (a)1 JA. (a) = A - aJA. + 1 (a)/ JA. (a) 

"' .... -­, .-, " 
>" 

/ ' 
I ' .1/ " 

I , , ' , ' , " 
'01 ' 

1m kb 

5 10 Re kb 

1000 

FIG. 1. Trajectories followed by the S-wave eigenvalues of the SchrOdinger 
equation for a pure imaginary step-shaped potential as the intensity of the 
potential varies. Only the three lowest of an infinity of eigenvalues are 
shown. The numbers beside the trajectories indicate the intensity of the p0-

tential in units iIj2 12mb 2. Eigenvalues above the bisector (dashed straight 
line) could be interpreted as resonances. The dashed hyperbola corresponds 
to an intensity of the potential equal to 10. For this intensity only one eigen­
value lies above the hyperbola and corresponds, therefore, to a confined 
quasistable state. 
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FIG. 2. Trajectories followed by the P-wave eigenvalues of the SchrOdinger 
equation for a pure imaginary step-shaped potential as the intensity of the 
potential varies. All comments in caption for Fig. I apply also here. 

K
oo 

( _a
2 

) =A. + . 
n= 1 2(A. + n) 

(4.15) 

The reduced logarithmic derivative of the Hankel function, 
in the case under consideration of physical values of the an­
gular momentum, can be expressed as a quotient of polyno­
mials 

a'HI'~ 112(a')IHII~ 112 (a') 

I ., l:~-:'W - p)(1 + V - p)( - 2ia'jP 
--+m- , 

2 l:~=o(/+V-p)(-2ia')P 
(4.16) 

with the usual notation9 

(I + ~,n) =( 1+ n)!/n!( 1- n)!. 

Those solutions located below the bisector of the fourth 
quadrant of the a plane do not admit a clear physical inter­
pretation, since the real part of the corresponding energy lies 
below the threshold, Re E < O. Solutions above that bisector 
are commonlylO interpreted as resonances. Some of these 
solutions, namely those above the hyperbola Re(kb) 
xlm(kb) = - mb 21 Vl/lr,doinfactcorrespondtoconfined 
states. Actually, for these solutions it becomes 1m k ' > 0 and 
the external wave function, h I')(k 'r), decays exponentially 
with r. 

Let us now prove that only a finite number of solutions 
can represent confined states. For large values of lal, the 
approximate version, Eq. (4.7), ofEq. (4.5) is applicable. We 
then immediately obtain 

Re a~mT + (/ + 1)17'12 + ~ Arg(2lra2lm Vb 2 - I), 
(4.17a) 

1m a~ - pogl2lra21mVb 2 -II- (4.17b) 

These relations show that for the intensity of the potential 
being fixed, solutions corresponding to increasing values of 
the integer n are successively more distant from the real axis 
and, for n larger than a certain integer, they must lie below 
the hyperbola corresponding to V. Obviously, increasing the 
intensity of the potential makes the solutions approach the 
real axis and the hyperbola move downwards, the two effects 
contributing to increasing the number of confined states. But 
this number remains, nevertheless, finite except in the limit 
IVJ~oo. 
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v. PARABOLIC TAIL 

Let us now consider a potential given by 

VIr) = (J (r - b )!mw2(r - b 2), Arg w2 = - 17'/2, 
(5.1) 

that is, an imaginary potential quadratic in the distance and 
effective only outside a spherical surface of radius b. The 
radial wave function, for angular momentum I in the inner 
region is given by 

(5.2a) 

k being the wave number k =(2mE)1/2 Iii, whereas in the 
outer region it can be written in terms of the Whittaker func­
tion,4 

tf(r)a:p- 3/4 WK,Il(P), r>b, 

with the notation 

p ==rmwlli, 

f.l,=(/+W2. 

K ==(k 2lilmw + b 2mwlli)/4, 

(5.2b) 

(5.3) 

The continuity of the logarithmic derivative of the wave 
function at r = b requires 

J; + 1/2 (a) W;'1l (z) 
a = 2z - 1, (5.4) 

J1+ 112 (a) WK'Il(Z) 

with 

a =kb, z =b 2mwlli. (5.5) 

Equation (5.4) has an infinity of solutions, some of which 
have been obtained numerically, in the cases of angular mo­
mentum 0 and 1, and are shown in Figs. 3 and 4, respectively, 
for varying intensity Iw2

1 of the potential. The reduced loga­
rithmic derivative of the Bessel function has been evaluated 
by means ofEq. (4.15). For the Whittaker function we have 
used two different algorithms, according to the magnitude of 
the variable z. The reduced logarithmic derivative, written as 

W;o/L (z) z WK + I,ll (z) 
Z =--K- , 

WK,Il (z) 2 WK,Il (z) 
(5.6) 

can be expressed in terms of Kummer's functions, whose 
series expansions converge rapidly for smalllzi. In the case 
of large IzJ we have preferred to use the asymptotic expan­
sion4,ll 

WK,Il (z) = e - z/2zK ~oH + f.l, - K,! - f.l, - K;; - liz), 
(5.7) 

so as to obtain 

o 5 10 Re kb 

-2 

Imkb 

FIG. 3. S-wave eigenvalues of the SchrOdinger equation for a pure imagi­
nary parabolic tail. The first three of the infinite set of trajectories followed 
by the eigenvalues, as the intensity of the tail varies, are shown. All eigenval­
ues correspond to confined quasistable states. 
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o 5 Re kb 

-2-

1m kb 

FIG. 4. P-wave eigenvalues of the SchrOdinger equation for a pure imagi­
nary parabolic tail. The comments in caption to Fig. 3 extend to this figure. 

WK + I.,..(Z) 

WK.,..(Z) 

zE'0{ - ! + p, - K, - ! - p, - K;; - liz) 
=Z----~--------~-----------

~o( - ! + p, - K,! - p, - K;; - liz) 

~o(! - p, - K, - ! + p, - K;; - liz) 
X . 

zE'0(! - p, - K,! + p, - K;; - liz) 
(5.8) 

The quotients of confluent hypergeometric functions can 
then be replaced by their continued fraction expansionsl2 

~o(a,b;; - liz) = 1 + K(anIZ), 
~o(a,b + 1;; - liz) n = I 1 

(5.9) 

with 

02m _ I = ° + m - 1, 02m = b + m, m an integer. 
(5.10) 

Analytic approximate solutions of Eq. (5.4) can be ob­
tained in the limit of weak potential, Iw I -+ O. It can be 
checked that Eq. (5.4) is satisfied, for Iwl- 0, if a - 0 in 
such a way that K -+ n + p, + ~, n being a non-negative in­
teger. In that case, 

lim aJ i + 1/2 (a)1 J1 + 1/2 (a) = I + !, 
a-O 

(5.11) 

lim WK + I u(z)/W", ,,(z) = -p, -K _1. (5.12) 
1«>1_0 ·r·r :z 

Going to the next order of approximation we obtain 

(5.13) 

( 
Z "r(2p,) ( 1) E ) W (z)/W (z)~( - II - K - 1) 1 - --- '),,( - 1) n! r - p, - K - - -

K+ I.,.. 11:.,.. r- 2 1 + 2p,"'" r( _ 2p,) 2 z2I-' ' (5.14) 

where E is defined by 

K = n + p, + ~ + E. (5.15) 

Equation (5.4) is fulfilled if E = 0 (Iwill-' + 1), the eigenvalues 
of the energy being then given by 

En.l~(2n + I + ~)1itlJ - mw2b 2/2, n = 0,1,2, ... , (5.16) 

which shows that the solutions tend to those of the parabolic 
potential, discussed in Sec. II, as Iw I -+ O. 

All solutions ofEq. (5.4) correspond to confined states. 
This is evident from Eq. (5.2b) and the asymptotic expansion 
Eq. (5.7). At large distances the radial wave function turns 
out to be 

(5.17) 
r __ 00 

and, as far as Re w > 0, it decreases exponentially as r in­
creases. As shown in Eq. (5.16), those confined states are 
very "broad" for smalllwl, since Arg E~Arg w = - 17'/4. 
It can be seen in Figs. 3 and 4 that the real part of the energy 
of the confined states increases, for increasing Iwl, whereas 
the relative width 1m EIRe E decreases, going to zero as 
Iwl- 00. In the limit Iwl -+ 00, the confined states have the 
(real) energies corresponding to a rigid box of radius b. 

We have shown in Figs. 5 and 6 the radial wave func­
tions of the three lowest confined states with angular mo­
mentum 1= 0 and 1= 1, respectively, for an intensity of the 
potentialwl = 2iin unitsl;2m- l b -4. Theapproximateener­
gies of these states are, for I = 0, 

555 

Eo.o = 1.2998 - 0.7261 i, 

E I •o = 3.4082 - 2.7357 i, 
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E2•0 = 5.4904 - 4.6606 i, 

and, for I = 1, 

0-/ 

o 

__ b3J2 Re'f'(r) 

---- b3/2Im'fJ(r) 

FIG. S. Radial wave functions of the three lowest states ofangu1ar momen­
tum / = 0 confined by an imaginary parabolic tail. Each wave function has 
been properly normalized and its phase arbitrarily chosen so as to make the 
wave function real at the origin. 
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o ---- ./ 

/' 

/ 
/' 

/ 

1= 1 
__ tjl/2Re'l'(r) 

____ b3/2 Im't'(r) 

o ./ 

o 

o 

", --
I 

3 

FIG. 6. Normalized radial wave functions of the three lowest states of angu­
lar momentum I 1 confined by an imaginary parabolic tail. The arbitrary 
phase has been chosen to be that ofjl(kr) for r<h. 

Eo. I = 2.3897 - 1.5238 i, 

EI,1 = 4.3604 - 3.5976 i, 

E2•1 = 6.3985 - 5.6499 i. 

in units ftm - I b - 2
• The radial density of probability for the 

same states is shown in Figs. 7 and 8. 

VI. LINEAR TAIL 

As a last example, let us consider an imaginary potential 

1=0 

o 

o 

0-1-----

b 3 

FIG. 7. Radial density of probability for the three lowest S-wave confined 
states in a parabolic tail. 
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1=1 

o+----~ 

6 

FIG. 8. Radial density of probability for the three lowest P-wave confined 
states in a parabolic tail. 

Vir) = B(r - b )(ftI2m)ab -3(r - b). Arg a = - 1/'12, 
(6.1) 

the intensity of which increases linearly with the distance, 
starting from a given radius b. Once again, the inner radial 
wave function for angular momentum I is given by 

t,bIr) a:.jl(kr). r < b, (6.2) 

with k ==:(2mE )1/2 i'll. In the outer region the radial wave 
equation 

d 2tP(r) + ~ dtP(r) 
dr r dr 

+ (k 2 _ 1(1; 1) _ ab -3r + ab -2)t,bIr) = O. (6.3) 

when written in terms of the dimensionless variable x=rlb, 
becomes 

d 2tfo(X) + ~ dtfo(x) 
dx2 x dx 

+(k 2b 2
_ I(lx~ 1) -ax +a)tfo(x) =0, (6.4) 

with tfo(x) = tP(r). 
In the case of zero angular momentum, the solution of 

Eq. (6.4) behaving regularly at infinity can be expressed in 
terms of the Airy function.9 In fact, 

(6.5) 

as has already been reported by several authors.5,13 The con­
tinuity of the reduced logarithmic derivative of the wave 
function at r = b would then require the fulfillment of the 
equation 

(6.6) 

where the primes indicate derivatives with respect to the cor­
responding variable. 

In the case of I #0 the solutions of Eq. (6.4) have to be 
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obtained numerically. Of course, the solution regular at in­
finity is to be selected. Approximate expressions of such a 
solution, valid in the vicinity of the irregular singular point 
at infinity, can be obtained by standard methods. 14 A useful 
asymptotic expansion turns out to be 

¢(x)_X-S/4 exp{Plx3/2 + Prl/2 + p~-1/2 

+P4X- 1 +PsX-3/2 }[1 +O(x-2)], (6.7) 

with 

PI = - 2aI/2/3, (6.8a) 

P2 = (k 2b 2 + a)/a I/2 , (6.8b) 

P3= _(k 2b 2 +a)2/403/2, (6.8c) 

P4 = (k 2b 2 + a)/4o, (6.8d) 

PS= [/(/+ 1)_~_(k2b2+a)3/8a2]/3aI/2, (6.8e) 

which can be checked by substitution in Eq. (6.4). Alternati­
vely, we can try to relate the solutions of this equation to 
those of the Bessel differential equation in the region of large 
values of x. Changes of both variable and function, 

p = al /3(x - 1 - k 2b 2/a ), sIp) = x¢(x), (6.9) 

in Eq. (6.4) allow us to obtain 

d2s(p) _ (p + 1(1 + 1) (_p_)2)S(p) = O. (6.10) 
dp2 p2 a l/3x 

New changes of variable and function, 

t = ei1T/2ip3/2, w(t) = p-1/2S (p), (6.11) 

give finally 

t d
2
w(t) + t dw(t) 

dt 2 dt 

+ (t
2 

- ! [1 + 4/(1 + 1{ae3x rDW(t) = 0, 
(6.12) 

which can be written in the form 

d 2W(t ) dw(t) (2 ( 21 + 1 )2 t--+t--+ t - --
dt 2 dt . 3 

4/(/+1) 1+k 2b 2/a + .--....::...--....:..-. 
9 x 

x( 2 _ 1 + k:b 2/a))W(t) = O. (6.13) 

Asymptotically, in the region where the term 1(1 + k 2b 2/a)/ 
xl is much smaller than 1, this equation tends to the Bessel 
one.s Obviously, the solution we are looking for tends as­
ymptotically to the Hankel function 

w(t)-H!i~+1)/3(t), (6.14) 

provided the ambiguity in the definition of t, as given by Eq. 
(6.11), has been removed by selecting the value for which 
1m t> O. For I = 0 there is no need to neglect terms in Eq. 
( 6.13) and the relation Eq. (6.14) is exact: we reencounter 
in this way the solution given by Eq. (6.5). 

By imposing continuity at r = b of the logarithmic deri­
vative of the wave function, we obtain the equation 

kbj;(kb )/j/(kb) = 1,6'(1)/1,6(1), (6.15) 

which determines the energies of the confined states. As ex-
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o 5 Rekb 

-2 

1m kb 

FIG. 9. Quasistable states of angular momentum 1= 0 confined by a pure 
imaginary linear tail. The first two trajectories of the eigenvalues of the 
SchrOdinger equation, for varying intensity of the tail, are shown. 

pected, an infinity of such states results for each angular 
momentum. In Figs. 9 and 10 we have represented the first 
values of kb satisfying Eq. (6.15) for I = 0 and I = 1, respec­
tively. In the case of 1= 0, the right-hand side of Eq. (6.15) 
becomes that of Eq. (6.6) and can be easily calculated by 
using ascending series or asymptotic expansions for the Airy 
functions.9 For I = 1 we have evaluated the logarithmic deri­
vative of ¢(x) at x = 1 by means of numerical integration of 
Eq. (6.4) starting at large values of x, for which the expansion 
Eq. (6.7) is applicable. 

Approximate solutions of Eq. (6.6), corresponding to 
I = 0, can be obtained in the cases of weak (Ia I - 0) or very 
strong (I a I - 00) potentials. In the first case we may assume 
that, as suggested by the numerical treatment, the quotient 
k 2b 2/a2/3 tends to a constant as lal- o. This implies that 
kb _ 0 and, therefore, the left-hand side of Eq. (6.6) can be 
approximated by - k 2b 2/3. It is now clear that the assump­
tion of k 2b 2/ a2/3 tending to a constant is correct if the right­
hand side ofEq. (6.6) vanishes for such constant value. Obvi­
ously, there are an infinite number of solutions 
corresponding to 

k2b2/a2/3_ -an' as lal-O, (6.16) 

where we have denoted by an the zeros of the Airy function.9 

By retaining the dominant terms in the two sides ofEq. (6.6), 
we obtain immediately 

(6.17) 

for the energies, in units If/2mb 2, of the S-wave confined 
states. In the case of very strong potentials, it is easy to check 
that the solutions kb ofEq. (6.6) tend to the zeros ofjo(kb ), as 
la I - 00. Following a procedure similar to that used in Sec. 
Y, we obtain 

kb~k",b [1 +a- 1/3 Ai(O)/Ai'(O)], (6.18) 

where k", b takes values such thatjo(k", b) = 0, i.e., 

o 
......... 

-2 

Imkb 

5 

~ /' 
-------~ 

Rekb 

FIG. 10. Quasistable states of angular momentum I = 1 confined by a pure 
imaginary linear tail. The first two trajectories of the eigenvalues of the 
Schriidinger equation, for varying intensity of the tail, are shown. The 
dashed portions of the trajectories are conjectured, as the numerical proce­
dure for obtaining the eigenvalues gets us into trouble for extremely large or 
very smaIl values of the intensity parameter. 
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keD b = n1r, n = 1,2,3, .... 16.19) 

Numerical analysis suggests that for I :#:0, similar to 
what happens for I = 0, the solutions kb ofEq.16.15) tend to 
the origin along the line Arg kb = - 1T/6 as lal-° and to 
the zeros ofjllkb ) as la 1 - 00. However, in the absence of an 
analytical expression for the wave function <PIx) when 1:#:0, 
we have not found explicit expressions giving the behavior of 
the solutions kb in the two limits. 

VII. CONCLUSIONS 

It is clear from the preceding examples that purely 
imaginary potentials are able to produce confined states. The 
number of these is infinite when the imaginary part of the 
potential goes to infinity, and finite when it tends to a con­
stant as the distance increases. The resulting confined states 
are quasistable and, as it was to be expected, they turn out 
longer lived when the potential presents a real core besides 
the imaginary tail. 

In what concerns the radial dependence of the potential, 
the results obtained in the different examples suggest that a 
steeper increase of the tail with the distance implies more 
stable confined states. As a general feature, a rapidly increas­
ing imaginary tail has an effect similar to that of an impen­
etrable wall. 

The purely imaginary potentials considered in this pa­
per are, obviously, unrealistic since any potential aiming to 
represent the quark-antiquark interaction should contain a 
nonvanishing real part. The addition of an attractive real 
term to the potentials considered above would lead to more 
observable confined states, as their reduced width would be­
come smaller. But, importantly enough, the real part of the 
potential does not need to be of long range, in order to pro­
duce confinement, provided an imaginary tail is present. 

As a by-product of our study, we have obtained, in Sec. 
VI, asymptotic expansions for the wave function in a linear 
potential. Although in our discussion the intensity param­
eter a was assumed to be pure imaginary, the quoted expres­
sions are equally valid for complex a and, in particular, for 
real a. 
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Penrose diagrams including the c boundary at infinity and the singularities for the Einstein, 
Eddington-Lemaitre, Eddington-Lemaitre--Bondi, and anti-de Sitter universes are constructed. 
Penrose diagrams for the Einstein, Eddington-Lemaitre, and anti-de Sitter universes have been 
published before, but these diagrams are incomplete in that the published diagrams do not contain 
the c-boundary points of the universes they are supposed to represent. 

I. INTRODUCTION 

The most widely used method of representing the global 
structure of a space-time is the Penrose diagram. Although 
the technique for constructing such diagrams was intro­
duced by Penrose over twenty years ago,1 no new diagrams 
of standard cosmologies have been given since Penrose's 
original paper,1 as can be seen by comparing the examples in 
his original paper with the list he gave in his most recent 
paper, which discusses the global structure of exact solu­
tions.2 In this most recent list are found 11 diagrams, and of 
the nine figures representing cosmological solutions, three 
are incomplete. The Penrose diagrams for the Einstein static 
universe, the Eddington-Lemaitre universe, and the anti-de 
Sitter universe are incomplete, since single c-boundary 
points are not brought into a finite distance by a conformal 
transformation and included in the diagrams as boundary 
points of the conformal space-time, but rather are left dan­
gling as disjoint points "at infinity." (This is also the repre­
sentation of the global structure of these space-times in Pen­
rose's Adams Prize essay,3 and in Hawking and Ellis.4

) 

Penrose actually included the single ideal points of the Ein­
stein universe in a rough diagram in his first paper on the 
conformal structure of infinity, but this rough diagram (Fig. 
9 of Ref. 1) incorrectly represents the true conformal struc­
ture of the Einstein universe, as I shall show below. 

I shall show how to include the isolated ideal points in 
the Penrose diagrams for the Einstein, Eddington-Lemaitre, 
and anti-de Sitter space times. I shall also construct the Pen­
rose diagram for a spatially homogeneous and isotropic cos­
mology which I term the "Eddington-Lemaitre--Bondi uni­
verse": it is a k = + 1 Friedmann universe with positive 
cosmological constant that starts at a singularity and asymp­
totically approaches the Einstein static universe (see Bondi, S 

p. 84 for a discussion of this cosmology). This cosmological 
model is interesting because its causal structure is identical 
to a closed universe that begins in a Friedmann singularity, 
but ends in a Mixmaster singularity, in which the horizons 
disappear.6-S If the actual universe is closed, it is more likely 
to be represented by a model with a chaotic final singularity, 
rather than the extremely regular Friedmann final singular­
ity, as Penrose has pointed out.9

•
10 It is possible that such a 

singularity has no horizons, though this point is not estab­
lished (see Ref. 11 for a discussion). If such is indeed the 
actual universe's global causal structure, it would be useful 
to have a simple Penrose diagram which would illustrate it. 

II. CALCULATING THE DIAGRAMS 

In standard coordinates, the Einstein static universe can 
be written as 

dS'2 = - dt 12 + R ~ [dx2 + sin2 X(dO 2 + sin2 0 d;2)] , 
(1) 

whereRoisaconstant, - 00 <t' < + oo,O<X<17",O<O<17", 
0<;<217". We can most simply bring temporal infinity in to a 
finite distance via the transformation t I = (Rol a)tan t, where 
a is a constant to be determined later. In the new time coordi­
nate t, (1) is 

dS'2 = R ~a-2 sec4 t d~, 

where 

d~ = - dt 2 + a2 cos4 t [dr + sin2 X(d0 2 + sin2 o d;2)] , 
(2) 

with - 17"/2 < t < + 17"/2. Metric (2), which is conformal to 
the Einstein metric (1), is the metric we will use to form the 
Penrose diagram. It is the metric of a closed Friedmann uni­
verse with spatial topology S 3 and with initial and final sin­
gularities at t = - 17"/2 and t = 17"/2, respectively. 

As is usual in the construction of Penrose diagrams,4 I 
shall use the manifest spherical symmetry of (2) to restrict 
attention to the t, X coordinates only; each point in my pro­
posed Penrose diagram will represent a two-sphere if X =1= 0 
or X =1= 17". If X = 0 or X = 17", the point in the diagram will 
represent a point at the origin of coordinates or the antipode 
of the three-sphere t = const, respectively. 

The conventions for the representations of timelike, 
spacelike, and null lines in Penrose diagrams are the same as 
those in Minkowski diagrams: the vertical direction is time­
like, the horizontal direction is spacelike, and most impor­
tant, null lines are those at 45°, so that any line with an angle 
of less than 45" from the vertical is timelike, and any line 
with an angle of greater than 45° is spacelike. In the construc­
tion of the Penrose diagrams for the standard universes, 1-3 
this convention is obtained by conformally mapping the uni­
verses into a proper subset of the Einstein universe (1) with 
Ro = 1. For this particular Einstein universe, the metric in 
the (t ',X) "plane" is d~ = - dt ,2 + dr, which manifestly 
has null lines at 45°, and indeed the coordinates (t ',X) mea­
sure proper time and distance, respectively. 

We can retain the Minkowski diagram conventions in a 
two-dimensional pictorial representation of (2) only by using 
proper time and distance in this case also. The coordinate t 
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already measures proper time in (2); infinitesimal proper dis­
tance r in the X direction is dr = a cos2 t dX. Integrating in 
the X direction gives 

r= ax cos2 t + lit), (3) 

where O<X<1T. The function/lt) must vanish if r is to mea­
sure proper distance. [Alternatively, we can obtain lit ) = 0 
by imposing the usual Friedmann universe requirement that 
the ratio of the proper distances between two fundamental 
observers Ithose that have a constant coordinate distance) at 
two different times be a function of proper time t alone. See 
Ref. 7 for a discussion of this requirement.] 

A restriction on the constant a is obtained by requiring 
that the paths of all the fundamental observers X = const be 
manifestly timelike in the (t, r) coordinates. This require­
ment means that we must have Idr/dt I < 1 for all fundamen­
tal observers. For fundamental observers, I dr/ 
dt I = alsin 2t lx, so this inequality will be satisfied for all 
fundamental observers for all time if a< l/1T, since O<X<1T 
and - 1T/2<,t<'1T/2. 

As suggested by Penrose,l the diagram will look more 
symmetric if the fundamental observer, which is stationary 
in the diagram, is chosen to be the maximum area two­
sphere in a t = const hypersurface. Thus the paths of the 
fundamental observers in the It, r) "plane" will be given by 

r = a cos 2t U' - 1T/2), (4) 

with a < 2/1T. 
The Penrose diagram for the Einstein static universe is 

given in Fig. 1: the curved dashed lines are the fundamental 

- i+ (t' :."',t= 'IIIZ) 
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/ 
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(t': -"',t= -rrIZ) 
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\ , , 

time (t) 

space (r ) 

world line of 2-sphere 
(:x.:'ltIZ,e,<I» 

FIG. 1. The Einstein static universe. 
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observers at the origin X = 0 and at the antipodal point 
X=1T· 

The dotted line inclined at 45° is a light ray passing back 
and forth between these two points in space. The magnitude 
of the velocity dr/dt of the origin of coordinates and the 
antipodal point reaches a maximum at t = ± 1T/4, and de­
creases to zero at t = ± 1T /2. The decrease to zero allows the 
universe (2) to slide into the singularity, so that light rays can 
pass back and forth between the points X = 0 and X = 1T an 
infinite number of times. The rough diagram of the Einstein 
universe given by Penrose IRef. 1, Fig. 9) did not have this 
sliding property; the velocity of the fundamental observers 
increased into the singularity, thus making it impossible for a 
light ray to pass between fundamental observers an infinite 
number of times. This rough diagram therefore does not rep­
resent correctly the causal structure of the Einstein universe. 

The singularities at t = ± 1T/2 are the ideal points j+, 

j- . Although these points are attached to the space-time at a 
finite distance, they are not attached smoothly. This is un­
avoidable, for the c boundary consists of two points rather 
than two three-spheres as in the dust Friedmann universe. 

The metric (2) regarded as a Friedmann universe is in­
teresting in its own right, for it is a nonstatic, k = + 1 Fried­
mann universe that is a simple example of what Budic and 
Sachs3 termed a deterministic space-time: a space-time 
whose future and past are completely determined by data 
given on the past light cone of any point. The only examples 

I 
world line of I 
origin of I 
spa tial 
coordinatesJ 

I 
I 
I 

t/: constant 
hyper surfaces 

I 
I 
I 
\ 
\ 
\ 

world I ine of the 
Z- sphere:x. = rrl2 

\ 

\ , , 
\ 
\ . 
\. , ..... 

\ 

i­

(t' : - 00) 

J'+(t': ."') 

\ 

/ 

I 
I 
I 
I world line of 
I three-sphere 
I anti pode 
I 
I 
I 

I 
. I 
..... light ray 

I 
I 

...... ~ trajectory 

...... I 

/ 

.:.y 
..... / 

..... / 
.. ' I 

/ 
/ 

/ 

FIG. 2. The Eddington-Lemaitre universe. 
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FIG. 3. The Eddington-Lemaitre-Bondi universe. 

of deterministic space-times given by Budic and Sachs12 

were obtained by topological identifications. The determin­
istic nature of (2) comes from the metric. 

The Eddington-Lemaitre universes is a k = + 1 Fried­
mann universe that asymptotically approaches the Einstein 
static universe as t' _ - 00, and the de Sitter universe as 
t' _ + 00. It thus has a conformal structure of the Einstein 
universe in the past, and the conformal structure of de Sitter 
space in the future. The conformal structure of de Sitter 
space is well-known (e.g., Ref. 4), so the Penrose diagram for 
the Eddington-Lemaitre universe is as pictured in Fig. 2. 

The Eddington-Lemaitre-Bondi universe is a k = + 1 
Friedmann universe that begins in an initial singularity (with 
c-boundary topology S 3) and asymptotically approaches the 
Einstein universe. The Penrose diagram for such a space­
time is given in Fig. 3. I use the conventions of Hawking and 
Ellis4

: double lines in the Penrose diagram represent singu­
larities. 

Anti-de Sitter space is conformal to the part of the Ein­
stein universe with - 00 < t ' < + 00, but with O<x < 17/2. If 
we follow the conventions used above for the Einstein uni­
verse (the two-sphere labeled by X = 17/2 is kept fixed), then 
the Penrose diagram for anti-de Sitter space including the 
ideal points;- , i+ is correctly given in Fig. 4. The c boundary 
consists of these points i+ , ;- together with a timelike hyper­
surface f which has topology S 2 xR 1 and which begins at 
the point ;- and ends at the point i+ . 
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The complete magnetic generalization of the Kerr-Newman (KN) metric obtainable by applying 
a Harrison transformation to the Ernst potentials determined for an arbitrary linear combination 
of the two Killing vectors of the seed KN metric is derived. 

I. INTRODUCTION 

The main purpose of this work is to establish the most 
general magnetized Kerr-Newman solution, MKN for 
short, that can be derived by applying the Harrison generat­
ing solution technique 1 to the seed Kerr-Newman solution2 

(KN). 
Let the KN metric be given as 

g=l:J.(dr/R +d( 2) + (A/I:J.) sin20d¢2 

-40 [(mr-v)/I:J.] sin20d¢dT 

- [(R - a2 sin2 O)/I:J.] dT2, (1.1) 

accompanied by the electromagnetic two-form 

w = ! (fpv + ~v )dx!" 1\ dx v 

= d { (e ~H g) [dT - (a - ir cos 0 )d¢)]}, (1.2) 
r+lacosO 

where 

I:J. = r + a2 cos2 0, 

R = r + a2 - 2mr + 2v, 2v: = e2 + g!, 

A = (r + a2f - Ra2 sin2 0 

(1.3) 

(m represents the mass, a stands for the rotation parameter, 
and e and g are the electric and magnetic charges, respec­
tively). The coordinates { T,r,O,¢ } run the values 
- 00 < T < 00,0 < r < 00, O<O~;;'T, O<¢<21T', respectively. 

Choosing a Killing vector as a linear combination of the 
two Killing directions a~ and aT according to 

KP = alJ1. + /38;" (1.4) 

one defines a function / as 

-/=KPKp =(I/I:J.){[aa-p(r+a2)fsin2 0 

- [a-pasin20]2R}=:D/I:J., 

and the Killing one-form as 

K=K dxl' =f[ _ (adT+Pd¢) 
P (a2 + a2p2) 

+ W(ad¢-PdT)], 

where the function Wis 

W= - [D(a2 +a2p 2)]-1 

(1.5) 

(1.6) 

X lap [a2(1 - sin4 0) R + r sin2 O(r + 202)] 

+ a(a2 - a2 P 2)(R - r - a2) sin2 0 J. (1.7) 

Notice that the representation of K is not unique. For in­
stance, adding and subtracting in W the term (a/ P ) 
X (a2 + a2 P 2) -I, one arrives at K of the form 

K=/[ -d¢/P+ W(ad¢-PdT)], 

where now W is given by 

W = - (1/ pD)[a(R - a2 sin2 0) 

+ paIr + a2 - R ) sin2 0 ]. 

In terms of the quantities defined above, the metric (1.1) 
can be written as 

g =/-I{ /l:J.[dr/R + dO 2] 

+R sin2 O(a d¢ -PdTf -K®K}. (1.8) 

The complex Ernst potentials ct> and If associated to the 
KN metric and its representation (1.8) can be evaluated from 
the equations 

dct> = - iK J w, 

dlf = iK J (dK + *dK) - 2$ dct>, (1.9) 

where J denotes the step product and * stands for Hodge's 
star operation. 3 

The ct> potential amounts to 

ct> = [Ie + i g)/(r + ia cos 0)] [a - P (a - ir cos 0 I], (1.10) 

while the If potential is 

If = / - (2v/ 1:J.)[(a - pa)2 + P 2r cos2 0] 

+ 2(i/ I:J.) cos 0 {m[a(a - pa sin2 0 f - pl:J.(3(a - pal 

+ {3a cos2 0)] + pr[al:J. + 2v(a - pa sin2 O)]}. 

(1.11) 

For the sake of simplicity we have omitted the additive 
constants ct>o and If o. 

II. MAGNETIZED KERR-NEWMAN CLASS OF 
SOLUTIONS 

According to the magnetizing process (Harrison trans­
formations), the new generated metric assumes the form 

g =/,-I{/I:J.[dr/R + d0 2] 

+ R sin2 O(a d¢ - P dT)2 - K' ®K'}, (2.1) 

where 

/'=1\f11- 2f, 
K' =/'[ - (a dT + P d¢)/(a2 + a2 P 2) 

+ W'(ad¢-pdT)]. (2.2) 
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The complex function 'II is determined as a function of the 
"seed" Ernst potentials according to 

<1>' = '11- 1(<1> + (E + iB )~), ~' = ~'II-1. (2.4) 

The function W' oUght to fulfill the equation 
'11= 1-2(E-iB)<I>-t5~, t5:=E2+B2, (2.3) 

dW' = 'II'ii dW + if- 1a sin (J 
where E and B are real constants representing the electric 
and magnetic field parameters. This function is crucial in the 
determination of the new Ernst potentials, which are given 
by 

X {('II'ii.8 - 'ii'll.8)dr - ('II'ii. r - 'ii'll.r)d(J ), 
(2.5) 

which has a general solution 

DW' = D( W + Wo) - 4(Ee + Bg) faa - {3(a2 + r)]r sin2 (J - 4(Eg - Be) (a - {3a sin2 (J)R cos (J 

+ 6(t5!a) v[(aa - {3(a2 + r»)(aa - {3(a2 
- r») sin2 (J + (a - {3a sin2 (J)(a - {3a( 1+ cos2 (J»)R] 

- 4(t5!a)(Ee + Bg){m(a -{3a) (a -{3a sin2 (J)(a -{3a - 3{3a cos2 (J)R 

+ mea - {3a) faa - {3(a 2 + r)] faa - {3(a 2 
- r)] sin2 (J 

- ar[aa - {3(a2 + r) J [{32r + (a - {3a)2] sin2 (J 

- {3arR sin2 (J[2(a - {3a) (a - {3a sin2 (J) + {3(aa - {3(a 2 + r» cos2 (J] 

x4t5(Eg-Be)R cos (J{(a -{3a sin2 (J)[{3(a2 + 2v) cos2 (J - (a -{3a)2] 

+{3sin2 (J[{3r(a -{3a sin2 (J) - 2(a -{3a)(aa -{3(r +a2 »)]} 

+ t52{(a - f3a)4a -1 [R(2m2 + a2 cos2 (J) + a2 sin2 (J(2m2 - 4mr + r)] 

- (a - {3a)3{3[R(8m2 - 402 
- 4v + a2 cos2 (J) cos2 (J + 2mrR sin2 (J - r(r + 402 + 4v) sin2 (J] 

. + (a - {3a)2{32[2oR cos2 (J (a2 + 2v)(2 - cos2 (J) - 3m2 cos2 (J) 

+ 2r sin2 (J (a(r - 6mr - 202 
- 4v) - ra- 1m2) - 12mraR sin2 (J cos2 (J] 

- (a - {3a){33[R cos4 (J(a2 + 2v)(2v + a2 cos2 (J) - 4m2a2 cos2 (J) + (2v - 6mr + r)r4 sin2 (J 

+ 3arR sin2 (J cos2 (J (r + ra2 cos2 (J + 4vr - 2m(2r + a2 cos2 (J»)] - {34a[R(a2 + 2V)2 cos6 (J + f'sin2 (J 

+ rR sin2 (Jcos2 (J(3r + (3a2 + 6v - 2mr) cos2 (J)J), (2.6) 

where Wis given by Eq. (1. 7) and Wo is an arbitrary constant. 
The electromagnetic field coupled to the metric line ele­

ment (2.1) is described by the two-form 

F'li)' =K' Ad<l>' + *(K' A d<l>') , (2.7) 

where K' and <1>' are given, correspondingly, by (2.2) and 
(2.4). 

We shall denote this magnetic Kerr-Newman metric 
structure by MKN(a, {3). 

It contains as particular branch the MKN(O, 1) solu­
tion4

•
s; by setting in the solution presented above a = 0, 

{3 = I, and g = 0, accompanied by a redefinition of the coor­
dinate ~, ~ ---+ a2~, one arrives at the solution Ref. 5 in 
spherical coordinates. [In the expression of f of Ref. 5, for­
mula (2), the factor a2 in front of fwas omitted; the correct 
definition of fis a2 f = -/1 -lA P.] 

In the limit a tending to zero, by choosing the constant 
Woas 

563 J. Math. Phys .• Vol. 27. No.2. February 1986 

Wo = - 2t5a- 1[3v - 2ma(Ee + B g) + m2a 2t5], 

one obtains from the MKN{a, {3) metric the corresponding 
magnetic Reissner-Nordstrom solution. 
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The one- and two-soliton solutions obtained by using the Belinsky-Zakharov inverse scattering 
method in the particular case where the seed solution is taken as the one due to van Stockum are 
studied. For the above-mentioned particular case the inverse scattering problem is solved in terms 
of a single quadrature. 

I. INTRODUCTION 

Recently we studied solutions to the vacuum Einstein 
field equations obtained by using the Belinsky-Zakharov l ,2 
inverse scattering method (ISM) with a diagonal seed solu­
tion. 3

-
9 We found that in this case the inverse scattering 

problem reduces to the computation of a single quadra­
ture.3,4 This fact was used to study some known solutions as 
well as to generate some new ones.3 The ISM and other simi­
lar solution-generating techniques 10, II seldom have been ap­
plied to nondiagonal seed solutions. An example of solutions 
obtained from a nondiagonal seed is the Belinsky-Franca­
viglia 12 solution that uses a Bianchi II vacuum cosmological 
model as a seed solution. 

The aim of this paper is to study the application of the 
ISM to the van Stockum 13 solution, which is a nondiagonal 
solution depending on a single arbitrary function. We find 
that in this case the inverse scattering problem can also be 
solved in an explicit way, similar to the diagonal seed solu­
tion case. We have two main reasons to study the inverse 
scattering problem associated with the above-mentioned so­
lution. First, to obtain new nontrivial exact solutions to the 
vacuum Einstein equations, and second, to better under­
stand the mechanism of the ISM, since one of the shortcom­
ings of most of the new-solution-generating algorithms like 
the ISM, Backlund transformations, etc., 10,11 is that they do 
not give significant information about the physical or geo­
metric meaning of the generated solutions. Among the solu­
tions generated using the ISM with a very simple diagonal 
seed solution,3 we were able to identify some already known 
solutions. But, even in these simple cases the meaning of the 
parameters introduced by the ISM was not easy to under­
stand. 

Even though the van Stockum solution has highly un­
physical properties, it is known to be related to important 
solutions like the Kerr solution. 14 Also, recently it has been 
used to generate an interesting family of new solutions to the 
vacuum Einstein equations. 15 

In Sec. II we study the Einstein equations, together with 
the ISM, for a metric with a general signature and two com­
muting Killing vectors, i.e., we present a unified treatment of 
the Riemannian case, the axially symmetric case, the cylin­
drically symmetric case, and the zero signature case. In Sec. 
III we solve the inverse scattering problem for the van 
Stockum solution. Finally, in Sec. IV we study the one- and 
two-soliton solutions associated with the previously men­
tioned particular solution. 

II. THE EINSTEIN EQUATIONS AND THE ISM 

The metric that we shall consider in this paper is 

ds2 = e"'(TAB d:xA dxB + Yab dxa dxb, (2.1) 

where (:xA, xa
) = (u, v, x,y), the indices A, B, etc., run from I 

to 2, and the indices a, b, etc., run from 3 to 4. The functions 
wand Yab depend only on:xA; ((TAB) and (Yab) are symmetric 
2 X 2 matrices characterized by 

(T = (~ ~), (2.2) 

(2.3) 
where E and 1/ are two sign functions. Depending on the 
value of these functions, the line element (2.1) can be used to 
represent the following spaces: (a) cylindrically symmetric 
space-time (E = - I; 1/ = 1), (b) axially symmetric space­
time (E = I; 1/ = - 1), (c) Riemannian space with axial sym­
metry (E = I; 1/ = 1), and (d) zero signature space (E = - 1; 
1/ = - 1). 

The vacuum Einstein equations for the metric (2.1) re­
duce to the following system of equations: 

qAB (aYab, A Y"'),B = 0, (2.4) 

(In a),2w,1 + (In a),1 W,2 = 2(ln a),12 - ~Yab, I r:;, (2.5a) 

(In a),1 W,I + (In abw,2 = (In al,11 - E(ln a),22 

+ iYab, I r:t + (EI4)Yab,2r:;, 
(2.5b) 

where ( ),A' etc., indicate partial derivation with respect to 
the coordinate :xA. Note that in Eqs. (2.4) and (2.5) the 
indicator 1/ does not appear explicitly. It can be easily 
shown 16 that there is no loss of generality if we choose a = u. 
In this particular "gauge," Eqs. (2.4) and (2.5) can be writ­
ten in the more appealing form 17 

qAB(UY,Ay-I),B = 0, 

W,I = - (l/u) - iu Tr(Y,1 Y,ll - EY,2Y,2 1
), 

W,2 = -!u Tr(Y,1 Y,2 I), 

(2.6) 

(2.7a) 

(2.7b) 

where Y,A 1 = (y-I),A' Equation (2.6) is the integrability con­
dition for the system of equations (2.7). 

The ISM used to solve (2.6) is based on the fact that (2.6) 
is the integrability condition for the overdetermined system 
of equations 

Du'/' = [(uU + AV)/(U2 + EA 2)]tP, 

DvtP = [(uV - EAU)/(U2 + EA 2)]tP, 

(2.8a) 

(2.8b) 
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Du == au + [Uu/(u2 + EA 2)]a..t, 

Dv = av - [2EA 2/(U2 + EA 2)]a..t, 

(2.9a) 

(2.9b) 

where '" is a two by two matrix function of u, v, and the 
spectral parameter A, U == ur.1 r- I, and V == ur.2 r- I

. The 
inverse scattering problem associated with n simple poles of 
the scattering matrix can be explicitly solved yielding the n­
soliton solution 1.2 

n (r-I) N(lW(k) 

(rn)ab = (rO)ab - L Ik a b, 
k.1 f..tl f..tk 

r 1k == m~)(rO)abm~)//J.tk f..tl + EU2), 

N~) = m~)(rO)ba' m~) = m't,}MI!), 

M(k) = "'0- II ' 
..t=Pk 

f..tk.l = 2u f..tk/(U2 + E f..t~), 

f..tk.2 = - 2E f..tU(u2 + E f..t~), 

(2.10) 

(2.1Ia) 

(2.11b) 

(2.11c) 

(2.12) 

where the m~) are arbitrary constants; ro and "'0 refer to a 
known solution to (2.6) and its associated "wave function" 
solution to (2.8). The known solution ro is called the "seed" 
or background solution. 

The poles' trajectories can be computed using Eqs. 
(2.12); we find 

f..tk =ak -V+Ekl[(ak -V)2+ EU2f12 I, (2.13) 

where Ek = ± 1. Also, the determinant associated with 
(2.10) can be explicitly computed: 

(2.14) 

The expression (2.10) is a solution of(2.6) but does not satisfy 
(2.3) (with a = u). To remedy this problem we can define the 
physical quantityl.2 

yh = ur/(ldet rl)1/2 (2.15) 

that satisfies both Eq. (2.3) with a = u and (2.6). 
The metric coefficient llJ can also be explicitly comput­

ed, yielding 

llJn = llJo + In[u - n
Z

I2CUI f..tk)n + I 

X Ii (f..tk-f..tI)-2 det r j, (2.16) 
k.l= I 
k>1 

where llJo is the function llJ associated with the seed solution 
r 0, and the factor 

should be set equal to 1 for n = 1. 
To close this section we want to point out that the ISM 

solution to (2.6) does not depend on the value of ",. A unified 
treatement of the elliptic case E = 1 and the hyperbolic case 
E = - 1 can be also found in Ref. 18. Note that in Ref. 18 it 
is assumed that E = - ",. Thus the present results are slight­
ly more general since we assume that E and '" are not related. 
Riemannian metrics can be used to generate axially symmet-
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ric odd-number-soliton space-times.3 They also can be used 
to generate even-number-soliton solutions associated with 
Euclidean SU(2) gauge fields. 19 

III. THE SEED SOLUTION AND THE FUNCTION "",0 

The seed solution that we shall study in this section is 
the solution ofEqs. (2.6) and (2.7) given by 

r = u(~ ~), (3.1) 

llJo = In(CoIu I/2), (3.2) 

where Co is an integration constant and rP satisfies 

rP.1I + rP.I/U + ErP.22 = O. (3.3) 

In this case, '" = - 1. The van Stockum solution is obtained 
by putting E = I in (3.3). Note that there does not exist a 
hyperbolic version of this metric with signature ± 2. 

A convenient change of function to solve (2.8) is 

A = (u2 - 2EAV - EA 2)112",. (3.4) 

From (3.4), (2.8), and (2.9) we get the equivalent system of 
equations to (2.8): 

D u A = [ [u(U - I) + A V]I(u2 + EA 2) J A, 

DvA = [[uV - EA (U - J)]I(u2 + EA 2)JA. 

(3.5a) 

(3.5b) 

By putting A = 0 in (3.5) we get the "initial condition"I.2 

AI..t=o = r/u. (3.6) 

Equations (3.5) for the seed solution (3.1) reduce to 

DuA = [(U2rP.1 + AUrP.2)1(U2 + EA 2)] ~ A, 

DvA = [(U2rP.2 - EAUrP.d/(u2 + EA 2)] ~ A, 

where 

It is a matter of simple verification to show that 

A=(~ ;) 
satisfies (3.6) and (3.7) as long as 

DuF = (U2rP.1 + AUrP.2 )/(u2 + EA 2), 

DvF = (U2rP.2 - EAtI>.2 )/(u2 + EA 2), 

F l..t=o = rP· 

(3.7a) 

(3.7b) 

(3.8) 

(3.9) 

(3.1Oa) 

(3.1Ob) 

(3.IOc) 

Solutions to (3.10) for different functions rP are studied in 
Refs. 3-9. Since in the solution (2. 1OH2. 16) "'0 only enters 
evaluated along the poles' trajectories, to compute the soli­
ton solutions we only need 

Fk ==F 1..t=Pk' (3.11) 

From (2.12) we find that (3.1Oa) and (3.1Ob) along the poles' 
trajectories reduce to 

auFk = (U/2f..tk)(f..tk.lrP.1 -Ef..tk.2rP.2), 

a.Fk = (u/2 f..tk)( f..tk. I tI>.2 + J.tk. 2t1>.d· 
Thus 

Fk = f 2:
k 

[(f..tk.ltI>.1 -Ef..tk.2rP.2)du 

(3.12a) 

(3.12b) 

+ (f..tk. 1 rP.2 + f..tk. 2 rP.ddv] . (3.13) 
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The existence of Fk is guaranted by Eq. (3.3) and by the fact 
that In I'k also satisfies this same equation. The condition 
(3.1Oc) is also satisfied, since 

I'k.. I = ~ I'k.2 I - 0 
I'k I'k~O U' I'k I'k~O - • 

(3.14) 

.,Ph_ -P.(I'. + EU2/1'.) 
{33 - , 

2q. + p. (¢> - 2F.) 

11'!' = Vt. - EU
2
/1'.J(q. - p.F.J - EP.(U2/1'.W> 

2q. + pM - 2F.) , 

The expression (3.13) unifies the corresponding results pre­
sented in Refs. 3 and 4. 

IV. ONE- AND TWO-SOLITON SOLUTIONS 

From (3.4), (3.9), (3.11), and (2.1OH2.16) we find that the 
one-soliton solution associated with the seed solution (3.1) 
and (3.2) can be written as 

(4.la) 

(4.1b) 

r!'!' = - Vt. + EU2/1'.)(q. - p.F.J2 + EP.(U2/1'.)[2q. + P.(¢> - 2F.)]¢> 
P. [2q. + pM - 2F.J] , 

(4.1c) 

(4.2) 

where we have introduced the notation Pk =mh;) and 
qk =m~). Also, we have denoted the "renormalized" inte­
gration constant by the same symbol used in (3.2), a practice 
that we shall follow in this paper. First we want to point out 
that (4.1) and (4.2) is not a solution of physical interest, since 
for either value of E we have that the metric (2.1) constructed 
with (4.1) and (4.2) has the wrong signature. In the E = - 1 
case we have that the seed solution has the signature 
(- + + -) and the one-soliton ISM produces either 
(- + + -) or (- + - +) as Eq. (2.14) with 1] = 1 
indicates. Also, in the case E = + 1 we have that the seed 
solution has signature (+ + + -) that changes to either 
(+ + + +) or (+ + - -). An interesting feature of 
this solution is that the particular case obtained by letting 
F. = ¢> = 0 in (4.1) and (4.2) is a flat solution; this fact is 
unexpected, since we start applying the ISM to a nonflat 
background solution. As a matter off act (3.1) and (3.2) with 
¢> = 0 represent a Taub-like solution.20 

In a similar way we find that the two-soliton solution 
can be written as 

11f = EPtP2UVt2 - I'.){ p.f 2 (2q2 + P2(¢> - 2F2)] 
I'tI'21l. 1'2 

- P2/. [2q. +P.(¢>-2F.)]}, (4.3a) 
1' • 

• 'ph I'tI'2 I'tI'2 + EU
2 
{p I [2q ("" 2F )] 

(34 = --+ A tP2 2 2 + PH' - 2 
U I'l'tI'2i.J. 

X [q. + pM - F.J] - 13[P.q. + P2ql 

+ PtP2(¢> - FI - F2)] [P.q2 + P2ql 

+ PtP2(2l{> - F. - F2)] + PtP21 .[2q. 

+ pM - 2F.ll [q2 + P2(¢> - F2)]}, (4.3b) 

r!'!' = I'tI'2¢> + I'tI'2 + ~U2 {P2/2[2q2 + P2(¢> - 2F2)] 
U UI'tI'2 
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X [ql +pM -F.W- 2/3[(Plq2 +P2ql 

+ PtP2(¢> - FI - F2)] [ql + pM - FIl] 

X [q2 + P2(¢> -F2)] + pd .[2q1 + pM - 2F.)] 

X [q2 + P2(¢> - F2W}, (4.3c) 

J. Math. Phys .• Vol. 27. No.2. February 1986 

r,--------------------------------

where 

and 

II = I'i Vti + EU2)Vttl'2 + EU2), 

12 = I'i Vti + EU2)Vttl'2 + EU2), 

13 = I'tI'2Vti + Eu2)Vti + EU2), 

Il. = EU2Vt2 - I'lf[Plq2 + Pzql + PtP2(¢> - FI - F2W 

(4.4) 

(4.5a) 

(4.5b) 

(4.5c) 

+ Vttl'2 + U2)2[P.q2 - P2q. - P2P I (F2 - FtlV (4.6) 

First we notice that the two-soliton solution (4.3) and (4.4) 
with E = 1 has the right signature, since a two-soliton trans­
formation does not change the sign of the determinant of the 
seed solution, as Eq. (2.14) indicates. An interesting subcase 
is obtained by puttingp2 = ¢> = F2 = 0 in (4.3) and (4.4), i.e., 

11f = 0, 11: = - EU, (4.7a) 

r!'!' = - 2EE.ql(a2 - a.Ju/PI~(al - V)2 + EU 2
, (4.7b) 

0)2 = 0)0' 

In deriving (4.7b) we have made use of the identities 

EU2Vt2 - I'lf + Vttl'2 + Eu2f = Vti + EU2)Vti + EU2), 

(4.8) 

(4.9) 

(4.10) 

By takingpl = q2 = 0 in (4.3) we get that 11f and 11:, and 0) 

are given by (4.7a) and (4.8), respectively, and that 
2 r!'!' = I'tI'2¢> + I'tI'2 + EU 

U UI3 

X [(/2 - 2/3)¢> + 2(/3 - 12)F2]' (4.11) 

The complementary case, i.e., P2 = ql = 0, is obtained by 
doing 12-+/1 andF2-+F1 in (4.11). 

In the axially symmetric case we can interpret the two­
soliton solution obtained from the Weyl solution as arising 
from the superposition of a potential ¢> and the potentials 
associated with two semi-infinite wires.3 The particular case 
(4.7) and (4.8) tells us that the "flat" van Stockum solution is 
related through the ISM to the van Stockum solution asso­
ciated with a point mass. The potential associated with (4.7), 
i.e., ¢>'==r!'!'/u, is obtained only in the special case 
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t/J = Fk = P2 = O. Note that the potential associated with the 
two-soliton generated from the Weyl solution is obtained 
from restrictions the constants Pk and qk only. 

The potential t/J' associated with (4.11) is a solution of the 
linear equation (3.3), since the solution (4.11) has the same 
form as the van Stockum solution (modulo an invertion in 
the E = 1 case). This is an example of the nonlinear superpo­
sition principle2I with a connecting "function" t/J'. The solu­
tions used in the superposition are t/J, In u, InpI' and Inp2' 
Really, in this case we have a generalized nonlinear superpo­
sition principle, since in (4.11) appears F2, which is a func­
tional of the above-mentioned particular solutions, i.e., in 
this case we have a connecting functional. 
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The field equations obtained by Krori, Chaudhury, and Bhattacharjee for Einstein-Dirac­
Maxwell fields for several different metrics with a time-independent and a time-dependent Dirac 
field for a massless neutrino and for a massive neutrino are completely integrated. It is also noted 
that one of the cases, the particular solutions given by Krori, Chaudhury, and Bhattacharjee, is 
not correct. All other particular solutions are the special cases of the solutions obtained here. 

I. INTRODUCTION 

The field equations of Einstein-Dirac-Maxwell fields 
are 

Rjk - !gjkR = - 81TGEjk + 81TG1jk' (1.1) 

yjt/J;j + mt/J = 0, (1.2) 

Fjk,k = 0, (1.3) 

Fjk.1 + Fkl,j + Fij,k = 0, (1.4) 

with 

1jk =i(t/Jtyit/J;k -t/Jt;kYit/J+t/Jtykt/J;j -t/Jt;jYkt/J), (1.5) 

~k = -FiFjI + igjkF1mFlm' (1.6) 

We use units in which h = c = 1. We adopt the conven­
tions of Jauch and Rohrlich I for Dirac Y matrices and the 
notations of Brill and Wheeler with regard to t/Jt, t/J., and 

VI't/J. 
In a recent paper Krori, Chaudhury, and Bhattachar­

jee3 sought solutions of coupled Einstein-Dirac-Maxwell 
equations for the following cases. 

(i) A masseless neutrino with the following metrics 
where Dirac field t/J is time independent. 

(a) The Weyl metric given by 

d~ = e2u dt 2 - e2K - 2U(dr + dz'l) - re- 2u d¢2, (1.7) 

where U and K are functions of r alone. 
(b) The static plane symmetric metric given by 

d~ = e2U(dx2 - dt 2) + e2V(dy2 + dr), (1.8) 

where u and v are functions of x alone. 
(ii) A massless neutrino with the following metrics 

where the Dirac field t/J is time dependent. 
(a) The Einstein-Rosen4 metric given by 

d~ = e2(a- P)(dt 2 - dr) - re- 2P d¢2 - e2P dz2, 
( 1.9) 

where a and /3 are functions of r alone. 
(b) The static plane symmetric metric given by (1.8). 

(iii) A massive neutrino with the following metrics. 
(a) Marder's metrics given by 

d~ = c(a- P)(dt 2 - dr) - re- 2f3 d¢2 - c(P+V) dr, 
( 1.10) 

where a, /3, v are functions of r alone. 
(b) The plane symmetric metric given by (1.8) 

In all these cases, the authors obtained the field equa­
tions and gave some particular solutions. 

In the present work we obtain the complete set of solu­
tions for these field equations. 

It is also noted that for the case of massive neutrino with 
Marder's metric the solution given by Krori, Chaudhury, 
and Bhattacharjee3 is not correct. 

II. MASSLESS NEUTRINO WITH TIME-INDEPENDENT 
DIRAC FIELD 

A. Equations 

Krori, Chaudhury, and Bhattacharjee3 obtained the 
following Einstein-Dirac-Maxwell field equations for the 
massless neutrino with time-independent Dirac field using 
the Weyl metric given by (1.7): 

u,1\ +U,I/r =C2e- 2u, (2.1) 

k,ll -k,l/r-u,1\ -u,l/r+2u,12= _C 2e- 2u, (2.2) 

k,ll +k,l/r-u,1\ -u,l/r=C 2e- 2u. (2.3) 

The Dirac field t/J, which is, in this case, a function of r only, 
is given by 

t/J= (l/,[r)e(u-kllZt/Jo, (2.4) 

t/Jo being an arbitrary constant spinor, and the only nonvan­
ishing components of energy-momentum tensor and electro­
magnetic field tensor are, respectively, given by 

T20 = ieu - k(2u,1 - k,l )t/Jtr'y2yDt/J, (2.5) 

T30 = ieu - k(2u,1 - l/r)t/Jtr'ryDt/J, (2.6) 

and 

F02 = C1e- k F31 = C2e-k, (2.7) 

where C1 and C2 are constants of integration and 
C 2 = 41TG(C/ + C/). 

Krori, Chaudhury, and Bhattacharjee3 presented some 
particular solutions of Eqs. (21 )-(2.3); we try to give the 
general solutions of the same equations. 
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B. Solutions 

Adding Eqs. (2.1) and (2.2) one gets 

k,ll - k,llr + 2U,1
2 = O. (2.8) 

Again, adding (2.1) and (2.3) and using (2.1) one obtains 

k,ll + k,1 Ir = 2U,1l + 2u,I Ir. (2.9) 

Assuming In r = x and U - x = v, Eq. (2.1) reduces to 

Vxx = C 2e- 2v
• (2.10) 

Integrating (2.9) twice one gets 

k = 2u + A In r + In B, (2.11 ) 

where A and B are constants of integration. Integrating Eq. 
(2.10) twice and simplifying one can obtain 

e2u = [Crl +D 12DED + (CE D 12D)rl -
D p (2.12) 

and from (2.11), 

e2k = [Crl +DI2DE D+ (CE DI2D)rl - D]4B 2,.u, 
(2.13) 

where D and E are constants of integration. 
Putting (2.12) and (2.13) into Eqs. (2.1)-(2.3) one 

can check that all the equations are satisfied. Thus the com­
plete set ofsolutions ofEqs. (2.1 )-(2.3) are given by (2.12) 
and (2.13 ).6 

IfoneputsB = 1,A = o and CE D =.j2 Din (2.12) and 
(2.13) one can get the particular solutions of Eqs. (2.1)­
(2.3) as obtained by Krori, Chaudhury, and Bhattacharjee.3 

III. MASSLESS NEUTRINO WITH TIME-INDEPENDENT 
DIRAC FIELD 

A. Equations 

The Einstein-Dirac-Maxwell field equations derived by 
Krori, Chaudhury, and Bhattacharjee3 for a massless neu­
trino with time-independent Dirac field using the plane sym­
metric metric given by (1.8) are given by 

e - 2U(U,ll + 2u,1 V,l) = (K 12)(C1
2 + C/)e - 4v, (3.1) 

e - 2u(U,1l - 2V,1l - 2U,1 V,I + 2V,1 2) 

= (K 12)(C1
2 + C/)e- 4b

, (3.2) 

e- 2U
(V,1l + 2v,/) = - (K 12)(C1

2 + C/)r 4V
• (3.3) 

Here the Dirac field "', which is in this case a function of x 
only, is given by 

'" = e -(v + uI2)",0, (3.4) 

"'0 being an arbitrary constant spinor, and the only nonvan­
ishing components of the energy momentum tensor and the 
electromagnetic field tensor are, respectively, given by 

T20 = ~e - U(V,1 - U,I )",ty'r'f"', (3.5) 

(3.6) 

and 
(3.7) 

where C I and C2 are constants of integration and K = 81TG. 
Krori, Chaudhury, and Bhattacharjee3 obtained a par­

ticular solution ofEqs. (3.1)-(3.3) 
We seek a complete set of solutions of the same equa­

tions. 
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B. Solutions 

Subtracting Eq, (3.1) from Eq. (3.2), 

V,ll' - 2u,I V,I + V,I 2 = o. 
Adding Eq. (3.2) and Eq. (3.3), 

U,II + 3v,II - 2u,1 V,I + 4V,1 2 = O. 

Let U = u(v), then Eqs. (3.8) and (3.9) reduce to 

(3.8) 

(3.9) 

V,ll + (1 - 2U v )V,1
2 = 0, (3.10) 

and 

(u v + 3)v,1I + (u vv - 2u v + 4)+ V,1
2 = O. (3.11) 

Eliminating V,II IV,I
2 between (3.10) and (3.11), 

U vv + 2u v 2 + 3u v + 1 = O. (3.12) 

In view of Eq. (3.12) we note that if uvv = 0 then Uv 

= - 1 or -!. One can consider the following three cases. 
Case 1: Ifuv = - 1, then Eq. (3.10) gives on integra­

tion 

e2v = (3Clx + C2)2/3, 

. e2u = C (3C x + c )-213 .. 3 I 2 , 

(3.13) 

(3.14) 

where CI, C2, C3 are constants of integration. The solutions 
given by Eqs. (3.13) and (3.14) are obtained by Krori, Chaud­
hury, and Bhattacharjee.3 

Case 2: If Uv = -! then the solutions ofEqs. (3.1H3.3) 
are given by 

e2v = 2C4x + Cs, 

e4u = C6(2C4x + CS)-I, 

where C4 , Cs, and C6 are constants of integration. 

(3.15) 

(3.16) 

Case 3: Let Uvv #0, then integrating Eq. (3.12) twice, 
one can obtain 

(3.17) 

where m and m I are constants of integration. 
Inserting the value of U from Eq. (3.17) in Eq. (3.10) and 

integrating twice, one can get 

m~ + m3 = !(eV 
- em)2 + 2em(ev _ em) + e2m In(eV 

_ em), 
(3.18) 

where m2 and m3 are constants of integration. 
Putting Eqs. (3.17) and (3.18) into Eqs. (3.1H3.3) one 

can check that all the equations are satisfied. Hence in this 
case the complete set of solutions ofEqs. (3.1H3.3) are given 
by (3.17) and (3.18). 

IV. MASSLESS NEUTRINO WITH TIME-DEPENDENT 
DIRAC FIELD 

A. Equations 

Krori, Chaudhury, and Bhattacharjee3 obtained the 
following Einstein-Dirac-Maxwell field equations for a 
massless neutrino with the time-dependent Dirac field using 
the Einstein-Rosen metric given by (1.9): 

e2P
-

2a(a,ll -P,ll -p,llr+a,llr) 

= C 2e - 2a - 81TGT 00' (4.1) 

e2P
-

2a(a,1l - P,ll + 2fJ,1
2 

- p,llr - a,llr) 

(4.2) 
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(4.3) 

The Dirac field tf!, which is, in this case, a function of rand t, 
is given by 

tf! = (l/..[r)el f3~ a)l2eiw1r'Y' ~ titf!c' (4.4) 

tf!c being an aribtrary constant spinor, and the nonvanishing 
components of energy-momentum tensor and electromag­
netic field tensor are, respectively, given by 

Too = Til = - (e2f3~2alr)UJtf!c *tf!c' (4.5) 

TOI = TIO = !ef3~atf!t(4iUJy')tf!, (4.6) 

T02 = T20 = !ef3~a[tf!t(2iUJf)tf! 

+ (a,1 - 2.8,dtf!ty'fttf!] , (4.7) 

T03 = T30 = !ef3~a[tf!t(2iUJf)tf! 

+ (a,1 - l/r)tf!tY'fttf!] , (4.8) 

and 

(4.9) 

where CI, C2 are constants of integration, 
C = 41TG (C1

2 + C2
2), and UJ is a positive real number. 

Krori, Chaudhury and Bhattacharjee3 obtain some par­
ticular solutions of the equations. We try to seek general 
solutions of the same equations. 

B. Solutions 

Adding Eqs, (4.1) and (4.2), 

a. 11 - .8,11 + .8,/ - .8,l/r = 0. (4.10) 

We note that Eq. (4.3) is identical to Eq. (2.1) and Eq. 
(4.10) is identical to the result obtained by adding Eqs. (2.2) 
and (2.3). Thus the solutions for a and.8 will be similar to 
those for k and u, respectively, where U and k, are, respec­
tively, given by (2.12) and (2.13). 

V. MASSLESS NEUTRINO WITH TIME-DEPENDENT 
DIRAC FIELD 

A. Equations 

Using the plane symmetric metric given by (1.8), Krori, 
Chaudhury, and Bhattacharjee3 obtained the following Ein­
stein-Dirac-Maxwell field equations for a massless neutrino 
with time-dependent Dirac field: 

e~2U(u,11 + 2u,1 v,d = (K 12)(C1
2 + C/)e~4V + KToo, (5.1) 

e - 2U(U,ll + 2V,ll - 2u,I V,I + 2v,I 2) 

= (K 12)(C1
2 + C/)e - 4v - KTII , 

e- 2U(V,11 + 2V,12) = - (K 12)(C/ + C/)e- 4V. 

The Dirac field tf!(x,t ) is given by 

where 

a O being an arbitrary constant. 
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(5.2) 

(5.3) 

(5.4 ) 

Krori, Chaudhury, and Bhattacharjee obtained some 
particular solutions of Eqs. (5.1)-(5.3). In the present paper, 
we shall try to seek the complete set of solutions. 

B. Solutions 

Adding (5.1) and (5.2), 

e- 2U(u,11 + V,II + V,12) = (K /2)(CI
2 + C/)e- 4V. (5.5) 

Equation (5.5) is identical to the equation obtained by adding 
(3.1) and (3.2) and Eq. (5.3) is identical to Eq. (3.3). Hence the 
solutions of Eqs. (5.1)-(5.3) are the solutions of Eqs. (3.1)­
(3.3). 

VI. MASSIVE NEUTRINO 

A. Equations 

Using the Marder metric given by (1.10), Krori, Chaud­
hury, and Bhattacharjee3 obtained the following field equa­
tions for a massive neutrino: 

a.1 V,I + a,1 Ir + V,I Ir - .8,1 2 
- 2.8,1 V,I 

= (81TGmA Ir)ef3~a - v, (6.1) 

V,II - a,1 V,I + 2.8,1 V,I + .8,1 2 + V,1 2 
- a,l/r + v,l/r = 0, 

a,11 - 2.8,11 + .8,1 2 
- 2.8,1 Ir = 0, 

a,ll +V,II +2.8,IV,1 +.8,1 2 + V,1 2 =0, 

with 

(6.2) 

(6.3) 

(6.4) 

tf!= ~ exp( _my'jea-f3dr)elf3-a-Vi12, (6.5) 

and the non vanishing components of energy-momentum 
tensors are 

Til = (mA Ir)ef3~a-v, 

where 

A = tf!c ttf!c' 

T20 = !ef3~a(a,1 - 2.8,1 - v,dtf!ty'fttf!, 

T30 = !ef3~a(a,1 -/ Ir)tf!ty'fttf!. 

(6.6) 

(6.7) 
(6.8) 

It is to be noted that the solutions obtained by Krori, 
Chaudhury, and Bhattacharjee3 are not correct. We try to 
present a complete set of solutions of the same equations. 

B. Solutions 

Equations (6.1)-(6.4) can be easily reduced to 

U,I W,I - 2v,1 W,I - V,I 2 = Mev - U - w, (6.9) 

W,II - U,I W,I + (V,I + W,1)2 = 0, (6.10) 

U,Il -2v,11 +V.12=0, (6.11) 

u. Il + W,I + (V,I + W. 1 )2 = 0, (6.12) 

where 

U = a - In r, v = .8 - In r, 

W = v + In r, M = 81TGmA, 

say. Subtracting (6.10) from (6.12) and integrating, we get 

eWu,1 =A, (6.13) 

where A is a constant of integration. 
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Adding (6.9) and (6.10) and using (6.13), one can obtain 

(Alu,Il,l1 =Mev- u. (6.14) 

Using (6.11), (6.13), and (6.14) in Eq. (6.9), one can get, after 
some calculations, 

U,I11u,I2 - 2V,IIu,I = B 1, (6.15) 

where BI is a constant. 
We can also obtain from (6.9) using (6.13) that 

U,I - 2V,l V,I
2 

M v-u (6.16) 
2 U,ll +-= --A e . 

U,I U,I 

Let v = v(u), then Eqs. (6.11), (6.15), and (6.16) can be 
written as 

(1 - 2vu )u,ll + (v,/ - 2vuu )U,I 2 = 0, 

U,ll - (2v + B 1)u,1 2 = 0, 

( 6.17) 

(6.18) 

(1- 2vu)(u,l1lU,I) + Vu 2U,I = - (M IA)eV- u. 
(6.19) 

Eliminating U,lllU,I2 between (6.17) and (6.18), one gets 

2vuu + 3vu 2 + 2(BI - 1 )vu - BI = 0. (6.20) 

Case 1: Let Vuu = 0, then Vu = const, 1 say. Then one 
can easily obtain the following solutions ofEqs. (6.1 )-( 6.4): 

a = In r + (lIB3)ln(B4r + Bs)' (6.21) 

P = In r + (lIB3)ln(B4r + Bs) + B2, (6.22) 

and 
v= -lnr+ln(B4r+Bs)+lnB6' (6.23) 

where B2, B3, B 4,BS' and B6 are all constants of integration. 
Case 2: Let Vuu #0. Then (6.20) gives, on integration 

twice, 

2v =Au +B In( P - eqU ) +F, 

where A, B, P, q and F are all constants. 
Using (6.24) in (6.18) and integrating, we get 

f eBU du r= , (p _ e9U) f 

where J, g are constants. Also, from (6.13), 

(6.24) 

(6.25) 

eW = A IU,I' (6.26) 

Putting the values of u, v, w from (6.24)-( 6.26) into Eqs. 
(6.9 )-( 6.12) one can check that all the equations are satis­
fied. Thus the solutions of Eqs. (6.9)-(6.12) are given by 
(6.24 )-( 6.26). Hence the solution of Eqs. (6.0-( 6.4) are 
given by 

a = U + Inr, 

p= v + Inr, 

v= w-lnr, 

where u, v, ware given by (6.24)-(6.26). 

VII. MASSIVE NEUTRINO 

A. Equations 

(6.27) 

(6.28) 

(6.29) 

Using the plane symmetric metric given by (1.8), Krori, 
Chaudhury, and Bhattacharjee3 derived the following field 
equations for a massive neutrino with time-dependent Dirac 
field: 

(7.1) 
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U,II + V,II + V,I 2 = 0, 

2V,II - 2u,I V,I + 3V,I 2 = 0, 

with Dirac field '1/1 given by 

(7.2) 

(7.3) 

'1/1 = e - (v + u/2,'I/Io (7.4) 

and the only nonvanishing components of the electromag­
netic field tensor are given by 

T .1. t.l. -u-2v 
II = '1'0 'l'oTne . 

B. Solutions 

(7.5) 

Let U = u(v), then Eqs. (7.1)-(7.3) can be written as 

(u v + l)V,1I + (u vv + 1 )v} = 0, (7.6) 

2v,II + (3 - 2uv )V,1 2 = 0. (7.7) 

Eliminating v,I11v,I 2 between (7.6) and (7.7) one can ob­
tain 

2uvv + 2uv 2 - Uv - 1 = 0. (7.8) 

In view ofEq. (7.8), we note that ifu vv = ° then Uv = lor 
- !. One can consider the following three cases. 

Case 1: Let Uv = 1, then Eq. (7.7) gives on integration 
twice, 

v = 2In( P-r + P3)' 

... u = 2 In(p-r +P3) +PI> 

where PI' P2' P3 are constants of integration. 

(7.9) 

(7.10) 

Putting (7.9) and (7.10) intoEqs. (7.1)-(7.3) one can 
check that all the equations are satisfied, Hence the complete 
set of solutions of Eqs. (7.1 )-(7.3) are given by (7.9) and 
(7.10). 

Puttingpi = 0,P3 = A andp2 = (A 12) Jiii in (7.9) and 
(7.10), 

v = u = 21n(A + (A 12)Jiiix), (7.11) 

where A 2 = - J 111/10 t'l/lo. The particular solution (7.11) was 
obtained by !(rori, Chaudhury, and Bhattacharjee3

• 

Case 2: Let Uv = -!. Then Eq. (7.7) gives, on integra­
tion twice, 

e
2v 

= P4X + Ps, 

e4u = P6( P4X + ps) -I, 

(7.12) 

(7.13) 

where P4' PS' and P6 are constants ofintegration. In this case, 
(7.12) and (7.13) are the complete set of solutions of Eqs. 
(7.1 )-(7.3). 

Case 3: Let Uvv #0. Equation (7.8) gives, on integration 
twice, 

u = - (v/2) + In(e(3l2)q - e(3/2)V) + ql' (7.14) 

where q and q I are constants of integration. Using (7.14) in 
(7.7) and integrating twice, one can obtain 

f e2vdv 
q-r + q3 = (3/2)9 (3/2)v ' e -e 

(7.15) 

where q2 and q3 are constants of integration. 
Putting (7.14) and (7.15) into Eqs. (7.1)-(7.3), one 

can check that all the equations are satisfied. Hence in this 
case, the complete set of equations of (7.1)-(7.3) are given 
by (7.14) and (7.15). 
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VIII. CONCLUSION 

In summary the solutions of Einstein-Dirac-Maxwell 
field equations obtained in this paper are as follows. 

( 1) A massless neutrino with time-independent Dirac 
field. 

(la) For the Weyl metric (1.7) the solutions are 
given by (2.12) and (2.13). 

(lb) For the plane symmetric metric given by 
( 1.8), one gets three classes of solutions. The first is 
given by (3.13) and (3.14). The second is given by 
(3.15) and (3.16). The third is given by (3.l7) and 
(3.18). 
(2) A massless neutrino with time-dependent Dirac 

field. 

572 

(2a ) For the Einstein-Rosen metric ( 1.9), the so­
lutions for a and {3 will be similar to those for k and u, 
respectively, where u and k are given by (2.12) and 
(2.13), respectively. 

(2b) For the plane symmetric metric (1.8), the 
solutions are similar to those discussed earlier in (1 b). 
(3) A massive neutrino. 
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(3a) For the Marder metric (1.10), one gets two 
classes of solutions. The first one is given by (6.21), 
(6.22), and (6.23). The second is given by 

a = u + In r, {3 = v + In r, v = w - In r, 

where u, v and ware given by (6.24)-(6.26). It is to be 
noted that the solutions given by Krori, Chaudhury, 
and Bhattacharjee3 are not correct. 

(3b) For the plane symmetric metric (1. 8), one 
obtains three classes of solutions. The first one is given 
by (7.9) and (7.10). The second is given by (7.12) and 
(7.13). The third is given by (7.14) and (7.15). 

1 J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons (Spring­
er, New York, 1976), Appendix A,. 

'D. Brill and J. Wheeler, Rev. Mod. Phys. 29, 465 (1957). 
3K. D. Krori, T. Chaudhury, and R. Bhattacharjee, Phys. Rev. D 25, 1492 
(1982). 

4A. Einstein and N. J. Rosen, J. Franklin Inst. 223, 43 (1937). 
5L. Marder, Proc. R. Soc. London, Ser. A 244,524 (1958). 
·Equations (2.12) and (2.13) can also be obtained from Eqs. (2.1) and (2.3) 
only. Thus Eq. (2.2) is really superfluous. 

A. C. Patra and D. Ray 572 



                                                                                                                                    

Symmetry groups of state vectors in canonical quantum gravity 
Donald M. Witt 
Depanment of Physics. University of Wisconsin. Milwaukee. Wisconsin 53201 

(Received 25 February 1985; accepted for publication 20 September 1985) 

In canonical quantum gravity, the diffeomorphisms of an asymptotically fiat hypersurface S, not 
connected to the identity, but trivial at infinity, can act nontrivially on the quantum state space. 
Because state vectors are invariant under diffeomorphisms that are connected to the identity, the 
group of inequivalent diffeomorphisms is a symmetry group of states associated with S. This 
group is the zeroth homotopy group of the group of diffeomorphisms fixing a frame of infinity on 
S. It is calculated for all hypersurfaces of the form S = S3IG-point, where the removed point is 
thought of as infinity on S and the symmetry group S is the zeroth homotopy group ofthe group of 
diffeomorphisms of S3 IG fixing a point and frame, denoted 1To DiffF (S3 IG). Before calculating 
1To DiffF (S3IG), it is necessary to find 1To of the group ofdiffeomorphisms. Once1To Diff(S 31G) is 
known, 1To Diffxo (S3IG) is calculated using a fiber bundle involving Diff(S3 IG), DiffXo (S3IG), 
and S 31G. Finally, a fiber bundle involving DiffF (S 3IG), Diff(S 3 IG), and the bundle of frames 
overS 31Gis used along with 1To Diffxo (S3IG) to calculate 1To DiffF (S3/G). The groups 
1T 0 DiffF (S 31G) are comprised ofSU (2) coverings of SO (3) crystallographic groups, the product 
of these with a cyclic group, cyclic groups, and the product of two cyclic groups. 

I. INTRODUCTION 

In canonically quantized Yang-Mills theory, the state 
space is invariant only under asymptotically trivial gauge 
transformations. Moreover, the classes of inequivalent 
gauge transformations on a hypersurface with trivial topol­
ogy are isomorphic to the group of additive integers Z (see 
Refs. 1 and 2). Since these groups are Abelian, they only 
have one-dimensional irreducible representations, each of 
which is fixed by a single {}: 

gn \fI = e"' 9\f1 , 

where \fI is a quantum state vector and gn a gauge transfor­
mation of degree n. These are Yang-Mills {}-states. Even in 
the case of nontrivial topologies these groups are Abelian. 3 

A counterpart of (}-states in canonical quantum gravity 
are irreducible representations of the groups of inequivalent 
diffeomorphism.4-6 This is easy to demonstrate using the 
momentum constraint Db tf'b = 0 in the SchrOdinger pic­
ture, where -&"b = (fIli) (8/~gab)' Multiplying the con­
straint Db -&"b \fI = 0 by an arbitrary test vector field ~ with 
compact support and integrating it over an open hypersur­
face S yields 7 

Is Sa Db -&"b\fl d 3X = 0 . 

Integrating by parts and adding the resulting integral to it­
self yields 

0= Is DbSa-&"b\fl d 3x + Is DaSb-&"b\fl d 3x 

= i D(aSb)-&"b\fld
3
x= ~: (gab+AD(aSb»I,,=o' 

Recalling the properties of Lie derivatives, it follows that 

d\fl d\fl • 
0= dA (gab +AD(aSb» 1"=0 = dA (T"gab) 1"=0 , 

where T! is the induced action of any path of diffeomor-

phisms T" trivial in a neighborhood of infinity and having S 
as a tangent vector at A = O. Hence the constraint is equiva­
lent to (d\fl IdA) 0 T! I" = 0 = 0, for T" as above. Since this is 
true for all such diffeomorphisms, it follows that 
(d\fl IdA) 0 T! = O. The above set of diffeomorphisms is the 
identity component of the group of diffeomorphisms trivial 
in neighborhood of infinity, DiffN~ id (S). Therefore, 
\fIoT· = \fI for all Tin Diff N ~ id (S).8 If Sis closed,9 then no 
boundary term appears in the above integration by parts so 
all vector fields can be used, and \fIoT· = \fI for all Tin the 
identity component of the full diffeomorphism group, 
Diffid (S). The groups, which can act nontrivially on the 
quantum state space, are Diff N ~ (S) IDiff N ~ id (S) or 
Diff(S)/Diffid (S), for S open or closed, respectively. These 
groups are written 1To Diff N~ (S) and 1To Diff(S). The group 
1T 0 Diff N ~ (S) is isomorphic to the zeroth homotopy group 
of Diff F ~ (S) (diffeomorphisms fixing a frame at infinity). 
Therefore, gravity's "(}-states" are given by irreducible re­
presentations of 1T 0 Diff F ~ (S) and 1T 0 Diff(S) depending on 
S. If the open hypersurface Sis obtained from a closed three­
manifold M 3 by removing a point Xo as in the case of an 
asymptotically fiat hypersurface, then 1T 0 Diff F ~ (S) is equal 
to 1To DiffFxo (M 3) (the zeroth homotopy of the group of 
diffeomorphisms of M 3 fixing a frame F at the point xo). 
[From this point on 1To DiffFxo (M 3

) will be denoted 
1To DiffF(M3).] 

Even if the hypersurface S is closed, the frame fixing 
diffeomorphisms are of interest. Suppose S is closed and 
S = M#N, where N is thought of as a generic environment. 
Then the group 1To Diff(S) includes as a subgroup 
1To DiffF (M). A generic "environment" N around M pre­
vents one from deforming to the identity in M#N any diffeo­
morphism that cannot be deformed to the identity in 
DiffF (M). In representing an isolated system by an asymp­
totically fiat space-time one imposes the conditions that M is 
far from the interface between M and N, and M is small 
enough to neglect the large-scale curvature of the back-
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ground. If these conditions fail, then symmetries of the envi­
ronment cannot be ignored and the full symmetry group is 
'ITo Diff(M#N) , but 'ITo DiffF(M) is a subgroup for N gen­
eric. 

One major difference between the Yang-Mills theory 
and gravity is that the symmetry groups 'ITo DiffF (M 3) are 
not necessarily Abelian, but for example can be SU(2) co­
verings ofSO(3) crystal groups which are non-Abelian and 
therefore have irreducible representations of dimension 
greater than 1. Some of the results were given in an earlier 
paperlO along with an outline of techniques. In the present 
paper, calculations and results are given for M 3 = S 3/G, 
where G is a finite group acting freely on S3, along with a 
correction to a table appearing in the earlier paper. 

The isometry group of S 3/G with the standard metric is 
calculated using elementary group theory. The calculations 
give the explicit action of Isom(S3/G) on 'lT1 (S3/G,xO)' 
which is used in later calculations. The technique used to 
calculate Isom(S3/G) uses the facts that S3 covers S3/G, 
Isom(S3) = 0(4), and SU(2) XSU(2) covers SO(4). 
After the group Isom(S3/G) is calculated, 'ITo Isom(S3/G) 
and the topology ofIsom (S 3/G) are given. These results can 
be found in Tables I and II. 

The groups 'ITo Diff(s3/G) are found using the recent 
work of Hatcher, and the calculations of'ITo lsom(S3/G). 
Hatcher has proven the Smale conjecture, II the statement 
that O( 4) and Diff(S 3) have the same homotopy type. 12 He 
also proposes a generalization of the Smale conjecture that in 
general Isom(S3/G) and Diff(S3/G) have the same homo­
topy type. 13 This has been proven in several cases, 14 and the 
weaker result that 'ITo Isom(S3/G) = 'ITo Diff(S3/G) has 
been proven in almost all cases. IS

-
17 Assuming Hatcher's 

conjecture, the groups 'ITo Diff(S3/G) are found. 
Let 'ITo Diffx" (S3/G) be the zeroth homotopy group of 

the group of diffeomorphisms fixing the point Xo on S 3/G. 
Unlike 'ITo Diff(S3/G) not all elements of 'ITo Diffx (S3/G) 
for G noncyclic can be realized by isometries. A fi~r bundle 
having total space Diff(S 3/G), base space S 3/G, and fiber 
Diffx" (S 3/G) is used to obtain an exact sequence involving 
'ITo Diffx" (S3/G) and 'ITo Diff(S3/G). The group 
'ITo Diffx" (S 3/G) is found using the exact sequence combined 
with the action of 'ITo Diffxo (S3/G) on 'lT1 (S3 /G,xo)' 

A fiber bundle with fiber DiffF (S3/G), total space 
Diff+ (S 3/G) (orientation preserving diffeomorphisms of 
S 3/G), and base space F + (S 3/G) (the bundle of oriented 
frames over S 3/G) is used to obtain an exact sequence in­
volving 'ITo DiffF (S3/G) and 'ITo Diff+(S3/G). The group 
'ITo DiffF (S3/G) is found using this exact sequence and the 
group 'ITo Diff,;;; (S3/G). For G noncyclic, no elements of 
'ITo DiffF (S3/G) can be realized by isometries. Hence the 
structure of 'ITo DiffF (S3 IG) is very different compared to 
'ITo Diff+ (S3 /G) (see Table IV). For G noncyclic, the group 
'ITo DiffF (S3/G) is an SU(2) double cover of 
'ITo Diff';;; (S 3/ G). This is related to the fact that the 2'IT rota­
tion parallel to a two-spherel8 is nontrivial in 'ITo DiffF (S31 
G) for G a noncyclic group (see Sec. VI). If G is a cyclic 
group, the 2'IT rotation is trivial and the groups 'ITo Diff+ (S 3/ 
G), 'ITo Diffx: (S3/G), and 'ITo DiffF (S3/G) are isomorphic 
to each other. 
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II. PRELIMINARIES 

The first theorem is a combination of the standard 
Noether isomorphism theorems. It characterizes the sub­
groups of a quotient group, and is very useful when calculat­
ing the quotient group of two quotient groups. 

Theorem 2.1: If K is a normal subgroup of G, K SI G, 
then all subgroups of G /K are of the form H /K where 
K<:..H<:..G. Moreover,N /K SI G /Kifand only ifN SI G, also 
(G/K)/(N /K)-;:;:,G/N. 

Proof: See any standard text on groups, for example, 
Hungerford. 19 

The finite subgroups of SO(3) and SU(2) will be en­
countered in our calculations. The finite subgroups ofSO( 3) 
are cyclic, dihedral, tetrahedral, octahedral, and iscosahe­
dral groups. Their presentation in terms of generators and 
relations are 

Z,. = (x: x" = 1) , 

D 2,. = (x,y: x 2 = y,. = (xy)" = 1) , 

T= (x,y: x 2 = (xy)3 =y3 = 1) , 

0= (x,y: x 2 = (xy)3 = y4 = 1) , 

I = (x,y: x 2 = (xy) 3 = yS = 1) . 
The finite subgroups SU (2) come from the double covering 
of SO ( 3 ) by SU (2). These groups are the cyclic, binary dihe­
dral, and binary polyhedral groups. Their presentations are 

Z" = (x: x" = 1) , 

D t" = (x,y: x 2 = (xy)2 = y") , 

T* = (x,y: x 2 = (xy)3 =y3, X4 = 1) , 

0*= (x,y: x 2 = (xy)3 = y4, X4 = 1) , 

1* = (x,y: x 2 = (xy)3 =,s, X4 = 1) . 

A useful property of finite subgroups of both SO(3) and 
SU (2) is the following: Given HI and H2 finite subgroups of 
G = SO(3) or SU(2) with HI isomorphic toH2, then HI is 
conjugate to H 2• 

The other finite groups encountered are the finite sub­
groups of SO(4). Here SO(4) is doubled covered by the 
group SU(2) xSU(2), where the projection map Pis given 
by P(ql,q2)q = qlqqr, where qeH (see Ref. 20) and 
(ql,q2)eSU(2) XSU(2) (see Ref. 21). The kernel of Pis 
Z2 = {± (l,1)}.1t follows that SO(4) = SU(2) xSU(2)/ 
Z2' Hence the subgroups of SOC 4) can be found using 
Theorem 1.1. 

The following theorem gives us all the finite groups that 
act freely on S 3. 

Theorem 2.2: The only finite groups that can act freely 
on S3 are Z", D t,., D ;'(2,,+ 1)' T*, T; .3,,0*,1*, and the 
direct product of any of these with a cyclic group of relative­
ly prime order. 

Proof: See Thomas.22 

The groups D ;'(2" + I) and T ~ . 3' have presentations 

D I - (x,y' __ 2' - 1 ,,2,, + 1 1 -I - I) 2'(2" + 1) - • x- - ,y =, xyx = y , 

k>3, n>1 

T~.3' = (x,y,z: x 2 = (XT =y2, zxz- I =y, 

zyz-I =xy, r' = 1), k>2. 
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The groups in Theorem 2.2 are all isomorphic to sub­
groups ofSO( 4). A remaining question is whether S 3/G is a 
spherical space form23 for every free action of a finite group 
G. Thomas has proven that the orbit spaces are at least ho­
motopic to spherical space forms, and Rubinstein has prov­
en, in most cases, that any free action gives an orbit space 
diffeomorphic to a spherical space form. 22 We will therefore 
only consider spherical space forms. 

The following theorem gives the main tool for calculat­
ing the homotopy groups of fiber bundles. 

Theorem 2.3: Let p: E-+B be a principal bundle with 
total space E, a connected base space B, and fiber G. The 
sequence 

'Ii Pti a.i 
••• -+ 1rj (G,go) -+ 1rj (E,eo) -+ 1rj (B,bo) -+ 1rj _ I (G,go) 

a.1 jlO 

••• -+1r1 (B,bo) -+1ro(G,go) -+ 1ro(E,eo)-+1 

is exact. Further, it is an exact sequence of groups if 1r 0 (E,eo) 

is a group. 
Prool: See Steenrod,24 pages 91 and 94. 
The last theorem we need is the lifting theorem which is 

used to prove which maps lift to the covering space. 
Theorem 2.4: Letp: (.X,xo) -+ (X,xo) be a fibration with 

unique path lifting. Let Ybe a connected space. A necessary 
and sufficient condition that a map! (Y ,yo)-+(X,xo) have a 
lifting (Y,yo)-+(.X,xo) is that in 1r1(X,xo), ftl1 1rI(Y,yo) 

<P~I11r1 (X,xo). 
Proof See Hu.25 

III. ISOMETRY GROUPS 

Let S 3/G be a spherical space form with fundamental 
group G. Since S 3/G is covered by S 3 the isometries of S 3/G 
lift to elements of 0 ( 4 ). In particular, we will show that 
Isom(S3/G) = N O (4) (G)/G, where we use the following 
definition. 

Definition 2.5: Given G and H groups with H<.G, the 
normalizer of H in G, denoted by NG (H), is defined as 
{geG IgHg- I = H}. 

When H is a finite group the above definition can be 
restated in the following form. 

Lemma 2.6: If H is finite and H<.G, then 
NG (H) = {geG Ighg-IeH, VheH}. Further, NG (H) 
= {geG Ighg-IeH, for all generators h of H}. (This alter­

nate form of definition is not always true for infinite groups.) 
Now let us look attheisometries ofS 3 /G. Letp:S 3-8 3/ 

G be the covering map corresponding to the orthogonal ac­
tion of G, and let! S 3/G-+S 3/ G be an isometry. Ifwe define 
pbyp =Ip, 

then p is also a covering map. 
Since the universal covering space is unique there exists 

an isometry']: S3-S3 suchthat the diagram 
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! 
S3 .. S3 

pi f pI 
S3/G-S3/G 

commutes. This means every isometry I of S 3/G lifts to an 
isometry of S 3. 

However, an isometry of S 3 is the lift of an isometry of 
S 3/ G only if a well-defined I is provided by the relation 
lOx]) = [{(x»), that is only when [{(x'») = [{(x») for all 
x'e[x). Then/is well defined ifand only iffor all heG there 
exists h ' eG such that h r(x) = !(h (x) ), that is 
!eN1som(S3) (G). Observe from the definition off, that!in­
duces the same isometry as!' if and only if!' =]h for some 
heG. Hence 

Isom(S3/G) = N 1SOm(s3) (G)/G = N O (4) (G)/G, 

as claimed. 
Finally, the group of orientation preserving isometries 

of S 3 is SO (4), so the group of orientation preserving isome­
tries of S3/G is Isom+(S3/G) = N SO(4) (G)/G, because 
the lift of an orientation preserving isometry is orientation 
preserving. (See the proof of Theorem 4.9.) 

Let us look at the example S 31Z2• If we regard 0 ( 4) as 
4 X 4 orthogonal matrices the group l2 consists of the matri­
ces ± 1. Because these two diagonal elements commute 
with every element in 0(4), N 0(4) (l2) = 0(4) land 
N SO(4) (l2) = SOC 4). Hence Isom(S3 /l2) = O( 4 )/l2 and 

Isom+ (S3/l2 ) = SOC 4 )/l2 = SO(3) XSO(3) . 

The calculations in the above example are very easy to 
perform since we know l2 is normal in both SO ( 4) and 
o ( 4 ). In general the group will not be normal in 0 ( 4) or 
SO ( 4 ), so representing 0 ( 4) and SO ( 4) as 4 X 4 matrices is 
not the best way of doing calculations. By using the fact that 
SO ( 4) = SU (2) X SU (2) /l2' the calculations of 
N 80(4) (G) are simplified. This does not help with the 
N 0(4) (G) calculations but, fortunately for us, the only 
spherical space forms with orientation reversing isometries 
are lens spaces (see Theorem 4.9). Therefore, Isom (S 3/ 
G) = Isom + (S 3/G ) for G noncyclic. 

The main and most useful properties of normalizers 
used in our calculations are summarized in the following 
theorem. The first half of Theorem 3.1 tells us the norma­
lizer N G (H) is the maximal subgroup of G containing H as a 
normal subgroup. The last half gives us the primary tools for 
doing calculations, namely, the normalizer of products of 
groups and quotient groups. 

Theorem 3.1: Let N G (H) denote the normalizer of 
H<.G. Then we have the following. 

(a) NG (H) is group. 
(b) H~NG(H). 
(c) H ~ G iff N G (H) = G. 
(d) If H ~ M<.G, then M<.NG (H). 
(e) gNG(H)g-1 =NG(gHg- I

), VgeG. 

(f) If Hj<.Gj for i = 1,2, then NG,xG, (HI XH2 ) 

= N G, (HI) XNG, (H2 )· 
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(g) IfK<H<GandK51G,thenNG(H)IK 
= NGIK (H IK). 

(h) If H is finite, N G (H) is finite if and only if CG (H) 
is finite, where CG (H)={geG Igh = hg, "'heR}. 

Proof: (a) through (d) follow easily from the defini­
tions. 

(e) Let gegNG (H)g-I. Then g =gglg-I, where 
g1Hg1-

1 =H. So ggHg-Ig- I =ggIHg1-1g- I =gHg- l. 
This implies geN G (gHg-I ). Hence 
gNG (H)g-I<NG (gHg- 1

). Now, letgleNG (gHg- I). Then 
glgHg-lgl-1=gHg- l. Since NG(H) is a group; 
g,-leNG(gHg- I). It follows that g,-lgHg-lg, =gHg-'. 
Letg =g-Ig,g. Then 

gHg- 1 = (g-'glg)H(g-lg,g)-1 =g-lgl (gHg- l )gl- lg 

=g-lgl(gl-lgHg-lgI)gl-lg=g-lgHg-lg =H. 

HencegeNG(H). Sincegl =ggg-I andgeNG(H) we have 
glegNG (H)g-I. HenceNG (gHg-I) <gNG (H)g-I. 

(f) (g.,g2)eNG,XG, (H1 xH2) 
{::}(gl,g2)(HI,H2)(gl,g2)-1 = (HI,H2) 

{::}(gIHlg1 1
, g~282-1) = (HI,H2) 

{::}(gl,g2)eNG, (HI) XNG, (H2) . 
(g) LetK<H<G and K 51G. Clearly,H IK<GIKand 

H IK<NGIK (H IK). Applying isomorphism Theorem 2.1, 
NGIK (H IK) = N IK, where K<N<G; further H 51 N. Ap­
plying Theorem 3.1(d), N<NG(H), clearly, N/ 
K <N G (H) / K. Since H 51 N G (H), Theorem 2.1 implies 
H/K 51 NG (H)/K. Theorem 3.1(d) implies NG(H)/ 
K<N /K. ThereforeN IK =NG(H)/K. 

(h) The homomorphism 1": N G (H)-.Aut(H) , given by 
r(g)h=ghg- l, has ker1"=CG(H). Then NG(H)/ 
CG (H) = NG (H)lker 1"zIm 1"<Aut(H) implies ING (H) I 
<IAut(H)IICG(H)I. If His finite, then Aut(H) is finite. 
Therefore, if His finite, N G (H) is finite if and only if CG (H) 
is. Q.E.D. 

The first normalizer we calculate is N SU(2) (S 1), where 
S I = {elIlIBeR}. It arises when we look at cyclic groups and 
subgroups of SO ( 4) not contained in SU (2). The technique 
used in finding it is similar to that used for all other norma­
lizer calculations. 

Lemma 3.2: Nsu(2) (SI) = {qESU(2)lq = eill or jelll , 
8ER}. 

Proof: Let qESU(2). By definition, this means for all () 
there exists a t/J such that qlll q-I = el"'. Let q = [Q_ b. ~. ]. 

Matrix multiplication gives 

.11 -1 . [ aa*elll + bb *e - III - abelll + abe - ill] 
qe q = a*b *e - ill _ a*b *elll aa*e - ill + bb *eill . 

(3.1 ) 

We now find for what values the right-hand side of (3.1 ) 
equals el'" . That qeill q-I = el'" implies 

(l)aa*elll +bb*e- ill =el", , (3.2) 

(2) -abeill + abe III =0. (3.3) 

Assumeab ;f0. ThenEq. (3.3) implieseill = e- ill foral1(),a 
contradiction. Therefore ab = O. Since qeSU(2) implies a 
and b cannot be zero simultaneously, either a = 0 or b = O. 
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Let a = 0 in Eq. (3.2), then e III = el
"'. If b = 0, then 

III = l"'. Hence Eqs. (3.2) and (3.3) are always satisfied 
for qE{qESU(2) Iq = eill orq =jelll }. Q. E. D. 

The next lemma gives us the normalizers of all finite 
subgroups of SU (2); combining it with Theorem 3.1 allows 
us to calculate the isometry groups. The proof of Lemma 3.3 
below is independent of the embedding of the subgroup, 
since any two isomorphic finite subgroups of SU (2) are con· 
jugate in SU (2) and Theorem 3.1 ( e) implies their normaliz­
ers are conjugate. 

Lemma 3.3: 

a N. Z _ {NSU(2) (S I), if n > 2, 
() sU(2) ( n) - SU(2), if n = 1,2, 

{
Drn' if n>2, 

(b) Nsu(2) (D:n ) = 0*, 'f 2 
1 n = , 

(c) N SU(2) (T*) = 0*, 
(d) N SU(2) (0 *) = 0 *, 
(e) Nsu(2) (/*) =1*. 
Proof: (a) Clear, if n = 1 or 2. If n > 2, then 

N SU(2) (Zn ) = N SU(2) (S I). This follows immediately from 
the proof of Lemma 3.2 with () = 21r/n. 

(b) For n > 2, D:n is generated by A = ei1T1n and B = j. 
All elements of D:n are of the form AS and BAr. Let 
qeNSU(2) (D:n ). Then qAq-l must equal AS because qAq-1 
must be an element of D:n with the same order as A. There­
foreNsu (2) (D:n )<N SU(2) (S 1),n> 2, whichimpliesq = eill 

or jelll . It follows that qBq-l = je - 2/11 or j~/lI, which are 
elements of D:n only when () = 1rm/2n. Therefore 
NSU (2) (D:n ) = D rn for n > 2. 

If n = 2, then Dr is generated by A = i and B = j, and 
CSU(2) (D r) = Z2' which means NSU(2) (D r) is finite [see 
Theorem 3.1 (h)]. Moreover, INsu (2) (D r) I = 8m because 
Dr is normal in Nsu(2) (Dr). Now Dr 51 0*. Hence 
o * <Nsu(2) (Dr), [see Theorem 3.1(d)]. Since 
INSU(2) (D r) I = 8m and the only finite subgroups ofSU(2) 
are binary dihedral, cyclic, and binary polyhedral groups, it 
follows that O*;fNSU(2) (Dr) implies o * ",,NSU(2) (Dr) 
= D rm' The statement 0 * <D rm is a contradiction because 

the only subgroups of binary dihedral groups are cyclic or 
binary dihedral groups. Therefore Nsu(2) (D r) = 0 *. 

(c) CSU(2) (T*)<Csu (2) (Dr) becauseDr<T* and in 
general if K<H<G, then CG (H)<CG (K). It follows that 
N SU(2) (T*) is finite. Now T* 51 0 *. Hence 0 *<N­
SU(2) (T*).IfO*;fNsu(2) (T*) , then Nsu(2) (T*) =D!4k 
which means 0 * <D !4k' a contradiction. Therefore 
Nsu(2) (T*) = 0*. 

(d) N SU (2) (0*) is finite because Dr<O*. Now 0* 
<Nsum (0*). If O*;fNsu(2) (0*), then 0* 
<NSU(2) (0 *) = D :8/' a contradiction. Therefore 
N SU(2) (0*) = 0*. 

(e) D r<I*, which implies N SU(2) (1*) is finite. Now 
I * <Nsum (/*). Hence I*;fNsu (2) (1*) implies 1* 
<NSU(2) (/ *) = D r20n' a contradiction. Q.E.D. 

We now use Lemma 3.3 to calculate the SOC 4) normal· 
izers of the finite noncyclic SU (2) subgroups and products 
of these groups with cyclic groups. For a noncyclic subgroup 
of SO ( 4), any orthogonal free action gives the same mani-
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fold (see Ref. 26, page 115); hence for a noncyclic group the 
normalizer of the group modulo the group is independent of 
the embedding provided the action is free. 

Theorem 3.2: Let G<SU(2) with G finite noncyclic, 
then 

{

Z2XSO(3), if G= T* or Dtn' n<2, 

Isom(~)= P3 XSO(3), if G=D:, 

SO(3), if G = 0 * or I*, 

where P3 is the permutation group of three objects. More­
over 

if G= T* 

or D tn' for n > 2, 

ifG=Df, 

if G=O* or I*. 

Proof If G<SU(2), then an embedding of Gin SOC 4) is 
givenbyG I~ whereG = G X{ ± 1}<SU(2) XSU(2) and 
Z2 = {± (l,I)}. Theorem 3.1(f) implies 

N SU(2)XSU(2) (G X{ ± l}) 
= Nsu(2) (G) XN SU(2) ({ ± 1}). 

Lemma 3.3 implies N SU(2) ({ ± I}) = SU(2). Hence 

N su(2)xsu(2) (G X{ ± 1}) = N SU(2) (G)XSU(2). 

Theorem 3.1 (g) implies 

NSU(2)XSU(2) (G X{ ± I}) 

Z2 

(
G X{± 1}) = NSU(2) XSU(2)1Z, ~ 

= NSO(4) (G), 

180m (~) = Nso(~ (G) 

Nsu(2)xsu(2) (G X{ ± 1})/~ 
= 

(G X{ ± 1})/Z2 

The isomorphism Theorem 2.1 implies 

I (
S2) NSU(2)XSU(2) (G X{ ± I}) 

80m G;::::; GX{±l} . 

It follows thae7 

180m (£.);::::; Nsu(2) G X SU(2) = NSU(2) (G) XSO(3) . 
G G {±I} G 

From Lemma 3.3 we have 

{

O*ID:XSO(3), 

180m (£.) = D:JDtn XSO(3), 
G 0 *IT*XSO(3), 

SO(3), 

if G=D:, 

if G = D tn' n > 2, 

if G= T*, 

if G=O* or I*. 

Hence 

if G=D:, 

if G = T * or D tn' n > 2, 

if G=O* or I*. 
If the fundamental group is G XZk, then an SO(4) em-
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bedding is given by G IZ2, where G = G X Z2k and 
~k = { ± eflfT1IIk }: 

NSU(2)XSU(2) (G X~k) = NSU(2) (G) XNsU(2) (Z2k) , 

NSU(2) (Z2k ) = NSU(2) (S I) . 

Using an argument similar to the one above we have 

180m (~);::::; NSU(2) (G) X Nsu(2) (S I) . 
G XZk G Z2k 

We can show 
NSU(2) (S 1 )/Z2k ;::::;Nsu(2) (S I) Q.E.D. 

There are two remaining families of non cyclic finite sub­
groups of SO(4) not discussed in Theorem 3.2, namely 
D2k(2n + I) X Z, and T; . 3' X Z,. Again we only need to do the 
calculations for a particular embedding of these groups. 

A particular embedding of D ;k(2n + 1) X~, in SOC 4), 
which acts freely on S 3 for k> 2, is D I~, where 
~ = { ± (1,1)} and D is generated by 

a = (elfT/2n + t, - 1), b = (j,ei'ft/2k-I), C = (l,el".I,) . 

Theorem 3.3: 

I 
( 

S3 ) D:(2n+1) X Nsu(2) (SI) som = _ , 
D;k(2n+l) XZ, D 

Proof Let (h l,h2)eNSU(2)XSU(2) (D). Then 
(h l,h2 )(gl,g2)(h II,h 2- I)ED. This means 
high 1- leD t(211 + I) and h1E2h 2 leZ2.,. Hence 
h1eN SU(2) (D t(211 + 1) and h2eNSU(2) (Z2k). Therefore 

- 1 N SU(2)XSU(2) (D)<D:(2,,+ I) XNSU(2) (S ), 
Let heN SU(2) (S I), Case (i) h = ei9 . Then 

(l,h)a(l,h -I) =a, (l,h)b(l,h -I) =b, and 
(l,h)c(l,h -I) = c. Hence (l,e'9)eN SU(2)XSU(2) (D). Case 
(ii) h = jei9 . Then 

and 

(l,h)a(l,h -I) = a, 

(l,h)b(l,h -I) = (l,jei9 )(j,ei1ld -
I
) (I, - e- i'1) 

( . _1"./2k- I) 
= J,e 

_ ~2"+lb~2k-Ib~-1 -a , 

(l,h)c(1,h -I) = (I,jei9)( 1,e'fTIT)( 1, - e -1'1) 

= (I,e- hTI,) = c- I . 

·9 -Hence (l,je' )~SU(2)XSU(2)(D). Therefore {l}XNSU(2)(SI) 
<N SU(2)X SU(2) (D ). 

Now, we look at the action of (eifT/2
(2" + I) ,1) and U,I) on 

the generators of D: 

(el1T12 (2,, + l),l)a(e- I1,./2(2" + 1),1) = a, 

(el1T12(2n + I) ,1)b(e - 11,./2(2n + 1),1) 

and 

= (ei1T12(2" + 1 Je - ifT/2(2" + I) ,el'ft/2k - I) 

= (ie - /1,./2n + 1 ,ei ... /2· - 1 ) 

b~~-Ib~ 2·-1 = a , 

Donald M. Witt 577 



                                                                                                                                    

Hence (ei1T12 (2n + I) , l)EN SU(2) xSU(2) (D). We now have 

(j,l)a( -j,l) =a- I , 

(j,l)b( -j,l) =b- I , 

(j,l)c( - j,l) = c. 

Hence (j,l)ENsu(2)xsu(2) (D). Now Dr(2n+ I) is generated 
by ei1T/2 (2" + I) and j, therefore D r(2" + I) X {1} 
<:NSU (2)XSU(2) (D). It follows that Nsu(2)xsu(2) (D) 

=Dr(2n+ I) X SU(2) (SI), 

NSO(4) (D ;. (2" + \) X Z,) 

= NSU(2)XSU(2)/Z, (!) 
Nsu(2) xSU(2) (D) 

= 
Z2 

( 
S3 ) Isom 

D ;. (2n + I) X Z, 

NSO(4) (D ;'(2n + I) X Z, ) 
= 

D ;'(2" + I) X Z, 

NSU(2)xSU(2) (D)/Z2 
= 

DIZ2 

NSU(2)XSU(2) (D) 
= D 

Q.E.D. 
A particular embedding ofT ~. 3' X Z, in SOC 4) is 1'IZ2 , 

where 1\~SU(2) XSU(2), is generated by 
a = exp [( 1T13) (i + j + k)/.j3], exp[i( 1T13k

)], 

b= (j,l), c= (k,l), and d= (l,ei1TI,), 
for k>2. 

Theorem 3.4: 

Isom = - . 
( 

S3 ) (T*XSI)u(O*""T*XjSI) 

T~.3' XZ, T 

Proof' Clearly, T<.T* XZ2. 3k" Let (~I,h2) 
ENSU(2)XSU(2) (1'). Then (h l,h2)(gl,g2)(h I-I,h 2- I )eT im­
plies hlg1hl-1eT* and h~2h2-IEZ2'3k" Therefore 

- 1 
NSU(2)XSU(2) (n<.O*XNsu(2) (S )._ 

Suppose (l,jeil) )EN SU(2) XSU(2) (T). Then 
(l,jeil)a(l, - e-ii) = (exp[ (1T13)(i + j + k)/.j3], 

exp [ - i( 1T13k
) ])ET, 

Theorem 3.5: 

which implies 

(exp [ (21T13) (i + j + k)/.j3], I )eT. 

Now T* is generated by exp[ (21T13) (i + j + k)/.j3] andj. 
Hence it follows that T* X {1},T, which implies that Tis a 
direct product of T * and a cyclic group, a contradiction. 
Therefore (l,jeil)EN SU(2)XSU(2) (n. 

'I) - '¢. Suppose (t,je' )ENsu(2) xSU(2) (n, where (t,e') 
- 1 ~ -eNSU(2)XSU(2)(n. Then (t- ,e-' )ENSU(2)XSU(2) (T). 

This implies (l,jei(I)-¢.» eNsu(2)xsu(2) (n, a contradic­
tion. Therefore Nsu(2) XSU(2) (n cannot contain elements of 
the form (t,j~I), where (t,ei¢.) is in the normalizer. 

Now, we look at the action of (l,eil) and (ei1TI4,jeil) on 
the generators: (l,eil)a(l,e -II) = a, (l,eil)b(1,e - i6) = b, 
(l,eil)c(l,e - i6) = c, (l,eil)d(1,e - il) = d. Thus 

(ei1Tl4,jeil)a(e-i11'14, - eii) = a-1bc, 

(ei11'14,jeil)b(e- i11'14, - e-ilj) = c, 

(ei11'/4,jei6 )c(e - i11'/4, _ e - ilj) = b 3, 

(ei11'/4,jei6 )d(e- i11'/4, _ e-ilj) = d -I. 

Hence (l,eil), (ei11'14, jeil)ENSU(2)xSU(2) (n, and 
T<.Nsu(2)xsu(2) (n. ThereforeT*XS I,Nsu(2)xsu(2) (1\ 
Now 0 * is generated by T * and ei11'/4. Therefore elements of 
0* X Nsu(2) (S I) with the form (t,jei¢.), where teO *\T*are 
in NSU (2)XSU(2) (1'). It follows that 

( 
S3 ) (T*XSI)u(O*""T*XjSI) 

Isom = _ 
T~.3k X Z, T 

Q.E.D. 

The lens spaces L ( p,q) are the spaces S 3/Zp , where the 
Zp action is generated by h(zo,zl) = (e211'ilp zo,~1TiqlpZI)' The 
positive integer q tells how Zp is embedded in SOC 4), and 
satisfies 0 < q < p and ( p,q) = 1. Clearly, this action is equi­
valent to the action on S 3 where 

and 

((
e1Ti(q + I )/p 0) (e11'I( Qo- I )/p 0)) 

o e - 11'i(q + I )/p , e - 11'i(q - I )/p 

is an element ofSU(2) XSU(2). EveryspaceS 3/Zp withZp 
acting freely as a subgroup of SOC 4) is equivalent to a lens 
space. The isometry groups oflens spaces are calculated be­
low. 

NSU(2) (SI)XNsu(2) (SI), ifq2=1 modp andq =1= ± I modp, 

NSU(2) (SI)XSU(2)/Zp, ifq== ± I modp, 

Isom(L( p,q») = O(4)/Z2, ifp = 2, 
(SIXSI)uj(SIXSI)U[ (SIXjSI)U(jSIXSI)]T IZp, ifp>2 and q2= - I modp, 

(S I xS l)uj(S I xS 1)/Zp, otherwise. 

Proof' Let S3 = {(Zo,zI)EC2IzoZ~ + zlzT = 1}. Then r(zo, Zl) = (e211'ilp zo, e21Tiqlp Zl)' geNSO(4) (Zp) if and only if 
gyg-I = r n for some n. This is equivalent to gr = y"g, where 

g = (( _Q
b 

* :*). (_Cd * :.) )ESU(2) XSU(2) 
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with action given by 

g(zo' ZI) = (_a
b 

* b) ( Zo 

a* -zf 
ZI) (e* 
z3' d* ~), 

b ) ( ~1TiIP Zo 

a* - e- 2'frlqlp zf 
f!:rriqlp Z 1 ) (e* 

e - 2mlp z3' d * ~), 
_ = (ae*~mIP Zo - be*e - 2'frlqlp zT + ad *e2'frlqlp ZJ + bd *e - 2mlp z3') 
gr(ZO,zI) ad~mlp Zo + bde-21Tiqlp zf + aee2'frlqlp ZI + bee- 2mlp z~ , (3.4) 

_ _ (~mnIP(ae*zo - be*zJ + ad *zJ + bd *z~») 
y" g(ZO,zI) - e2'frlqnlp( _ adz

o 
+ bdzT + aezJ + bez3') . (3.5) 

Now, find for what values of a, b, e, and d there exists an n such thatgy = y" g. This means (3.4) and (3.5) are equal, 
which implies 

ae*~mIPzO - be*e-2mq/Pzf + ad*~mqlpzJ + bd*e- 21Tq/Pz3' = e-2mn/P(ae*zo - be*zf + ad *ZI + bd *z~) , 

- ade21TilPzo - bde - 2mqlPzT + ae~1Tiqlpz J + bee - 211.;q;Pz3' = e2mqnlp ( - adzo - bdzf + aez 1 + bez~) . 

These two equations must hold for all (zo, ZI) E S3. In parti­
cular they must be true for (1,0), (i,0), (0,1), and (0,;). 
These values of (zo, ZI) give the following eight equations: 

ae~mlp + bd*e- 21TilP = ~1Tinlp(ae* + bd*) , (3.6) 

_ad~1Tilp+bee-2mlp=~mqnIP( -ad+be), (3.7) 

ae*~mlp - bd*e- 2mIP = e21Tinlp(ae* - bd*) , (3.8) 

- ad~mlp - bee- 2mlp = ~mqnlp( - ad - bd*) , (3.9) 

ad*~1TiqIP - be*e-21Tiqlp = e21Tinlp(ad* - be*) , (3.10) 

ae~1Tiqlp + bd*e-2mqlp = e21TiqnIP(ae + bd*), (3.11) 

ad *~1Tiqlp + be*e-2mq/p = e2mnlp(ad * + be*) , (3.12) 

aee21Tiqlp - bd *e-21Tiqlp = e21TiqnIP(ae - bd *) . (3.13) 

Adding equation (3.6) to (3.7), (3.8) to (3.9), (3.10) 
to (3.12), and (3.11) to (3.13) implies the following set of 
conditions: 

21Tilp = ~mnlp, if ae* =1= 0 , 

~1TiIP = ~1Tiqnlp, if ad =1=0 , 

e21Tiqlp = ~mnlp, if ad * =1= 0 , 
e21Tiqlp = ~mqnlp, if ae =1= 0 . 

Likewise subtracting equations (3.8) from (3.6), (3.9) 
from (3.7), (3.12) from (3.10), and (3.13) from (3.11), 
gives the following conditions: 

e - 2m/p = e2mnlP, if bd * =1=0 , 
e - 21Ti/p = e21Tiqnlp, if be =1= 0 , 

e - 2mq/p = ~mnlp, if be* =1=0 , 

e - 21Tiq/p = ~1Tiqnlp, if bd * =1=0 . 

Combining the above conditions we have the following. 
If ae =1= 0, then 

e21Ti(l - n)/p = 1 and e21Tiq(l - n)/p = 1. 

If ad =1= 0, then 
~1Ti( 1 - qn)/p = 1 and e21Ti(q - n)/p = 1. 

If bd =1=0, then 
~1TI(n + J)/p = 1 and e2mq(n + 1)Ip = 1. 
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If be =1= 0, then 
~m(qn + 1 )/p = 1 and e2mq(n + q)/pp = 1. 

Suppose ae =1= 0 and b =1= 0, then it follows from the above 
that ~m(l- n)/p = 1, ~1Tiq(l - n)/p = 1, ~m(qn + 1)/p = 1, and 

~'frlqO- n)/p = 1, which implies n = 1 - ps, q(1 - n) = pr, 
qn + 1 = pk, and q( 1 - n) = pl. Now n = 1 - ps implies 
qps = pr, q(1 - ps) + 1 = pk, and qps = pl. These equa­
tions imply q = p(s + k) - 1, q= - 1 modp. Suppose 
d =1=0 was also nonzero, then e2m

(n + 1)/p = 1. So n + 1 = pj, 
which is only true for p = 2. Therefore ae=l=O and b =1=0 im­
plies q= - 1 mod p and d = 0 unless p = 2. 

Suppose ae=l=O and d =1=0, then e2mO - n)/p = 1, 
~1Tiq(l - n)/p = 1, ~mO- qn)/p = 1, and e2m(q - n)/p = 1. Hence 

n = 1 - ps, q( 1 - n) = pr, 1 - qn = pk, and q - n = pI, 
which implies q== 1 mod p. Again, a,b,e,d =1= 0 implies p = 2. 
Therefore,ae=l=Oandd =1= 0 implies q=1 modpunlessp = 2. 

If we apply the above conditions ae=l=O and b =1=0 to 
(3.4) and (3.5) we obtain 

_ _ (ae*~1TiIP Zo - be*e-2mqlp ZI) 
gr(ZO,zI) - 2'frlqlp + b - 21Ti1p -* ' ace ZI ee "'6 

_ (e2mnIP(ae*zo - be* ZI) 
y"g(ZO,zI) = e2'frlqnIP(aez

l 
+ bez3') , 

which are equal for all (ZO,zI) ES3, when n = 1 and 
q= - 1 modp. Likewise, if we apply ae=l=O and d =1=0, we 
obtain 

_ _ (ae*~1TilP Zo + ad *~'frlqlp ZI) 
gr(ZO,zI) - ...2'frlqlp d'...2mIP , 

aee- ZI - a t: Zo 

_ z _ (e2mnIP(ae*zo + ad * ZI») 
y"g( O,zI) - _2'frlqnlp( * d)' 

t: ae ZI-a Zo 

which are equal for all (zo, ZI)eS 3, when n = 1 and 
q==l modp. The above results imply N su(2)xsu(2) (Zp) 
= Nsu(2) (S 1) XSU(2), forq==l modp, N SU(2)XSU(2) (Zp) 
= SU(2) X Nsu(2) (SI), for q==-lmodp, and 

N SU(2)XSU(2) (Z2) = SU(2) XSU(2). 
Suppose ad =1=0. Now look at Eqs. (3.4) and (3.5). If 

b =e = Owe have 
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and 

l' g(zo,zl) = (e'-1rinIPad ·Zl' e21riqnl Padzo) , 

which are equal for all (zo, ZI)eS 3 if and only if n = q and 
i=l modp. 

Supposebd #Oanda = c = 0, then (3.4) and (3.5) be­
come 

gy(zo,zl) = (bd·e - 21rilp z~, bd·e - 21riqlp zt) , 

and 

l' g(zo,zl) = (e21rinIPbd·~, e21riq"IPbdzT> , 

which are equal for all (ZO,zI) E S3, when n = - 1. 
It follows from the above that 

NSU(2) (S I) XNSU (2) (S I) , 

ifq2=1 modp 

NSU (2) XSU(2) (Zp) = and q =1= ± 1 mod p, 
(SIXS l)uj(S I xS I), 

if q2 =1= 1 mod p. 

We have 

The above calculations give the orientation preserving 
isometries of L( p,q). Ifp = 2, then L(2,1) = S3/Z2 and 

~~(( }C1 

-1 -1 ~)}, 
a normal subgroup of 0(4). Hence lsom(L(2,1») = 0(4)/ 
~, which implies L (2,1) has orientation reversing isome­
tries. Suppose p > 2, we would like to find the orientation 
reversing isometries of L( p,q). Clearly, every element of 
0(4) \SO(4) has the action gT(zo,zl) , where 
T(zo,z,) = (~, Zl) andgeSO(4). The definition of norma­
lizer implies thatgTeNo(4) (Zp) if and only ifgTyT-lg- ' 
= 1', which is equivalent togTy(zo,z,) = yngT(zo,z,), for 
all (ZO,zI)eS 3 andgeSU(2) XSU(2). 

Now, we express both gTy(zo,z,) and 1'gT(zo,zl) in 
terms of 

(

ac.e - 21riIP~ - bc.e - 21riqlPzt + ad ·e21riQlp Zl + bd ·e21rilp Zo) 

gTy(zo,z I) = _ ade - 21riIPZ~ + bde - 21riQIPzt + ace21riqlp z I + bce21rilP Zo ' (3.14 ) 

and 

yngT(zO,zI) 

= (e21rinIP(ac.~ - bc.zt + ad ·Zl + bd .zo») . 

e'-1Tiqnlp ( - adz~ + bdzt + aczI + bczo) 

(3.15) 

Evaluating (3.14) and (3.15) at (1,0), (i,0) , (0,1), and 
(O,i) , we have the following eight equations: 

ac.e - 21ril P + bd .e21ri1 p = e21rinl P(ac. + bd.) , 

_ ade - 21rilp + bce21rilp = e21riqnlp ( - ad + bc) , 

(3.16) 

(3.17) 

- ac.e- 21ri1p + bd ·e21rilp = e'-1rinlp( - ac· + bd·) , (3.18) 

ade-21rilp + bCe'-1rilp = e'-1riqnlp(ad + bc) , ( 3.19) 

- bc.e - 21Tiqlp + ad .e'-1riqlp = e'-1TinIP( - bc· + ad.) , 

(3.20) 

bde - 21riqlp + ace21riqlp = e'-1riqnIP (bd + ac) , 

bc.e - 21riqlp + ad .e21Tiqlp = e21rinlp(bc· + ad.) , 

_ bde - 21riqlp + ace21riqlp = e21Tiqnlp(ac - bd) . 

(3.21 ) 

(3.22) 

(3.23) 

Adding equation (3.16) to (3.18), (3.17) to (3.19), (3.20) 
to (3.22), and (3.21) to (3.23), we have 

bd ·e21Tilp = bd ·e21Tinlp , 

bce21ri1p = bce21riqnlp , 

ad ·e21riqlp = ad .e'-1rinlp , 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

Subtracting equation (3.16) from (3.18), (3.17) from 
(3.19), (3.20) from (3.22), and (3.21) from (3.11) we have 

ac.e - 21Tilp = ac.e21rinlp , (3.28) 
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ade - 21Tilp = ade'-1Tiqnlp , 

bc.e - 21Tiqlp = bC.e'-1rinlp , 

bde - 21riqlp = bde21riqnlp . 

(3.29) 

(3.30) 

(3.31 ) 

Now, suppose bd • #0, then (3.24) implies n = 1. Equa­
tion (3.31) gives e - 21riqlp = e21riqIP, a contradiction unless 
p = 2, because (p,q) = 1. Likewise, ifac#O, (3.28) implies 
n = - 1 and (3.27) implies e21riqlp = e-21riqlp, a contradic-
tion. Therefore, bd • = ° and ac = 0. 

Supposebc#O, then (3.30) implies n = - q. Equation 
(3.25) implies e21rilp = e - 21ritjlp, which is true if and only if 
q2 = _ 1 + sp. Likewise, if ad #0, then (3.26) implies 
n = q. Equation (3.29) implies e - 21rilp = e21ritjIP. Hence 
q2 = _ 1 + sp. Therefore gTeNO (4) (Zp) if and only if 
q2= _ 1 mod p. Further, either ad #0 and bc = 0, or bc#O 
and ad = ° unless p = 2. The action of these orientation re­
versing isometries on S 3 are given by 

gl T(ZO,zI) = (ad·e21riqIPzl' -ade-21riIPz~) 

or 

Therefore, Isom(L ( p,q») = Isom + (L ( p,q») for q2¢ - 1 
modp and 

Isom(L(p,q») = (SIXSI)uj(SIXSI) 

u[ (jSIXS I)U(S IXjSI)]T /Zp 

for q2= - 1 mod p. Q.E.D. 
Table I summarizes the results of this section. The 

groupsD, 1', and (jS I xS ')T are defined in Theorems 3.3, 
3.4, and 3.5, respectively. 
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TABLE I. The isometry groups of spherical spaces M = S 3/G. 

Dt.. n;;.3 
D: 
T· 
O· 
1* 
Dt. XZp. n;;.3 
D:XZp 
T*XZp 
O*XZp 
I*XZp 

D;'(Z.+I)XZp, p=1 or (2k (2n+I).p)=1 

T;.3'XZp, p= I or (8. 3k .p) = I 

Zp. i==1 modp with q;;l= ± I modp 
Zp. q== ± I modp with p>2 
Zp. i== - I modp with p>2 
Zp. remaining cases 

IV.1fo Isom(S'/G) AND 1fo Dlff(S'/G) 
The groups 'TTo Isom(S 3/G) are found using the defini­

tion of'TTo' The groups 'TTo Di1f(S3/G) are given as results of 
the weak form of Hatcher's conjecture. 

Strong Conjecturel~. Isom(S3/G)~Di1f(S3/G). The 
motivation for the conjecture is the following. Suppose 
G = 1, then the spherical spaceisjustS 3, Isom(S3) = O( 4), 
and Hatcherll has shown that O(4)~Diff(S3). Therefore 
theconjectureholdsforG = 1. IfG t= 1, thenS 3 is the univer­
sal covering space of S3/G and isometries of S3/G lift to 
isometries of S 3; likewise diffeomorphisms of S 3/ G liftto S 3. 
Because the diffeomorphisms and isometries lift and O( 4) 
~Diff(S3), it seems feasible that Isom(S3/G) 
~Diff( S 3/G). So far the conjecture has been proven for S 3, 

Isom (M) 

ZzXSO(3) 
P3 XSO (3) 

ZzXSO(3) 
SO(3) 
SO(3) 
ZzXNsu(2) (S') 

P3 XNsu (2) (S') 
ZzXNsu(2) (S') 
N SU(2) (S ') 
Nsu(z) (S') 

D :(z. + ') XNsu (2) (S' )/D 
(T*XS')u(O*\T*XjS')/t 

0(4)/Zz 
N SU(2) (S') XN SU(2) (S ')/Zp 
Nsu(2) (S ') XSU(2)/Zp 
(S' xS ')uj(S' xS ')u[ (S' xjS ')u(jS' xS ') I T IZp 
(S' xS ')uj(S'xS ')/Zp 

S3/Z2, s3/D ;k(2n+ 1) ,s3/D ;k(2n+ 1) XZp, and for S3/D tm 

XZp, mt=2, by Ivanov. 14 It turns out for the calculations we 
do all that is needed is the following weaker conjecture. 

Weak Conjecture: (i) 'TTODi1f(S3/G) ='TTo 
Isom(S3/G), (ii) 'TTl Di1f(S3/G) has the same number of 

generators as 'TTl Isom(S3/G). 
After each theorem giving 'TTo Isom(S3/G), there is a 

corollary stating part (i) ofthe weak conjecture in cases for 
which 'TTo Diff(S3/G) has been calculated by Rubinstein. 
The last theorem in this section (Theorem 4.6) uses lens 
spaces to prove that the only spaces with orientation revers­
ing diffeomorphisms are lens spaces. Moreover, this result is 
independent of the conjecture. Table II summarizes the re­
sults. 

TABLE II. Topological structure of the isometry groups of spherical spaces M = S 3/G. and indication of which conjecture is known for each space. 

Orientation 
Topology of reversing 

11",M Isom (M) 11"oIsom (M) Conjecture diffeomorphisms 

D: •• n;;.3 ZzXRP 3 
Zz W No 

D: P3XRP 3 P3 W No 
T· ZzXRP3 Zz Open No 
0* RP3 I W No 
I· RP 3 I Open No 
D:.XZp. n;;.3 ZzXZzXS' ZzXZz S No 
D:XZp P3xZZXS' P3XZz W No 
T*XZp Z2 X Zz XS ' Z2 XZz Open No 
O·XZp Z2 XS' Zz W No 
I·XZp Z2 XS ' Zz Open No 
D;'(2.+')XZp, p;;.1 Z2 XZz XS ' Z2 X Zz S No 

T;.3'XZp, p;;.1 ZzXS' Zz Open No 

Z2 ZzXRP 3XRP 3 
Zz S Yes 

Zp. i==1 modp ZzXZ2XS'XS' ZzXZ2 W No 
with q¥= ± 1 mod p 

Zp. q==± I modp with p>2 Z2 XS 'XRP3 Z2 W No 
Zp. i==-I modp with p>2 Z.XS'xS' Z. W Yes 
Zp. remaining cases Z2 XS 'XS' Zz W No 
1 Z2XS3XRP3 Zz S Yes 
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As an example of calculating 1To Isom(S3/G). Look at 
G = Z2' Then Isom(S3/Z2) = 0(4)/Z2' The identity com­
ponent of 0 ( 4 ) /Z2 is just SO ( 4 ) /'l2; hence 

1To 180m (S 3/Z2) = 0(4)/~/SO(4)/~ 
= 0(4)/SO(4) = Z2' 

Looking at Table I, most of the calculations will be this easy, 
and the following theorems give the results. 

Theorem 4.1: 

1To Isom(S3/G) 

P3 ifG=Dt, 

P3X Z2' ifG=DtxZp withp> 1, 

Z2XZ2' ifG = D!n XZp, n;;;.3, 

= or T*X'lp' withp> 1, 

'l2' ifG =D!n' n;;;'3,T*,O*xZp , 

or /*X'lp withp > 1, 

1, if G = 0 *, or / *. 

Proof: If G<SU(2) and noncyclic, then Theorem 3.2 
implies 

{

'l2XSO(3), 

Isom(S3/G) = P3XSO(3), 

SO(3), 

ifG = T*, or D!n' n;;;.3, 

ifG=Dr, 

ifG = 0* or /*. 

Since SO (3) is connected, the only disconnected part is due 
to the finite groups P3 or 'l2' Therefore 

{

Z2' ifG = T*, or D!n' n;;;.3, 

1To l8Om(S3/G) = P3, ifG=Dr, 

1, ifG=O*or/*. 

If G =H XZp ' where H<SU(2), and His noncyclic, 
then Theorem 3.2 implies 

'l2XNSU(2) (SI), ifG= T*X'lp' 

or D!n X'lp' n;;;.3, 

Isom(S3/G) = P3XN,u(2) (S 1), ifG = DrX'lp' 

N.u (2) (Si), ifG=O*X'lp 

or /*X'lp. 

Clearly, NSU (2) (S 1) has two components. Therefore 

[

Z2X'l2' ifG = T*X'lp' 

or D!n X'lp' n;;;.3, 
1To Isom(S3/G) 

P 3 X Z2' if G = D r X 'lp' 

'l2' ifG = O*X'lp or /*X'lp' 

Q.E.D. 

Corollary 4.2: 1To Diff(S3/G) = 1To Isom(S3/G) for G 
#- T * X Zp or / * X Zp. 

Proof: See Rubinstein 15 and Theorem 4.1 for G = D !n 
XZp andD ;k(2n+ I) XZp withp;;;.3. See Rubinstein and Bir­
man16 and Theorem 4.1 for G = O*XZp withp;;;.1. Q.E.D. 

The groups 17'0 Isom(S3/G) above were easy to calculate 
because the isometry groups were just products. For 
D ;k(2n + 1) and T ;.3k this is not the case and it takes a little 
more work. 
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Theorem 4.3: 1To l8Om(S3/D ;k(2n+ 1) XZp) = Z2XZ2' 
Proof: Let a= [(l,j)], b= [(ei1T/2(2n+ll,I], and 

c = [( ei1T12(2n + I), j) ], where [( )] means equivalence 
classes in 1To Isom(S3/G). Clearly, no two of the above ele­
mentsof1To Isom(S3/G) are connected, or connected to the 
identity. 

All elements of 17'0 l8Om(S3/G) are of the form 
[ (ei17'S/2(2n + I) ,ei8 )], [( ei1TS12(2n + I) ,e"j)]' [(ei1TS12 (2n + 1 j,ei8 ] 

or [( ei1TSI2(2n + 1) j,eii) ], where seZ and BeR. The classes 
[ (ei1TSI2{2n + I) ,ei8 )] are the same because [ (ei1Ts12(2n + I) ,ei8 ) ] 

= [b][(e i17'S/2(2n+l),ei8 ')], where b=(j,ei1TI2'-I). The 
classes [( ei1TSl2(2n + 1) ,ei8 j)] and [( ei1TSI2(2n + 1) j,eii)] are 

equivalent for the same reason. So without loss of generality 
we only need to consider [(ei1TS12(2n + I) ,ei8 )] and 
[ (ei1TS12(2n + I) ,eii) ] • 

If s is even, then [( ei1TS12(2n + I) ,ei8 ] is connected to the 
identity. This is true because if we define f [0,1] 
~lsom(S3 /G) by 

/(A) = [(ei1TsI2(2n+1),e'18+A(21T-8»))], 

/(1) [ (ei1TSI2(2n + 1),1) 2] 

= [a - sl2b 2k
-

l ] [(ei1Tsl2(2n + 1),1)] 

= [(1,1)], if s/2 is odd, 

= [a - S12] [ (eimI2(2n + 1),1)] 

= [(1,1)], if s/2 is even, 

/(0) = [(ei17'S/2(21t + I) ,ei8 ] . 

This is the path that is connected to the identity. 
If s is odd, then [( ei1Ts12(2n + II ,ei8 )] is connected to b. 

Because, using the/above we have 

/(1) = [(ei1TS12(21t+ll,1)] = [al-S12][(ei1TS/2(2n+I),1)] 

= [( ei1T12(2n + 1),1)] . 

If s is even, then [( ei1TS/2(2n + 1) ,ei8 j)] is connected to a. 
Letg: [O,1]~I8Om(S3/G) be defined by 

g(A) = [(ei1TS/2(2n+l),e'18+A(21T-8)1')] , 

g(1) = [(ei1TS12{2n + I) ,j)] , 

g(1) = [a-s/2][(ei1TSI2(21t+I),j)] = [(l,j)], ifs/2 is even, 

g(1) = [a-sI2b2k-l] [(ei1TS12(2n+ I),j)] 

= [(l,j)], if s/2 is odd. 

If s is odd using g it follows that [( ei1TS12{2n + I) ,eii)] is 
connected to c. 

Clearlya2 = b 2 = c2 1. Therefore1To Isom(S3/G) has 
four elements {l,a,b,c}. It follows that 17'0 Isom(S3/G) = Z2 
XZ2. Q.E.D. 

Corollary 4.4: 

1To Diff ( S3 ) 
D~k{2n+i)X'lp 

= 17'0 Isom ( S3 ), p;;;.l. 
D ;k(2n + 1) XZp 

Proof: See Rubinstein15 and Theorem 4.3. Q.E.D. 
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Theorem 4.5: 1T ° Isom ( S 3 ) = Zz . 
T;.3k XZp 

Proof' Let a=[(ei1T14,j)]E1Tolsom(S3/G) with 

G = T ;.3k X Zp. Then aZ = [(i, - 1)] = [a3kbc][ (i, - 1)] 

= [(1,1)], where a = (exp [ (1T/3)(i + j + k)/v'3]' 
exp(i1T/3k »), b = (j,I), andc = (k,I). Soa is not connected 
to the identity. Therefore a has order two in 1To Isom(S3/G). 

There are two types of elements in 1To Isom(S3/G), 
namely [(t,ei8»), teT*, and [(t,jei8»), teO * \ T*. If they 
are of the form [(t,ei8 )],teT*,thent= ± 1, ±i, ±j, ±k, 
! (1 + i + j + k), ! (1 - i + j + k), or 
! ( - 1 + i + j + k), etc. 

If t is of the form i, j, k, etc., then let f().) 

= [(t,ei(8-A8l»), f [0,1] ~lsom(S3/G), f(O) 
= [(t,ei8»), andf(1) = [(t,I)] = [(1,1)]. 

If t is of the form ~ (1 + i + j + k), ! (1 - i + j + k), 
!(1 + i - j + k), etc., then let f().) 

= [(t,expi(O-).(O + [1T/3 k ]s»)), whereseZ. We have 
f(1) = [(t,ei1TSd )] = [(1,1)]. This implies all elements of 
the type [(t,ei8 )], teT* are the identity in 1To Isom(S3/G). 

If teO * \T*, then [(t,jei8 )] = [(tI,ei1TSd )] 
X [(ei'7Tl4,jei8 '»), where (t,jei8 )eT. Hence all elements of the 
form [(t,jei8)] are connected to [(ei'7T/4,j)]. Therefore 
1To Isom(S3/G) = Zz. Q.E.D. 

Theorem 4.6: 

1To Isom(L( p,q») 

and 

if q2= I mod p with q =1= ± I mod p, 
if q2=:= - I modp withp > 2, 

otherwise, 

1To Isom +(L( p,q)j 

{

Z2XZZ' if qZ=1 modp with q =1= ± I modp, 
- I ifp = 2, 
- ~Z' otherwise. 

Proof' Suppose p = 2, then Isom(S31Z2) = 0(4)/1:2 
and Isom+(S3/Z2) = SO(4)/Z2' Because SO(4) is con­
nected and Z2 acts freely on SO( 4), SO( 4 )/ZZ is connected. 
Since SO ( 4 ) /1:z is connected, it follows that the only discon­
nected part of Isom (S 3/Z2) comes from the orientation re­
versing isometries. Hence, the identity component of 
Isom(S3/Z2) is just Isom+ (S3/Z2). Therefore, 

'IT Isom(S3/Z ) = 0(4)/Z2 = 0(4) =Z 
o Z SO(4)/Z2 SO(4) 2' 

and1To lsom+(S3/Z2) = 1. 
Now suppose p > 2 and q2 =1= - I mod p. This means 

there are no orientation reversing isometries (Theorem 3.5), 
so Isom + (L ( p,q») = Isom(L ( p,q) ). If q=:= ± I mod p, then 

Isom(L( p,q») = Nsu(z) (S I) XSU(2)/Zp . 

Clearly, the identity component of Nsum (S I) XSU(2) is 
S 1 XSU(2) andZp<'S I xS I<.S I XSU(2). From this, itfol­
lows that S I X SU (2) /Zp is the identity component of 
Isom(L ( p,q»). Hence, 

1To Isom(L( p,q») 
1 . Nsum (S ) XSU(2)/Zp 

S I X SU(2)/Zp 

NSU (2) (SI)XSU(2) Nsum(SI)xSU(2) =Z 
S I XSU(2) S I SU(2) z' 

for q= ± I mod p with p > 2. If q2= I mod p with q=¢= ± I 
modp, then 

I (L( »)
_Nsum(SI)XNsu(2)(SI) 

som p,q - . 
Zp 

Here S I xS I is the identity component of Nsu(z) (S I) 
XNsu(2) (SI). It follows that SIXSI/Zpis the identity 
component of Nsum (S I) XNsu(2) (S I)/Zp. Therefore, 

'IT Isom(L( ») = (Nsu(2) (S I) XNsu(2) (S I) )/Zp 
° p,q (SIXSI/Zp) 

Nsu(2) (S I) XNSU(2) (S I) 

SIXSI 

NSU (2) (S 1 ) Nsu(2) (S I) 
= X ---="':":"";'---

SI SI 

=Z2 XZZ' 

for qZ= I mod p with q =1= ± I mod p. If q does not satisfy 
either i= ± I mod p or q= ± I mod p, then 

Isom(L(p,q») = (SIXSI) uj(SIXSI)/Zp, 

where Zp <.S I X S I, and SiX S 1 is the identity component of 
(SIXSI) uj(SIXSI). Moreover, (SIXSI) uj(SIXSI) 
has only two components, namely S IXS I andj(S IXSI). 
It follows from the above that SiX S I/Zz is the identity 
component of Isom(L ( p,q»). Therefore, 1T 0 Isom(L ( p,q) ) 
= Z2' for q2 =1= ± I mod p. 

Finally, if p > 2 and qZ=:= - I mod p, then 

Isom+(L( p,q») = (SI XSI) uj(SI XSI)/Zp. 

Hence, 1T 0 Isom + (L ( p,q») = Z2' Recall from the proof of 
Theorem 3.5, that 

gIT(zo,zl) = (ad*eZ'7TiqIPzI' _ade-21TiIPz~) 

and 

g2T(ZO,zI) = ( - bc*e-Z1TiqIPzT, bceZ'7Ti/p zo) 

are the two types of orientation reversing isometries. Taking 
the product of these two elements gives 

(glT)( g2T )(ZO,zI) 

= (acez1Tiq/Pd *be21Ti/Pzo,aceZ'7TiqIP db *e - 21Tilp ZI) , 

where ( g IT) ( g2 T) is equivalent to 

(ace~iq/p a*c*e ~ 21Tiq/ p) ( ~:T :;) (d *b~21Ti/P db *eO- Z'7Ti/P) . 

Clearly, 
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o ) (d *be
27ri

/
p 

a*c*e - 21Tiq/p' 0 

is an element of the identity component SIX S l/'l..p of 
Im(L(p,q»). Therefore, g2T is the inverse of glT in 

I 

(e27rilP~*d * 

Clearly 

- e-
27ri

/
p 

ad) ( zo. 
o -Zl 

( C27ri/P~*d * 

is an element ofj(SIXS I). It follows from the above that 
11'0 Isom(L ( p,q») is generated by g 1 T. Since g 1 T squared is in 
j(SIXS I

), it follows that glT has the order of 4 in 
11'0 Isom(L ( p,q) ). Therefore, 11'0 Isom(L ( p,q») = '1..4 for 
q2= -1 modpwithp>2. Q.E.D. 

Corollary 4. 7: 11'0 Diff(L( p,q») = 11'0 Isom(L( p,q»). 
Proof.' See Hodgson and Rubinstein 17 and Theorem 

4.6. Q.E.D. 
Corollary 4.8: The only lens spaces with orientation re­

versing diffeomorphisms are ones with q2= - 1 mod p. 
Proof.' Corollary 4.7 implies every diffeomorphism is 

connected to an isometry. Hence L ( p,q) has orientation re­
versing diffeomorphisms if and only if it has orientation re­
versing isometries, because two diffeomorphisms are con­
nected only if they are both orientation preserving or 
reversing. The only lens spaces L ( p,q) with orientation re­
versing isometries are ones with q2=: - I mod p. Q.E.D. 

Corollary 4. 9: If G is a noncyclic group which acts freely 
on S 3, then S 3/ G has no orientation reversing diffeomor­
phisms. 

Proof.' Let G be a noncyclic group acting freely on S3. 
Then Theorem 2.2 implies G is isomorphic to D tn' T *, 0 *, 
1*, D ;k(2n + 1)' T ;.3 k, or the direct product of one of these 
with a cyclic group of relatively prime order. Each of these 
groups contains a '1..4 subgroup. We look at the presentations 
of these groups in Sec. II and observe that a '1..4 subgroup is 

generated by X2k - 2 for D ;k(2n + I) and by x in the other cases. 
Using the relations given in these group presentations, it can 
be shown that the '1..4 generated in the above way is conjugate 
to any other '1..4 contained in these groups. 

Given a free action of a non cyclic group G on S 3 there is 
an induced free '1..4 action on S3, because 'l..4 <.G. From the 
above, it follows that the map p: S 3/'l..4----+S 3/G defined by 
p ( [ X]) = [X] G is a well-defined covering map. (Here [ X] 
denotes the equivalence class of XES 3 with respect to the '1..4 

action and [ X] G denotes the equivalence class in S 3/G.) 
Now, let! S 3/G----+S 3/G be a diffeomorphism of S 3/G. 

Then.o = pfis a map of S3/Z4 intoS 3/G 
ji 

S 3/'l..C -' S 3/ G 

\ p f/' 
S3/G 

From the lifting theorem, Theorem 2.4,.0 lifts to a mapjsuch 
that 
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11'0 Isom(L ( p,q»). The square of g 1 T is 

( glT)2(ZO,zI) 

= ( - a2e - 27ri/Pe27riq/pzt, _ d 2e - 27ri/p e - 21T'iq/p z1'), 

which is equivalent to 

f /S3/'l..4 

// pi 
'" p , 

S3/'l..
4 

_ S3/G 

'\ i 
S3/G 

commutes, because all '1..4 subgroups of G are conjugate to 
each other in G. Therefore, every diffeomorphism of S 3 /G! 
lifts to j such that the diagram 

f 

commutes. The degree28 of the composition of maps is given 
by deg(gh) = deg(g) deg(h) (see Ref. 29, p. 268). Apply­
ing this to the above commuting diagram implies deg( j) 
deg(p) = deg(p) deg(j). Hencedeg(j) = deg(h. 

Now, suppose! S 3/ G----+S 3/ G is an orientation reversing 
diffeomorphism. Hence deg(j) = - 1. Therefore, deg(h 
= - I, which implies S 3/'1..4 has orientation reversing dif­

feomorphisms, when S3/'l..4 is just a lens space L(4,q) (see 
RubinsteinI5

). The only allowed values of q are I and 3. 
Neither q value satisfies q2= - I mod p. Hence Corollary 
4.8 implies S 3/'1..4 has no orientation reversing diffeomor­
phisms, a contradiction. Therefore, S3/G cannot have any 
orientation reversing diffeomorphisms. Q.E.D. 

Table II summarizes the results of this section. Under 
the column labeled conjecture, "W" means the weak conjec­
ture holds, "S" means the strong conjecture holds, and 
"open" means it is not known at the present time if the con­
jecture is true. All results given in Table II are independent 
of the conjecture. 

v. 'TI'oDlffxo (S3/G) 

Let M be a connected manifold. Define a projection p 
from Diff(M) to Mby p(j) = !(xo). This projection pro­
duces a fiber bundle with total space Diff(M) , base space M, 
and fiber Diffxo (M). Since it is a fiber bundle, we have the 
following exact sequence of groups: 
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... ---+ 1rj Diffxo (M)~j Diff(M)---+1rj M 

---+ 1rj_ 1 DiffXo (M)---+ ". ~o DiffXo (M) 

---+ 1ro Diff(M)---+1 . 

The only part of this sequence we use is 

11'2 M ~1 DiffXo (M)~1 Diff(M)~1 M 

---+ 1rO Diffxo (M)---+1rO Diff(M)---+1 . 

Associated with a manifold of the fonn S 3/G is the fiber 
bundle p: S 3 ~ 3/G and the sequence 

,,---+ 1rjG~jS 3 ~jS 3/G ---+ 1rj _ 1 G 

---+ ". ---+ 1rOG~oS3 ---+ 1roS 3/G, 

where 1r oG = G and 1rj G = I for all i;;;.l, since G is finite. 
Hence 1---+ 1rj S3---+1rj S

3/G---+ I, for all i;;;.2 and 1r1S
3/G 

= G. This implies that 1r2S3/G = 1rzS 3 = 1. The exact se­
quence we are interested in is 

PI. 

1---+ 1r1 DiffXo (M) ---+ 1r1 Diff(M) ---+ G 

a.. jllo 

---+ 1ro DiffXo (M)---+ 1ro Diff(M) ---+ I . 

The above sequence is exact, so ker ilo = 1m all' and ker all 
= 1m PII . Combining this with the fact that the image of a 

homomorphism is the domain modulo the kernel we have 

ker i .. = 1m all = G !ker all = G 11m PII . 

The sequence 

I---+ker i .. ---+ 1ro Diffxo (M)---+ 1ro Diff(M)---+1 

is exact. Since 

ker i .. = G 11m Pill ' 

we have 

illo 

I---+G IImpII ---+ 1ro DiffXo (M) ---+ 1ro Diff(M)---+1 (5.1) 

is exact. In order to calculate ImPII and 1ro Diffxo (M) it is 
necessary to find out another relation between 1r 1 (M,xo) and 
1ro DiffXo (M). 

Given any homeomorphism between a manifold and it­
self! M---+M that fixes a point xo, i.e.,j(xo) = xo, there is an 
induced automorphism of 1r 1 (M ,xo) denoted bY.l#1 . Further, 
if two such homeomorphisms are homotopic, then the in­
duced automorphisms are the same. Hence y: 1ro Diffxo (M) 
---+ Aut 1r1 (M,xo) , where y([ f]) = III is a well defined ho­
meomorphism. Suppose y( [f] ) = y([ g]), where both I 
andg are orientation preserving and M = S 3/G. Clearly,jll 
= gIl' This combined with the following lemma implies 

f'" g. 
Lemma 5. I: Iff, g:S3 IG~ 3/Gareorientationpreserv-

ing and fll = gIl' then I ~ g. 
Proof: S 3/G can be thought of as a CW complex. Let K 1 

be its one-skelton,JIK I ~ glKI because.l#l = gIl (see Ref. 
25, page 194). Now/IK'~ glK' because the obstruction to 
defonning I into g restricted to the two-skelton lies in the 
second cohomology group of S 3/G with local coefficients in 
11'2(S3/G) = 0 (see Ref. 25, pp. 183 and 193). Finally,/IK3 
~ glK3 if and only if there is no obstruction to defonningl 
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into g in the third cohomology group of S3/G with local 
coefficients in 11'3(S3/G) = Z. The obstruction isjust thedif­
ference of the cohomology classes induced by the two mapsl 
and g. Since both I and g are orientation preserving, their 
degrees are both equal to + I, and they both must detennine 
the same class in H 3 (S 3 I G,Z). Therefore the obstruction is 
zero. Since K 3 is S 3/G,Jis homotopic to g. Q.E.D. 

Homotopy implies isotopy when the weak conjecture 
holds; therefore y( [Jl) = y( [g]) implies [Jl = [g] if we 
look at y: Diff~ (M)---+ Aut 1r1 (M,xo). Therefore yis one to 
one on 1ro Diffx: (M). The fact that y is one to one on 
1ro Diff~ (M) means 1m y is a subgroup of Aut 1r1 (M,xo). 

Given [JlEDiff+(M) there is an induced homomor­
phism.l#l: 1r1 (M,xo) ---+ 1r1 (M,J(xo»' Since in general an 
element of Diff+ M does not fix XO,.I#I is not necessarily an 
automorphism of 1r 1 (M ,xo)' By moving the base point/(xo) 
to Xo via conjugation by an element of fundamental group, 
i.e., an inner automorphism, 1r1(M,J(xo») can be mapped to 
1r1 (M,xo)" Therefore it follows that r: 1ro Diff+ (M) ---+ Out 
1r1 (M,xo) where ris yafter moding out by Inn 1r1 (M,xo). It 
follows that 1r 0 Diff+ (M) is a subgroup of Out 1r 1 (M,xo). 

We now use the above infonnation to find Imp .. in se­
quence (5.1). The homomorphism all maps each 
gE1r1 (M,xo) to an equivalence class of diffeomorphisms in 
1ro Diff~ (M). By exactness i .. all = I; hence the action of 
all ( g) as an outer automorphism of 1r1 (M,xo) is trivial. It 
follows thatthe action of all (g) on 1r1(M,xo) is given by the 
inner automorphism all (g)h = g'hg'-I, where for a fixed 
gE1r1 (M,xo) , g' is a fixed element of 1r1 (M,xo) and h is an 
element of 1r1 (M,xo)' Therefore, the image of 1r1 (M,xo) in 
1r 0 Diff ~ (M) is contained in Inn 1r 1 (M ,xo)' The group of 
inner automorphisms Inn 1r 1 (M,xo) is equal to 

1r1 (M,xo)/Center(1r1 (M,xo»)' 

Since the image of 1r1 (M,xo) is contained in Inn 1r1 (M,xo), it 
follows from Theorem 2.1 that 

1m all = A ICenter(1rI(M,xo»), 

whereA<1r1 (M,xo)' Hence 

I a _ 1r1(M,xo) _ A 
m I - -

I ImPII Center(1rI(M,xo» 

SupposeA ¥=1rI (M,xo), then 

IA 1< 11r1 (M,xo) I , 
ImPII <Center(1r1 (M,xo» 

(See Ref. 30). Hence 

Ilmpll l<Center(1rI(M,xo»l· 

Therefore 

IA II ImPII I < ICenter(1r1 (M,xo»II1r1 (M,xo) I , 

a contradiction to 

A = 1r1 (M,xo) 

Center(1r,(M,xo» ImPII 
Therefore A =1rI(M,xo) and ImPII = Center(1r, (M,xo»). 
So sequence (5.1) becomes 

1 ---+ Inn(1r1 (M,xo» ---+ 1ro Diff~ (M) ---+ 1ro Diff+ (M) ---+ 1, 

where 
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and 

1To Dur+(M),Out(1T1(M,xo»' 
Theorem 5.2: 

0, if G = D t, T *, or 0 *, 

D 4n , ifG=Dtn,n;>3, 

I, ifG = 1*, 

1To Diff';:-(S3IG)= OXZz, ifG=DtXZp,T*XZp' 

orO*xZp' 

I X Zz, if G = I * X Zp' 

D 4n XZz, if G = D tn XZp, n;>3. 

Proof: If G = 0 * or 1*, Theorem 4.1 tells us that 
1To Diff(S3IG) = 1. Hence our sequence is I~ Inn G 

~o DiffXo (M)~l, and 1To Diffxo (M) = Inn G. 

If G=Dt or T*, the sequence is I~InnG 

~o Diffxo (M)~Out G ~ 1 because Out D t = P3 and 
Out T* = Zz, and Theorem 3.1 gives1To Diff(S3ID t) = P3 

and 1To Diff(S3IT*) = Zz. Hence 1To Diffxo (M) = Aut G, 

where Aut D t = 0 and Aut T * = O. Therefore, 
1To DiffXo (M) = 0 for G = D tor T*. 

If G=Dtn = (x,y: xZn = 1, y4 = 1, yxy-I =x- I ), 

n;> 3, then Theorem 4.1 implies 1T 0 Diff( M) = Zz. The action 
of 1To Diff(M) on 1TI (M,xo) is given by e7rilZnAe -1TiIZn = A 

and efTi/2n Be 7ril2n = AB, where A = e7riln and B = j. All the 
elements of D tn are of form x' and xy. To find the action of 
Inn D tn on D tn' just conjugate the generators by the ele­
ments of D tn : 

x'xx - , = x, x'yx ' = x 2,y , 

and 

x'yxy-1x,-'=X- I, xyyy-ix '=x 2y. 

Clearly all inner automorphisms are generated by 

and 

{
/(X) =x, 

a= 2 
I(y) =X y, 

{
hex) =x-I, 

b= 
hey) = y, 

where a and b satisfy the relations an = 1 = b 2, and 
bab -I = a-'. The action of 1To Diff(M) on D tn is given by 

d= {k(X) =x, 
key) =xy, 

2 {kk(x) = k(x) = x, 
d = kk( y) = k(xy) = k(x)k( y) = x Zy, 

hkhk(x) = hkh(x) = hk(x-') 

= h (k(X)-I) = h(X-I) =x, 

hkhk(y) =hkh(xy) =hk(x-Iy) 

= h (k(x) -Ik( y») = h(x-Ixy) = y. 

Hence d 2 = a and bdb -ld = 1. Therefore, 1To Diffxo (M) 
= D4n for n;>3. Q.E.D. 
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Theorem 5.3: 

1To Diffx~ ( ,S3 ) = D 4(2n + I) XZz ' 
D 2k(2n + I) XZp 

Proof: Recall D ;k(ln + I) = (x, y : Xl' = 1, yln + I = 1, 

xyx- I y-I >. Every element of D ;'(2n + I) is of the form 
yx', where sand r are integers. If m is even, then (y'xs)m 

= y(rmI2)(1 + ( - I)')x"", and ifm is odd, then (y'xs)m 

=y(r/2)(m + 1 + (m -1)( l)s)xsm. The center of 

D ;k(2n + I) is the subgroup with elements y'x' such that 
(yx') yPxq(x - y s) = yPx q, for allp and q, and 

y'x 'yPx qx -'y s = yxyPxq -'y s = y'yP( - 1 ),xqy s 

= y'yP( - l)'y - s( - I )qxq 

= y(1 - ( l)q)yP( - l)'xq 

= yP~, (5.2) 

for allp and q. Expression (5.2) holds only whens = 0 and r 
is even. Therefore, the center is generated by x 2 and is a 
cyclic group of order 2k I. It follows that the center of 

D ;'(2n + I) XZp is Z2k-1 XZp. The group 

D'. xZ 
Inn(D' xZ ) = 1 (2"+ I) P 

2k(2n+l) P Z xZ 
lk-I P 

is just D 2(2n + I) , since (D ;k(2n + 1) X Zp )/Zl' - 1 X Zp has two 
distinct types of elements yP and yPx mod Z2k _ 1 X Zp. The 
explicit form of inner automorphisms is found by conjuga­

tion on the generators x andy by elements of D ;'(2n + I) X Zp. 

The Zp part does nothing since it commutes so we only need 
to look at elements in D ;k( 2n + I)' The general element in 
D;k(2n+l) is of the form yPx q so (yPxq)x(x-qy-P) 
= yPx and ( yPx q)y(x qy - P) = y( - I )q. 

Therefore, all inner automorphisms are of the form 
I(x) =y2Px and/(y) = y± 1, wherep is an integer. Let 

a = V (x) = y 2
x, and b = {g(X) x , 

l.r(y) = y , g(y) y-l. 

Then a and b generate Inn D ;k(2n + 1)' b 2 = I, a2n + 1 = 1, 
and bab -I = a-I. 

The group 

1To Diff{S3ID ;k(Zn + 1) XZp) = ZzXZz 

is generated by (ehrll (2n + 1),1) and (l,j), see Theorem 3.3. 
The action of (ei1T12(2n + 1), I) is given by 

(ei7r/2 (ln+ 1),1) a(e i7r/2(2n+ 1),1) 

= (ei1T/ (2n + I), _ 1) = a, 

(ei1T12 (2n + 1),1) b( e i7r/2(2n + 1),1 ) 

= (ei7r/2(ln + I) je - i7rll(ln + I), ei7rllk - I) = ab 2k - 1 b , 

where a = (ei7r/(2n+ I), 1) and b = (j,ei7r/2k-I). Here 

g(a) =aandg(b) =ab
2k

-
1 

b. The action of (1,j) is given 
by 

(l,j)a(1, - j) = (ei7r/(2n+ I), - 1) = a, 

(l,j)b(1, - j) = aln + I b 2k - 1 b 

Let h (a) = a and h ( b) = a2n + I b 2
k

- 1 b - I, then 
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c = {heX) =X
2k

-' X-I, d = {g(X) =yx
2k

-' x, 
h(y)=y, g(y)=y. 

Now the relations between the generators are derived: 

ca= {
hf(X) = h(y2X) = (h(y»)2h(x) =y2 X2k -' X-I, 

hf(y) =h(y) =y, 

(

x) =f(X2k-' X-I) = <TX)2k-'-1 

=y2k-'_1 + I + (2k-'_I_I)( -I») X2k-'X-1 
ac= 

2 2k -' -I =yx X , 

(y) =f(y) =y, 

cb = {hg(x) = hex) =X
2k

-' X-I, 

hg(y) =y-I, 

bc= {
gh(X) =g(X2k-' X-I) =X2k -' X-I, 

gh(y) =g(y) =y-I, 

l
kk(X) = k(yx2k -' + I) = k(y)(k(x»)2

k
-' + I 

_ (1I2)(2k - , + I + I + (2k - , + I _ 1)( _ 1)2k - , + ') 
d 2 = -yy 

(2k -' + 1)2 Xx , 

kk(y) = key) = y, 

2 {kk(X) = yy(\/2) 2 X(2
k
-' + 1)2 = ylx , 

d = 
kk(y)=y, 

2 {hh(X) =h(xlk-'-I) = (X2k -'-1)2
k
-'-I=X, 

c = 
hh(g) = hey) = y, 

{

hh(X) = h(yxlk-' + I) = y(xlk-'-I )2
k
-' + I 

dc= =yx- I , 

hk(y) = hey) = y, 

{

kh(X) = k(xlk-' + I) = y(xlk-' - I )2
k
-' + I 

cd= =yx- I 

kh(y)k(y) =y 

gkgk(x) = gkg(yxl
k
-' + I) 

= gk(g(y)(g(X»)2
k
-' + I) 

bdb -Id= _ k(y-I 2k-'+I) -g X , 

gkgk(y) =gky(y) =gk(y-I) =g(y-I) 

=y, 

gkgk(x) =gk(y-I X2k -' + I) 

= g«(k(y»)-I(k(xW
k
-' + I) 

bdb -Id = =g(y-I(YX2k-' + 1)2
k-' + I) 

= g(y-lyX ) = X, 

ghgk(y) =y. 

Hence, ca = ac, be = cb, d 2 = a, c2 = 1, de = cd, and 
bdb-Id= l.Therefore,1ToDi1f~(S3/G) =D4(2n+1) XZ2• 

The above technique used in Theorem 5.2 and 5.3 will 
work for any space S 3/G, but it becomes quite lengthy when 
the group G is complicated as in Theorem 5.3. There is an­
other technique that is simple to apply when the group 
Inn G has no center, as is the case for T~.3k' 

Lemma 5.4: Given a centerless group G and another 

exact sequences E of the form 

E: I-G_p_r_1 

and elements of Hom(r ,Out( G»). Two sequences E and E' 
are equivalent if and only if there exists a homomorphism p 
such that 

E: I-G 

idG II 
" id

r 

E': I-G 

commutes. 
f h 

Proof: LetE: I_G_p'_r _I be an exact sequence of 
groups. Exactness impliesf (G) is a normal subgroup of P'. 
Sincef(G):::W' and G-zf(G), it follows that r/!(p)g I-I 
(Pf (g)p- I

) is an automorphism ofG for eachpeP'. This im­
plies r/!:P' -Aut( G) is a group homomorphism and W (G») 
= Inn(G). Let rer, define rp(r) to be r/J(pf(G»), where 
h(p) = r. Then r/J(pf(G») = r/!(p)1/J(f(G»), and W(G») 
= Inn( G) implies rp( r) is an outer automorphism for each 
rer. It follows that rp: r-out(G) is a group homomor­
phism, i.e., tpE(Hom(r,Out(G»). 

Now, suppose tpEHom(r,Out( G») and G is 
centerless. For a centerless group the exact sequence 

I_Center(G)_G":Aut(G)_Out(G)_1 reduces to 

I_G ":Aut(G)-out(G)-I, where r(g)h =ghg- I. For 

q;eHom(r ,Out( G») construct the pullback P 

G P _______ ..!'~_r 

II 
i I , I 

idG p, , I 

T ~ {j t 
1_ G - Aut (G) - Out 

P={(a,r)eAut(G) xrj8(a) = rp(r)} , 

PI(a,r) = a, and P2(a,r) = r 
Now 

(G) , 

8(aa') = 8(a)8(a') = rp(a)rp(a') = rp(aa') . 

(5.3) 

Hence, (a,r), (a',y')eP implies (aa',ry')eP. Thus 8(a- l ) 
= (8(a»)-1 = (rp(r»)-I = rp(r- I). Hence (a,r)eP implies 
(a-I,r- I) = (a,r)-leP, and 8(1) =rp{l) implies 
( I, I )eP. Therefore P is a group and it follows that PI and P2 
are group homomorphisms, which makes diagram (5.3) 
commute. Now, fill in the map from G to P in the diagram 

i P2 
G -----P • r 

idG II 
T 

p'l 
{j l 

I - G - Aut(G) • Out(G)_l, 

group r, there is a 1-1 correspondence between inequivalent where i(g)==(r(g),I). That the left square commutes is im-
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plied by r(idG (g» = r(g) = P2i(g), where 
P2i(g) = P2«r(g),I») = 1. Now find all (a,y)EP such that 
P2(a,y) = 1; P2(a,y) = 1 implies y = 1; 8(a) = cp(1) = 1; 
8 (a) = 1 if and only if aelnn (G). Hence, ker P2 = i ( G) 
= 1m i. It follows that the diagram 

---+ G ---+ P 

idG II 
T 

p,1 , 
---+ G ---+ Aut(G)---+ 

p, 

---+ r 

·1 
Out (G)---+ I 

commute and the top row is exact. Therefore, given tpEHom 
(r,Out( G»), there is an exact sequence E. 

Now,suppose E': I---+G---+p'---+r---+l is an exact se­
quence. LetA(p')=("'(p'),h(p'»), where",: P'---+Aut(G) as 
defined above. Thenc5(",(p'») = a(h(p'») implies A: P'---+P. 
Clearly 

commutes. Q.E.D. 
Using Lemma 5.4, the group 1To Diffx: (S3IT~.3k XZp) 

is calculated. 
Theorem 5.5: 1To Diff~ (S3IT~.3k XZp) = o. 
Proof." The center of T for p = 1 is generated by 

iP= (exp[(1T/3)(i+j+k)/~],exp(i1T/3k»3 and b2 

= (j, 1 ) 2. Hence the center of T ~.3k is generated by A 2 and 

B 2. The center of T ~.3k is therefore equal to Z2.3k _ 1 : 

, T~.3k 
InnT k=--

8·3 Z 
2.3 k 

= (A,.8: A 3 = 1,.82 = (.8C)2 = c2 = 1, 

A.8A -I = C, ACA =.8C). 
Therefore Inn T ~.3k = T. Theorem 4.5 tells us 

1T 0 Diff( S 3 IT ~.3d = Z2' Hence, sequence (5.1) becomes 
1---+ T ---+11"0 Diff Xo (M) ---+Z2---+ 1. Here T is centerless, hence 
the number of choices is IHom(Z2,Out T) I 
= I Hom (Z2,Z2) I = 2. One choice is l---+T ---+T XZ2---+Z2---+1, 

another is 1---+ T ~Z2---+ 1. The action of 
1T 0 Diff(S 3 IT ~.3d on 1T I (S 3 IT ~.3k ,xo) is given by 

{

A---+A -IBC, 

z = B---+C, 

C---+B 3 

(see the proof of Theorem 3.4). Here z does not commute 
with every inner automorphism, for example, let 

{

A---+A , 

f= B---+C, 

C---+BC, 

felnn T ~.3k , 

conjugation by A, zf =l=fz. Hence the choice is 
1---+ T ~Z2---+ 1. 

If 1T1 (M,xo) = T~.3k XZp' then the center is center 

(T ~.3k ) X Zp and 1T 0 Diff (S 3 IT ;'3k X Zp) = Z2' so again we 
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have 1---+ T ---+11"0 Diff Xo (M)---+Z2---+ I with the Z2 action being 
nontrivial. So we have 1To (S3 IT~.3k XZp) = O. Q.E.D. 

Theorem 5.6: 1To Ditr+(L(p,q») = 1To Diffx: (L(P,q»). 
Proof." Since the center of 1T IL (p,q) equals the whole 

group, we have 

Hence 

1---+ 1---+11"0 Diff x: (L (p,q) )---+1T 0 Diff+ (L (p,q»)---+ 1 . 

Q.E.D. 

Table III gives the zeroth homotopy groups of the group 
of orientation preserving diffeomorphisms fixing a point. 
The only results depending on the weak conjecture from Sec. 
IV are 1T 1M = T *, 1*, T ~.3k' and those with a direct product 

of Zp. It should be also noted that T ~.3 = T *, so the conjec­
ture is really only open in two cases. 

VI. 11'0 Dlff F (S3/G) 

We now look at the symmetry groups of the asymptoti­
cally flat hypersurfaces of the form S = S 3/G-point, these 
are the groups 1To DiffF (S3IG). They will be calculated us­
ing the results of Secs. III and V combined with an exact 
sequence. The reason for using an exact sequence to calcu­
late 1To DiffF (S3IG) is that none of the elements of 1To DiffF 
(S 31G) can be realized by isometries for G noncyclic. 

Since every element ofDiffF (M) fixes the tangent space 
at xo, it follows that DiffF(M)..;:Ditr+(M). Let 
p: Ditr+ (M)---+F + (M) be the projection defined by 
P(j) = (j(xo),f F), wherep: F+ (M)---+Mis the bundle of 
oriented frames over M with structure group SO( 3), andf F 
is the action of the diffeomorphism f on the frame F at Xo' 

The fiber of the projectionp is DiffF(M). We can show this 
is a fiber bundle. We have the following exact sequence of 
groups because p: Ditr+ (M)---+F + (M) is a principal bundle: 

TABLE III. The groups of path components of point fixing ditl'eomor­
phisms of spherical spaces. M = S 3/G. 

Dt •• n>3 
D: 
T* 
0* 
/* 
D:. xZp. n>3 
D:XZp 
T*XZp 
O*XZp 
/*XZp 

D ;k(2l1+ I) 

T;.3 k 

D;'(2.+I) XZp 

T;.3' XZp 

Zp 

fro Ditl'~ (M) 

D 4 • 

o 
o 
o 
/ 
D 4 • XZ2 

OxZ2 

OXZ2 

OXZ2 

/XZ2 

D 4 (2.+ I) XZ2 

o 

o 
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j#/ ~#/ 
"'-+'TTI Diff F (M)-+ 'TTl Diff+ (M)-+ 'TTIF + (M) 

j#o 

-+ 'TTo Diff+ (M)-+1 . 

All three manifolds have a global frame which implies 
F+(M)-::::;M XSO(3). Hence 

'TTIF+(M) ='TT/MX'TTI SO(3). 

The only part of the sequence we need is 

'TT2M X'TT2 SO(3)-+1TI DiffF(M)-+1TI Diff+ (M) 

-+1TIM X 'TTl SO(3)-+1To DiffF(M) 

-+1To Diff+ (M)-+l . 

Using the fact that 'TTl (M) = 'TTl (S3 IG) = G and 'TT2(S3 I 
G) = 'TT2(S3) = 1, then 

P#t 

I-+1TI DiffF(M)-+1TI Diff+ (M)-+ 'TTIM XZ2 

j#o 

-+ 'TTo Diff+ (M)-+l 

is an exact sequence of groups where M = S 3/G. 

The exactness of the above sequence implies ker j #0 

=Ima#t and kera#t =lmP#t' So Ima#t ='TTIM 

XZ2Ikera#t' Hence Ima#t = 'TTIM XZ2/ImP#t' Since 
kerj#o = 1m a#o' it follows that the sequence 

1-+ 'TTIM XZ2 -+ 'TTo DiffF(M) -+ 'TTo Diff+ (M) -+ 1 
ImP#t 

(6.1 ) 

is an exact sequence of groups. Ifwe determine 1m P # t' then 
'TTo DiffF (M) can be calculated using sequence (6.1). 

The projection p: F + (M)-+M is just p(m,s) = m, 
wheremeMandseSO(3). Theprojectionp: Diff+(M)-+M 
is the composition of p and p, PP: Diff+ (M)-+M. This means 
the diagram 

P 
Diff+ (M) -+ F + (M) 

~l' 
commutes. Since p = pp, it follows that 

commutes. From Sec. V, we know that, Imp#t = Cen­
ter('TTIM), 'TTIF+(M) = 'TTIM XZ2,andp#t is just the pro­
jectionP#t (m,s) = m. Hence, the above diagram becomes 
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(6.2) 

Table II implies 'TTl Diff+ (M) has one generator for 'TTIM 
= 'TTl (S3/G) = G, a noncyclic group. In fact the groups 

'TTl Diff+ (M) are either Z2 or Z. IfG..;;SU(2) and noncyclic, 
then diagram (6.2) becomes 

z'~r~·,'m"~m . 
Z2 

From this diagram, it follows that there are only two choices 
forP#t' namely P#t (a) = (a,l) andp#t (a) = (a,a), where 
a2 = 1 and a i= 1. For either choice, 1m P # t = Z2' Hence se­
quence (6.1) takes the form 

l-+1TIM XZ2/Z2-+'TTo DiffF (M)-+1To Diff+ (M)-+l , 

(6.3) 

where 'TTIM is a finite noncyclic subgroup of SU(2). This 
implies'TTo DiffF (S3/G) has twice the order of'TTo Diff~ (S3 I 
G) for G noncyclic. If G is a noncyclic subgroup of SO (4 ) 
that is not contained in SU(2), then 'TTl Diff+(S3/G) = Z. 
The center of G is a cyclic group Z,,' n > 2. Diagram (6.2) 
becomes 

Z~ • Z"X

J 

Z:#t(m,sl=m, 

P#t ~ 
. Z" 

where Z" = Center ( 'TT 1M). Again there are only two choices 
for P#t' One is P#t (a) = ([a]"l), and the other is 
p#t(a) = ([a]",[ab), where [ ]" and [ b denote the 
equivalence classes in Z" and Z2' respectively; and a gener­
ates Z. One can check that for either choice 
ImP#t = Center('TTIM). Hence sequence (6.1) takes the 
form 

(6.4 ) 

where 'TTIM is a finite noncyclic subgroup ofSO( 4) not con­
tained in SU(2). This implies 'TTo DiffF (S3/G) has twice the 
order of 'TTo Diff~ (S3/G) for G noncyclic. Using sequences 
(6.3) and (6.4) the grOUp8 'TTo DiffF (S3/G) arenowcalcu­
lated for G noncyclic. 
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Theorem 6.1: 

11'0 DiffF(S3/G) 

0*, ifG Dr, T*, 0*, orT;.3kXZp,p;;;.l, 

Dr", ifG=Dt",n;;;.3, 

1*, ifG=I*, 

= O·x'4, ifG=DfXZp ' T*XZp ' orO*xZp ' p> 1, 

Dr"x~, ifG=Dt"xZp,P> I and n;;;.3, 

I*X~ ifG=I*XZp,p>l, 

Dr(2,,+I) X~, ifG=D;'(2,,+1) XZp,p;;;.l. 
Proof IfG<SU(2), then sequence (6.3) implies 

I.-G XZ2/Z2,-11'0 DiffF(M)~o Diff+ (M).-l , 

whereM = S3/G. We must decide which choiceof.o#, is the 
correct one. Ifwe think about the definition of .0, it mapsl to 
(f(xo),f F). The choice .0#, (a) = (a,l) says that .0 does 
nothing to the elements in 11' 1 SO ( 3 ) , and the other, 
.0#, (a) = (a,a), tells us that.o acts simultaneously on 11'IM 
and 11'1 SO(3). This agrees with (f(xo),f F); the details will 
appear in Ref. 31. Hence the correct choice is .0 #, 
(a) = (a,a)·G X Z2/Z2 z G. The exact sequence becomes 

I.-G~o DiffF(S3/G).-11'0 Diff+ (S3/G).-1. 

In the case G = 0 * or 1*, 11'0 Diff+ (M) = 1. Hence the se­
quence gives 11'0 DiffF(S3/G) = G, for G = 0* or 1*. 

IfG = Dt", n;;;.3, then 

I.-Dt" .-11'0 DiffF(S3/Dt,,) --11'0 Diff+(S3/Dtn) .-1 

is exact, and 11'0Diff+(S3/Dtn) =Z2' for n;;;.3. Hence 
I .-D t".- 11'0 DiffF (S 3/D t,,) -- Z2 -- I is exact. This 
means D tn is a normal subgroup of 17'0 Diff F (S 3/ D :n ). 
Thus conjugation by elements of 11'0 DiffF (S3/D tn ) gives 
automorphisms of D tn. Since 11'0 Diff+ (S 3/ D tn ) Z2' 
there exist a y E DiffF(S3/D tn) for which yis an outer auto­
morphism of D tn. Further, y and D:n will generate 
11'0 DiffF (S 3/ D :n ). The action of y on D:n is known from 
the proof of Theorem 3.2. It is r = x, yxy-I = x, and 
yxy-I = xy. Therefore, 

11'0 DiffF(S3/D:,,) = 

(y, y: t n = I, y4 = 1, yyy-I = y-I) Dr", 

forn>3. 
If G=T*, then I __ T* __ 17'oDiffF(S3/T*) 

--11'0 Diff+(S3/T*) --I is exact, and 11'0 Diff+(S3/T*) 
= Z2' Hence the following sequence is exact: I -- T * 
--11'0 DiffF (S3/T*) .- Z2 -- I,and T*isnormalsubgroup 
of 11'0 DiffF(S3/T*). Again there is a yE11'0 DiffF (S3/T*) 
such that yis an outer automorphism of T *; yand T* gener­
ate 11'0 DiffF (S3/T*). The action of y on T* follows from 
Theorem 3.2. It follows that 17'0 DiffF(S3/T*) = 0 *. 

If G=Df, then I.-Dr --11'0DiffF(S3/Drl 
'-P3.-1 is exact. AgainDf ~ DiffF(S3/Df). The action 
of P3 on D f is just conjugation by elements 0 */Df. It fol­
lows that 11'0 DiffF(S3/Dr) =0*, because 11'0 DiffF (S3/ 
Dr) is generated by Df and 11'0 Diff+(S3/Dr)· 

If G is a noncyclic subgroup of SO (4) not contained in 
SU(2), then sequence (6.4) is exact: 
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1.- G XZ2/Center(G) 

--17'0 DiffF(S3/G) --17'0 Diff+(S3/G) .-1. 

Since p(/) = (I (xo),fF), the choice is P#, 
(a) = ([a)", lab). If G=HXZp, where H<SU(2) is 
noncyclic, then the sequence becomes 

1 __ (H XZp) X~/(Zp XZ2) --11'0 DiffF(S3/H XZp) 

.- 17'0 Diff+ (S 3/H) X Z2 __ 1, 

because 11'0 Diff+ (S3/H X'lp) = 11'0 Diff+ (S3/H) XZ2• 

Therefore I.-H .-17'0 DiffF(S3/H XZp) 
.-11'0 Diff(S3/H) XZ2.- 1. Theorem 3.2 implies that theZ2 
action is trivial on H. It follows that 11'0DiffF(S3/ 
H XZp) = 11'0 DiffF(S3/H) XZ2 for H,SU(2) and noncy­
clic. 

If G D ;'(2" + 1) or T;. 3" then sequence (6.4) be­
comes 

and 

1 __ D ;'(2n + \) X Z2/Center(D ;'(2" + \) ) 

--17'0 DiffF(S3/D ;'(2,,+ I» --Z2 X 'l2-- 1 

1 __ T;.3k XZ2/Center(T;.Jk) 

'-11'0 DiffF(S3/T;.3') --Z2'-1. 

It follows that I.-D:,,--11'0DiffF(S3/D;k(2n+I» 
.-'l2X'l2.-1 and that 1 __ T*~o DiffF(S3/T;.J.) 
-- Z2 -- 1 are exact. Checking the action of the 'l2 on T *, it 
follows that 11'0 DiffF(S3/T;. 3.) = 0*. The action of one of 
the Z2 factors in the first sequence is just a trivial action 
because it comes from N SU(2) (S I) and the other comes from 
the D f" factor in the normalizer. It follows that 

11'0 DiffF(SJ/D;'(2n+ I) ) =Dfn(2n+l) X'l2' 
If G = D ;'(2" + \) X'lp or T; . 3k X'lp , then 

11'0 DiffF (S3/G) is the same as the groups forD I and T' alone, 
because 11'0 Diff(S3/G) is the same withp = 1 andp > 1 (see 
Table II). Q.E.D. 

Let I): 17'0 DiffF(M) --11'0 Diffx! (M) be the map 
1)( [/]F) = [/]xo' where [ ]F and [ ]"'0 denote equiv­
alence classes in 17'0 Diff F (M) and 17'0 Diff x! (M), respec­
tiVely. Let f'E[ I ]F' Then f' I g, wheregisin the identity 
component, and g must also be in the identity of Diff x! (M). 
Hence f' E [ f1 Xo • Therefore, I) ( [ f' h) = [f') Xo 

= [f1 Xo I) ([ f1 F)' i.e., is well defined: 

1)( [/11£)1)( [/21£) = [/lt.o [/2]xo' 

1)( [/t/2]F) = [/t/2]xo = [/.J "'o [/21."0' 

Hence 

1)( [.I;/2]F) = 1)( [f.1F)I)( [f2]F)' 

Therefore I) is a group homomorphism. Using Theorem 6.1 
and the results of Table III, observe that 

6 
1-- 'l2 --17'0 DiffF(S3/G)--11'0 Diffx~ (M) -- 1, 

for G a noncyclic group. The Z2 corresponds to the 211' rota­
tionR 217' parallel toa two-sphereatxo. ForspacesS 3 /Gwith 
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G noncyciic, this implies the 211" rotation is nontrivial in 
11"0 DiffF (S3/G). 

Now suppose our manifold is a lens space. Then Cen­
terl11"IL( p, q») = 11"1 L( p, q). Sequence (6.2) becomes 

/1#, 
11"1 DitrlL( p, q») - 11"lL( p, q) XZ2 

P~ l P#I 

11"lL( p, q) , 

with Imp#. = 11"IL( p, q). It follows that Imp#. is either 
equal to 11" lL ( p, q) or to 11" IL ( p, q) X Z2' Hence, there are 
two choices for ~, namely 

and 

1--11"lL( p, q) XZ2/11"IL( p, q) XZ2 --11"0 DiffFIL( p, q») 

[j 

__ 11"oDiff~IL(p,q»)--l. 

The first choice is 

which corresponds to the rotation R 21T being nontrivial in 
11"0 DiffFIL(p,q»). The 211" rotation is trivial in 
11"0 DiffFIL( p, q») (see Ref. 31 and 32). Therefore, the sec­
ond choice is the correct one. So 1 -- 1 -- 11"0 DiffF(L (p, q») 

[j 

~ oDiff ~ (L ( p, q») -- 1. The following theorem is a result 

of this argument. 
Theorem 6.2: 11"0 DiffFIL( p, q») = 11"0 DitrlL( p, q»). 

Proof: BeCause R 21T is nontrivial in 11"0 DiffFIL( p, q»), 
11"oDiffF(L(p,q»)=11"oDiff~(L(p,q»). Theorem 5.6 im­
plies 11"0 Diff~(L(p, q») = 11"0 DiftlL(p, q»). 

Q.E.D. 
Table IV summarizes the results ofSecs. IV, V, and VI. 

The results for 11" 1M = T·, I·, T; . 3k' and the direct product 
of these with Zp depend on the weak conjecture. This table 
also gives corrections to Table II in Ref. 10 for the spaces 
with11"IM =D:(2n+ I) ,and11"IM = Zp withq2= - 1 modp, 
and fills in the cases that were unknown at the time that 
paper was published. 

VII. CONCLUSION 

Comparing the groups 11"0 Diff;:; (S3/G) and 
11"0 DiffF(S3/G) for a noncyclic group G (Table IV), we see 
that 11"oDiffF(S3/G) double covers 11"o Diff;:;(S3/G). 
Moreover, it is an SU (2) double covering of the factor of 
11"0 Diff;:; (S3/G) coming from the noncyclic SO(3) crystal 
group. The SU(2) covering is due to the 211" rotation being 
nontrivial in 11"0 DiffF(S3/G) for G noncyclic. Physically, 
R21T nontrivial allows half-integral angular momentum 
states to arise as Friedman and Sorkin have pointed out.4 

The SU(2) double covering is what one would expect for 
half-integral angular momentum. 

The remaining mathematical problem is to calculate 
11"0 DiffF(M) for M =S3/GI# .. ·#S3/Gk #S2 
XSI#· .. #S2XSI. These calculations would involve 

11"0 Diff(S3/Gj ) and 11"0 Diff(S2 XSI), maps coming from 
the interchange of factors, and slides of the factors along 
curves on M. The groups 11"0 DiffF(M) correspond to the 
symmetry group of quantum states onS = (S3/GI # .. ·#S3 / 
Gk #S 2 X S I # ... #S 2 X S I) -point. Thesegroupsareofphys­
ical interest because all classical asymptotically fiat vacuum 
space-times seem to have spacelike hypersurfaces with this 
topology.33 

TABLE IV. The groups of path components of the dilfeomorphisms fixing a frame. point. and nothing for spherical spaces M = S 3/G. 

11'IM 11'0 DilfF (M) 11'0 DiIf~ (M) 11'0 Diff+ (M) 

D:n , n>3 Drn D 4n Z2 
D* 8 O· 0 0 
T· 0* 0 l, 
0* O· 0 1 
1* 1* I 1 
D':nXZp. n>3 Drn XZ2 D 4n XZ2 Z2 XZ2 
DrXZp 0·XZ2 OXZ2 P3 XZ2 
T·XZp 0·XZ2 OXZ2 Z2 XZ2 
O*XZp O*Xl, OXZ2 Z2 
I*XZp I*XZ2 I Xl, Z2 
D ;k(2n+ I) Dr(2n+ I) XZ2 D 4 (2n+l) XZ2 Z2 XZ2 

T~.3k O· 0 Z2 

D ~'(2n+ I) XZp Dr(2n+ I) XZ2 D 4 (2.+ I) Xl, l,Xl, 

T~.3' XZp O· 0 Z2 

Zp. tT==l modp with q¢ ± 1 modp Z2 XZ2 l,XZ2 Z2 X l, 
Zp. p= 1 or 2 1 1 1 
Zp. remaining cases Z2 Z2 Z2 
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It is shown that under rather mild conditions the triangle relation represents a necessary 
condition for the existence of commuting transfer matrices of arbitrary size. The cases of spin 
models and vertex models are treated separately. 

I. INTRODUCTION 

The problem of the parametrization of the models is one 
of the most important in exactly solvable models. All the 
solutions known in the literature are parametrized by ellip­
tic, trigonometric, or even rational functions, but solutions 
involving curves of genus bigger than one or even surfaces 
are still unknown. There is not proof (nor even good argu­
ments) that only genus one curves should occur in the solu­
tions of the Yang-Baxter equations; it is possible to argue 
(see Appendix A) that one has to deal with algebraic varie­
ties, but it seems very difficult to prove that it is necessary to 
deal with Abelian varieties. For that reason our approach is a 
very general one: there are no assumptions like the existence 
of a unique spectral parameter or the reduction of the Boltz­
mann weight to a simple transposition for a special value of 
the parameters. Therefore the proof is completely algebraic. 
The reader should be told that it is certainly possible to find 
simpler but less general proofs of the previous equivalence. 

II. THE MAIN RESULT 

A. Statement of the theorem 

Following many authors (see, e.g., Refs. 1-11), it is 
quite simple to show that the star-triangle relation (for the 
Boltzman weights W, W', W") implies the commutation of 
the transfer matrices with periodic boundary conditions 
TN ( W) and TN ( W'), whatever their size N. The proofleads 
to a distinction between the case of the vertex models (see 
Fig. 1) and the case of the spin models (see Fig. 2). The 
configurations of the spin i I ••• iN' k I ... k N in Figs. I and 2 
are fixed and we sum all the configurations of the remaining 
spins (jl ... jN' ajO Pi)' These two figures represent the pro­
duct of the two transfer matrices TN (W) and TN ( W') for 
vertex and spin models, respectively. In the case of the Potts 
model (with spins belonging to Zq), the transfer matrices 
are thus r;v X qN matrices with coefficients 

TN ( W)i" ...• iN;j, ..... jN and TN ( W')j, ..... h{.k, ..... kN. The commu­
tation of the transfer matrices means that for any configura­
tion of the spins i l ... iN' k\ ... kN' the partition function of 
the two graphs on both sides of the equality are equal. Let us 
introduce the two matrices M a •. P.; a. + l' Pn+ I (in' kn ) and 

0) Laboratoire associe au Centre National de la Recherche Scientifique LA 
280. 

Mj.'jn+ I (in,in + I ;kn ,kn + I ) associated with the two follow­
ing graphs 

o 
~01.1' 

These two matrices (associated with the vertex and spin 
models, respectively) are q2xq2 (resp. qxq) matrices and 
there are q2 (resp. q4) of them [as many as the num­
ber of configurations for (in,k ) and (i ,i I'k k I)] n n n+ , n' n+ • 

From now on these matrices will be denoted by MI 
and MI • .l. + I [In = (in ,kn)]. We add a prime to denote th~ 
same matrices with the two Boltzmann weights Wand W' 
permuted. With these notations the commutation of TN(W) 
and TN(W') is equivalent to 

Tr(MI,MI, ... Md = Tr(M;,M;, ... M;) (I) 

and 

Tr(MIIMII ... MII)=Tr(M;IMI', ... MI'I) (2) 
12 23 N I I 2 ~3 N I 

for any configuration of the In 's, that is to say for any config­
urations of the in's and kn 's that index the coefficients of the 
matrices TN(W)TN(W') and TN(W')TN(W). 

We want to establish an equivalence between the exis­
tence of a star-triangle relation and the commutation of the 
transfer matrices TN(W) and TN(W') for arbitrary sizeN; in 
other words, we want to show that when relation (I) 
[resp. (2)] is satisfied-for all In's and N-there necessarily 
exists a star-triangle relation. With the above notations it is 
equivalent to saying that there exists a q2 X q2 matrix 
R (resp. q2 q X q matrices R I) such that 

RMI• =M;.R (3) 

(4) 

B. Proof in the case of the vertex models 

The case of the vertex models is the simpler case to deal 
with. Switching to a slightly more convenient notation 
(In -+ n), the question is easily seen to be reduced to the 
following theorem. 

Theorem 1: Let JI and JI' be two subalgebras of Mn (e) 
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k2 
W' 112 W' 113 W' 114 

j, W 12 W h W j4 

i2 

(the n X n complex matrices) and (jJ: vii -- vii', a surjective 
algebra homomorphism satisfying the following property: 

V M1, ... ,Mk Evil, 

Tr (M!", M k ) = Tr [(jJ (M!", M k )]. 

Suppose further that there is no nontrivial invariant sub­
space of E:::::: en under the action of vii, then, there exists 
R E GLn(C) so that 

VMEvII, M' (=(jJ(M)) =RMR -I. 

In Appendix A we discuss the problem of the existence of 
nontrivial invariant subspaces. 

Proof: For any M E vii, the corresponding spectral pro­
jection operators are elements of vii (being polynomials in 
M). 

We shall need the following lemma. 
Lemma: There exists in vii a matrix with (n) distinct 

eigenvalues. 
Proof of the lemma: For any M in vii, we set 

v(M)=l: (dim. spectral subspace - 1) 

and v==inf v(M), ME vii. 
The lemma is then equivalent to v = O. Suppose v#O 

and take M E vii such that v(M) = v; select further Va spec­
tral subspace of M of dimension> 2 and let l' be the associat­
ed spectral projection operator. One has the following simple 
proposition. 

Proposition: VM;. Evil, l'M;.l' has only one eigenvalue 
when considered as an operator on V. 

For if not, consider operators of the form 

M = (1 - 1') M (1 - 1') + l'W - k ) 1', 

where k E e and l'Nl' has more than one eigenvalue on V. 
Then, for suitable k, v(M) < v(M) = v, a contradiction. 

Any M;. in vii can thus be written as 

l'M;.l' = k;.lv + N;., 

k,l. E e, N;. nilpotent on V (Iv is the identity operator on V). 
Adding (1 - k;. ) lv' we obtain a family of operators on Vof 
the form Iv + N;., stable under multiplication. The Engel 
theoreml2 provides us with a vector v E V such that 

W' . W·. W'. 
12 b J4 

W W W 

FIG. 2. Pictorial representation of the co=utation of two transfer matri­
ces of size N in the case of spin models. 
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FIG. I. Pictorial representation of the commu­
tation of the two transfer matrices of size N, 
TN(W), and TN(W') in the case of vertex mod­
els. 

N;.v = 0 (VA). The subspace (MV)ME.L is then a nontrivial 
invariant subspace for vii, contradicting the assumption. 
This finishes the proof of the lemma. 

Returning to the main proof, we let ME vii be a matrix 
such that v(M) = 0 and let (l'i );:: ~ be the corresponding one­
dimensional projection operators 

i=n 

l'i'l'j = l'j'l'i = 8ij; L l'i = IE' 
i=1 

Let 1'; = (jJ (l'i) and choose ei E Ran 1'/, e; E Ran 1';. 
Setting e;==Rei we shall prove that R is the intertwining 
operator up to scaling, that is, 

R = DR, D = diag (a I, ... ,an ), 

for some nonzero a/so 
To prove this, for M;. in vii, we denote by (m~)) and 

(m;/")) the matrices of M;. and M ~ =(jJ (M;.), with respect to 
the bases (e i );:: ~ and (e;);:: ~ , respectively. The existence of D 
(which implies the theorem) is then equivalent to the exis­
tence of nonzero numbers (a i );:: ~ such that 

1(;') (;') / mij =mij a i a j • 

The existence of the a/s is now proved in a sequence of 
simple assertions. 

Assertion 1: 

is independent of A. 
For all M;.,Mp Evil, V i,j, 

m~) . mJt) = Tr (l'iM;. l'jMpl'i)' 

hence 

or 

m~.(;')/m(;') = mV')/m~.u"), 
'1 IJ Jl Jl 

which demonstrates the validity of the assertion. 
Assertion 2: V i,j, f3ij#O,oo, i.e., Vi,j, 3M;. EJ/, 

m(;.).....LO. 
IJ r-

In fact, if there existed a pair (i, j) such that m~) = 0 for 
any M;. in vii, then the subspace (Mej)ME.L would be a non­
trivial (it would not contain ei ) invariant subspace for J/. 

Assertion 3: There exist n nonzero a/s such that 
f3ij =aJaj • 

Setting a i f3i1' it only remains to show that 

V i,j,k, f3ij' f3j k = f3ik • 

This can be written (dropping the superscript A ) as 

mij mik m;k m ki -.--=--=--
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(the last equality comes from the proof of Assertion I) or 

mij .m1k .mki =my ·mjk ·mki . 

This finishes the proof of the theorem. 
The result has thus been established in the case of vertex 

models. 

C. Proof In the case of the spin models 

The algebra is more intricate in this case; this is why, in 
order to be able to obtain a neat mathematical statement we 
shall restrict ourselves here to the case q = 2. For general q, 
however, the result must still be valid except for very parti­
cular values of the matrices (Boltzmann weight). So let us 
consider the q = 2 case. Here we can replace the cumber­
some indexation I" = (i",k,,) (i" = ± I, k" = ± I) by an 
index i running through the values 1,2,3,4. 

We are thus given a set of sixteen 2x2 matrices 
(i,j = 1,2,3,4) with positive coefficients, but we can only 
form "chain products" of the form Mi,i, Mi,i, ... Mi. _ lin' re­
turning to the same index i I' We shall apply Theorem 1 to the 
algebra generated by multiplying chains starting, and finish­
ing, with the same fixed index, but we first need to find a 
condition that ensures that the hypothesis on the nonexis­
tence of invariant subspaces is satisfied. Since the matrices 
are 2 X 2, this is equivalent to the nonexistence of a common 
eigenspace; we shall also see below that the condition is inde­
pendent of the length of the chains we consider. 

The only possibility we need to explore is the following: 
Whateveril (il = 1,2,3,4), there exists a common eigenvector 
v.. for the matrices M·· . M.. . .. M· .' M.· (with vari-'I '1'2 '2'3 'n- l'n 'n" 
able i 2, ••• ,i,,). 

The My's induce homographic transformations on 
pl(e), which we still call My when there is no risk of confu­
sion. The existence of the four vectors Vi is then equivalent 
to the existence of four points Fi (i = 1,2,3,4) for pl(e) such 
that 

multiplying by Mi i we get 
n1 

This shows that we can assume that the F; 's are permut­
ed under the action of My's: 

Vi,je{1,2,3,4j, My(Fj)=Fi. 

Also, recalling that the My's have real positive coeffi­
cients, we find that each My has two real fixed points, one 
negative and one positive (possibly 00 ), and that the real posi­
tive axis (including 00) is stable under their action. This 
shows that the Fi's are all positive or all negative real 
numbers. In the latter case, we can replace all the My's by 
S 1M yS [S =(? ~)] and this allows us to assume that the Fi's 
are all real positive. In Appendix B we describe a pair of 
families (My) and (M ij) arising in this fashion. which do not 
satisfy the intertwining property to be shown below; they are 
seen to be essentially the only possible ones. 

Let us now state our result in the case of spin models. 
Theorem 2: Let (My) and (M ij) be two families of sixteen 

2 X 2 matrices such that the following hold. 
(i) All My's and M ij's have positive elements and are 
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invertible matrices. 
(ii) Vn. Vil, ...• i" e {1.2.3.4}. 

Tr (M .. ... M· . M . . ) = Tr (M ~ .... M ~ " M; " ). 
','1 'n _ 1',. ',,'1 ','2 In - 1 n II I 

(iii) There do not exist four-all positive or all nega­
tive-real numbers Fi (i = 1,2.3,4). some of the F;'s possi­
bly 00 sothatMy(Fj) = Mp My being viewed as a projective 
transformation on pl(C). Then there exist four matrices 
Ri (i = 1,2.3.4), Ri e GL2 (C) with the property 

V i.je [1.2.3.4). RiMy = MijRj" 

Remarks: 
(1) Assumption (iii) can be made on anyone of the two 

families; if it holds for one. it will also be satisfied by the 
other. 

(2) The F;'s can be replaced by vectors Vi = (I. Fi) (or 
Vi =O.l)ifFi = 00 so that My Jj =A.yVi· 

(3) The validity of (Hi). intricate as it looks. is nonetheless 
very easy to check. In fact. each Fi is simply one of the two 
fixed points of Mu; compute these. and check (iii) for the two 
disjoint sets of the positive fixed points and negative ones. 

Proof of the theorem: Since (iii) is satisfied, we can apply 
Theorem 1 to the algebra generated by the 
Mi, _ i, .,. Mi._li.Mii, (il fixed), and we choose n = 2 (any 
fixed n is allowed); we also set i I = I. without loss of genera­
lity. Assumption (iii) means that the 
(M yMjkM k I ) j.k = 1.2,3,4 have no common eigenspace. 
Theorem I then asserts the existence of R I such that 

Vj.k, R,Mlj~kMk' =MijM1kMk,R,. 

Now, define Rj by R,MIj =M1jRj• i.e .• 
Rj =Mij -I. RI .Mlj . We need to check that 
RiMy = M ijRj• V i.j E { 1,2.3,4 j. But we can write 

RiMy =Mli-IRIMliMy =Mi} .RIM'iMy~, .Mjl l 

M ,-I M'M'M'RM-I = 'i . 'i Y j' I j' 

=MijM1,RIMjl" 

and thus we only need to prove that 

Rj~' = M1,R I, V je P,2.3.4j. 

By the very definition of Rj • the left-hand side is equal to 
M ij - 'R I M'j~' and the equality to be shown is therefore 
equivalent to 

MijRIM'j~' =M1,R I or RIM'j~1 = MijM1,R I• 

which in tum can be reduced to 

RIM'jMj,MJJ = MijM1,R,MJJ' 

Using the definition of R ,. the left-hand side is equal to 
M ijM 11 M i, R I and we only have to prove that 
Mi,R I =RIMII • But. we already know that 
M i~ R I = R 1M ~,. Since both matrices Mil and M; I have 
real positive coefficients. it is easy to show that the desired 
equality follows. finishing the proof of the theorem. 

We thus arrive at (4). which is equivalent to the existence 
of a star-triangle relation for spin models. 

We should note that in both cases (spin and vertex mod­
els) the star-triangle relation is implied by the commutation 
of the transfer matrices for only afinite number of sizes N. 
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This is similar to the result of Parke 13 according to which the 
existence of only three conserved quantities in involution 
implies the existence of an infinity of conserved quantities. 

III. PROSPECTS 

In the previous sections we have tried to specify the 
equivalence between the commutation of transfer matrices 
and the star-triangle relations. This amounts to reducing the 
complete integrability property to a simple local relation. On 
the other hand, the commutation of transfer matrices of spe­
cific sizes leads to the determination of algebraic invariants 
[cf. Appendix A(a)] that constitute constraining conditions. 
This explains the results of the search for models satisfying a 
star-triangle relation, namely, that there exist very few such 
models. For instance in the case of vertex models with two 
valued spins the general case is essentially given by the Bax­
ter model and the free fermions models of Fan and WU. 14 

Such an analysis underlines the exceptional occurence of 
solvable models. 

This study also calls for a generalization in dimension 3. 
In this respect we would like to establish a similar equiv­
alence between the commutation of transfer matrices offin­
ite sizes and the so-called tetrahedron relation6

•
15; this looks 

like a nontrivial extension. However these commutations of 
the transfer matrices of finite sizes 
([TN,M(W), TN,M(W')] = 0 are still ~ece~sary ~onditio~s 
for the validity of the tetrahedron relatIOn; 10 partIcular thIS 
includes the conditions that pertain to the two-dimensional 
models ([TN(W), TN(W')] =O;M= 1), and these have 
been shown to imply the star-triangle relation. This imposes 
severe restrictions on the possible solutions of the tetrahe­
dron relation that, in a way, appear as extensions of the­
sparse-solutions of the star-triangle relation. 

The above discussion may give the impression that the 
domain of validity of the star-triangle and tetrahedron rela­
tion is indeed very restricted. 

However, if the commutation of transfer matrices al­
lows their simultaneous diagonaIization (Bethe ansatz), 
thereby leading to the calculation of the partition function, 
we can imagine weaker condition that still make this calcula­
tion possible. In fact there already exist simple examples that 
illustrate this idea; these are the so-called disorder (or crys­
tal-growth) solutions. I 6-18 These solutions lead unfortu­
nately to simple analytical expressions for the partition func­
tion; however, we should notice that one condition for the 
existence of such disorder solutions is very similar to a con­
straintful relation occurring in the framework of exactly 
solvable models [compare Eq. (2.10) of Ref. 19 and the so­
called Frobenius relation20,21 ]. 

More precisely, if we look carefully at the construction 
of the Bethe ansatz for the Baxter model,2 we can see that 
only relations similar to the so-called Frobenius relations are 
used [Eqs. (C.34a) and (C.34b) of Ref. 2] and not the full 
Yang-Baxter structure. We could therefore imagine that a 
model involving a higher-dimensional theta function would 
not satisfy the Yang-Baxter equations,22,23 but that it would 
actually be possible to build a Bethe ansatz for that model 
(because of the Frobenius relations) leading to a commuta­
tion of transfer matrices only in a subspace of the space on 
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which the matrices act; the case of disorder solutions corre­
sponds to a one-dimensional subspace. 

IV. CONCLUSION 

We have thus shown the equivalence between the exis­
tence of a star-triangle relation and that of a family of com­
muting transfer matrices of arbitrary size; this has been es­
tablished under conditions mild enough to be almost always 
satisfied in physical cases. Moreover we have proved that it 
suffices to check the commutation of the transfer matrices 
for a finite number of sizes. It may be interesting to look for 
the three-dimensional generalization of the above results. 

In two dimensions, the above equivalence fully legiti­
mizes the tentatively exhaustive studies that are currently 
done on the star-triangle relation.24,25 In this framework we 
have also touched upon the problem of finding simple, alge­
braic, necessary conditions for the existence of the star-trian­
gle relation (see Appendix A). Such relations, which appear 
very stringent, are directly related to one of the major prob­
lems concerning exactly solvable models: that of the parame­
trization of these models (rational or elliptic uniformization, 
Abelian varieties). 

Finally these studies on the star-triangle relation seem 
to show that this is really a rarity; it is thus desirable to 
extend the notion of integrability beyond it, and to introduce 
new local criteria. 
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APPENDIX A: ALGEBRAIC VARIETIES AND 
COMMUTATION OF MATRICES 

In this appendix, we briefly describe a solution to three 
elementary but important questions. The approach is both 
theoretical and practical, in that it readily provides effective 
algorithms. However, being as the size of the different matri­
ces involved is a very important feature of the problem for 
practical purposes, there may be more powerful methods of 
solution in a given situation. 

Let A and Bin Mn(e) be two complex nXn matrices, 
which we also view as linear operators on E-;:::,C with basis 
(e;);:: 7. The three questions are the following. 

(a) Can we find a list of invariants that ensure commuta­
tion of A and B? By this we mean expressions (fPk)~:: ,{" alge­
braic in the coefficients of A and B, such that 

{fPk (A) = fPk (B); k = I, ... ,m}¢:}{AB = BA}. 

(b) Can we find an easy way to detect a nontrivial invar­
iant subspace under the action of A and B ? 

(c) This is the same question as (b) in the one-dimension­
al case, namely, when do A and B have a common (one­
dimensional) eigenspace? 

(a) We restrict ourselves to the case when A and B a~e 
both diagonalizable with distinct eigenvalues [we denote thIS 
subset of Mn (e) by Mn C], that is, we discard the codimension 
one algebraic variety in Mn (e) given by the vanishing of the 
discriminant of the characteristic polynomial; the invariants 
will have poles on this surface. 
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Now, let Me M" (C) have eigenvectors (Wi)::: ~. There is 
a natural map t:p, given by the composition 

M,,(C) _ C"x"_ (P"-I(C)}"/U", 

M - (WI, ... ,W,,) _ (Ww .. ,W,,)mod u", 

where the bar denotes the natural fibration map CIt 
_p"-I(C). 

Clearly we have the following proposition. 
Proposition: V A, Be M" (C), AB = BA¢:? t:p (A ) = t:p (B ). 
It remains therefore to give an explicit description of the 

map t:p. To this end we use the embedding 

(P"-I(C»)"/u" _ P(S"E) 

(WI, ... ,W")modu,, - WI ® ••• ® WIt , 

and consider the map iOt:p: M" (C) - PIS "E). This is easily 
seen to be described by the following proposition. 

Proposition: (iot:p )(M), Me M" (C), represents the one-di­
mensional eigenspace of M .. " (the nth symmetric power of 
M) for the eigenvalue det(M). 

Proof: If MW; = f-lj W;, we have 

M""WI® .. ·®W" =MWI®···®MW" 

= f-ll'''f-l" . WI ® ••• ® W" 

= det(M) WI ® ••• ® W". 
The recipe is thus the following: Compute M .. " acting 

on S" E [of dimension (2",,- I)] and find the eigenvector of 
this matrix for the eigenvalue det(M), which appears as a 
polynomial in the variables (ej )::: ~, homogeneous of degree 
n. The quotients of the coefficients of this polynomial by any 
one of them represent the sought after invariants. 

Example: n = 2, M = (~~), det(M) = ad - be, 

M .. 2 = [:: ad~be :;]; 
c 2cd d 2 

the eigenvector of M .. 2 with eigenvalue det(M) is given by 

<I> =..1 (bel ®e l + (d - a)el ® e2 - ee2 ® e2)' 

This gives the (projective) invariants (b,d - a, - e) and we 
may take 

t:p1(M) = b Ie; t:p2(M) = (d - a)le. 

The validity of this result of course can be readily 
checked by direct computation. 

Important remark: The t:p's we have found are enor­
mously redundant for n > 2. In fact, there should be n(n - I) 
[ = dim(p,,-I(C))"/u,,] of them, whereas our result gives 
C",,- I) - 1. It would be interesting to know what is the 
minimum possible number, a question equivalent to finding 
"better" embeddings of(P" - I (C))" /u" in projective varieties. 
Can the optimum (n(n - 1)) be achieved? 

(b) This question is reduced to the next by the following 
obvious proposition. 

Proposition: There is an equivalence between the follow­
ing statements: (i) M has an invariant subspace of dimension 
j generated by (U1""'Uj ); and (ii) AjM [the jth exterior 
power of M, dimension (j)] has UI A U2 A ... A Uj as an 
eigenvector. 

(c) We make again the hypothesis that A and B are in 
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M,,(C) and let UI"",Uj (resp. VI"'"Vj)be the eigenvectors­
unique up to scalar multiplication-of A (resp. B) . Then 
UI ® ... ® U" and VI ® ... ® V" are viewed as two polynomials 
inC[el, ... ,e,,]. We have the following equivalence: (i) A andB 
possess a common eigenvector; and (ii) UI ® ... ® U" and 
VI ® ... ® V" have a linear factor in common. 

To check (ii), simply use C[ew .. ,e,,] ~C[el'"'' 
ej, ... ,e,,] [e j ] for some j (any j will do) and perform the 
Euclidean algorithm. (This, of course, relies heavily on the 
fact that we know a priori that the polynomials we are work­
ing on can be decomposed into a product oflinear factors.) 

APPENDIX B: DEGENERATE CASE FOR ISING SPIN 
MODEL 

Here we describe two families of 2 X 2 matrices 

M .. = (aij b
jj

) 
IJ ejj d jj 

(resp. M;j) with the following properties: 
(i) The Mij's and M;j's have real positive elements. 
(ii) The Mjj's (resp. M;j 's) generate M 2(C) as a vector 

space. 
(iii) Vn, Vil, ... ,i" (l<ik <4), 

(iv) There do not exist matrices (R j)::: 1 such that RjMij 
= M ;jR j' The constructed families will be seen to be essen­
tially the only ones possessing these properties. 

We first choose four points 0 <h <F2 <F3<F4 e pl(C) 
on the positive real axis (possibly with F4 = 00), corre­
sponding to four vectors VI' V2, V3, V4 [for example, take Vj 
= (1, Fj ) and V4 = (0,1) if F4 = 00] and we also select 16 
strictly positive numbers Ai}' The Mij's and M ;/s will be 
constructed in order to satisfy 

(a) Mij' Vj =AjjVj; M;j' fj =Aij' Vj' 

(b) detMjj = detM;j' 

Proposition: (a) and (b) imply condition (iii). 
In fact, Mj,j, ... Mj._ lj •. Mj•j, and M;,i, ... M;._lj • 

. M j j will have the same determinant and one eigenvalue in . , 
common namely A.. . .. A. . A. .. , '1'2'11 - 1',. ',.'1 

Next, we prove the simple following lemma. 
Lemma: VA, f-l; A > 0, f-l > 0; there exists a one parameter 

family of2 X 2 matrices with real positive elements such that 
det M = fl., fl. some fixed strictly positive number; and 
M (t) = y(f), Y fixed, positive, with r> fl.A /f-l. 

Proof: The corresponding homographic transformation 
looks like 

M(Z)=f-l+a(Z-A)/(eZ+d), a>O, e>O, d>O. 

Now 

M = ~e: a df-l ~ aA) detM = a(Ae + d), 

y=Ac+d. 

We have therefore a=fl.a and d arbitrary inside 
(iU /f-lY, Y) so that df-l - aA > 0 and C == (1/ 
A)(y-d) >0. 

Repeat the above construction for all pairs F j , F j , keep­
ing thedj/s as a set of variables. FortheMj/sandM;/s, we 
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shall take matrices of this form, with different values of the 
dl/s. Conditions (i) and (iii) are automatically satisfied. 
Condition (ti) also is, except for very special values of the 
d/j's [and elementary calculations show that these can be 
chosen so that (iv) also holds]. In fact R; (resp. R j) inter­
twines Mil and M;/ (resp. MJJ and M u) and we can choose 
d;j such that R;M;j and M ;jR j are different for any R; and 
R j satisfying the intertwining property. 
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Utilizing a IS-term recursion that describes exactly the composite nearest neighbor degeneracy 
for simple, indistinguishable particles distributed on a 2XN lattice space, (811 ), the expectation 
of the normalized number of occupied nearest neighbor pairs, is calculated as a function of 
coverage and the reduced interaction potential. 

I. INTRODUCTION Utilizing Eq. (1), we form the polynomials 

iN,q (x,y)= I A [N,q,nwnoo ] Xftlly""" 

[where 

x=exp[ - Vll/kT] and y=exp[ - VooIkT], 

(2) 
In a recent paper, 1 we derived a IS-term, four-variable 

recursion relation that yields exactly the composite nearest 
neighbor degeneracy for simple, indistinguishable particles 
distributed on a 2 X N rectangular lattice space. In the pres­
ent paper, we utilize the aformentioned recursion to deter­
mine the grand canonical partition function and (811 ), the 
expectation of the normalized number of occupied nearest 
neighbor pairs as a function of the lattice coverage and of the 
reduced particle-particle interaction potential. 

in which VII and V 00 are, respectively, the interaction poten­
tials for the occupied nearest neighbor pairs and for the va­
cant nearest neighbor pairs] and obtain a recursion for the 
generating (canonical partition) function: 

II. DETERMINATION OF THE GRAND CANONICAL 
PARTITION FUNCTION 

We have shown previously 1 that A [N, q, nw noo], the 
number of arrangements of q simple, indistinguishable parti­
cles on a 2 X N rectangular lattice that exhibit nil occupied 
nearest neighbor pairs and noo vacant nearest neighbor pairs 
(as well as nOI mixed nearest neighbor pairs), satisfies the 
recursion 

TABLE I. The initial conditions for the recunion given in Eq. (1). 

A [N + 3,q + 3,nll + 4,noo + 4] 

=A [N + 2,q + 3,n ll + 4,noo + 1] 

+A [N + 2,q +2,n ll + 4,noo + 4] 

+ A [N + 2,q + 2,n ll + 3,noo + 3] 

+A [N + 2,q + I,n ll + I,noo + 4] 

+A [N + I,q + 2,n ll + 4,noo + 1] 

-A [N + I,q + 2,nll + 3,noo ] 

+A [N + I,q + I,n ll + 3,noo + 3] 

-A [N + I,q + I,n ll + I,noo + 1] 

+A [N + I,q,n ll + I,noo + 4] 

-A [N + I,q,nwnoo + 3] 

- A [N,q,n ll + 3,noo + 3] 

+ 3A [N,q,n ll + 2,noo + 2] 

- 3A [N,q,n ll + I,noo + 1] 

+A [N,q,nwnoo ] . (1) 

The initial conditions for the recursion contained in Eq. 
(1) are contained in Table I. 

N 

1 
1 
1 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
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q 

0 
1 
2 
0 
1 
2 
2 
3 
4 
0 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
S 
S 
6 

nil noo A 

0 1 1 
0 0 2 
1 0 1 
0 4 1 
0 2 4 
0 0 2 
1 1 4 
2 0 4 
4 0 1 
0 7 1 
0 4 2 
0 S 4 
0 2 4 
0 3 4 
1 2 1 
1 3 4 
1 4 2 
0 0 2 
1 1 4 
1 2 4 
2 1 4 
2 2 6 
2 0 4 
2 1 1 
3 0 4 
3 1 4 
4 1 2 
4 0 2 
S 0 4 
7 0 1 
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IN + 3.q + 3 (X,y) 

=yIN+2,q+3(X,y) + [1 + Xy]/N+ 2,q+ 2 (X,y) 

+XYN+2.q+ I (X,y) + y[l -XyVN+ l.q+2(X,y) 

+ xy[ 1 - x2rVN+ I.q+ dx,y) 

+x
3
[1 -XyVN+ l.q(X,y) -xy[ 1 -xyP IN.q(X,y) , 

with the initial conditions (3) 

IN.O = yiN - 1.0' N>2, 

IN.I = YYN - 1.1 + 2/N _ 1.0' N>3, 

IN.2 =YIN-I.2 + [1 +XyVN-I.I' 

+ y3[1-xyVN_2.1 +XyIN-2.0' N>3, 

.. 
h (X,y,z,71))= L gN(X,y,z)71N 

N=I 

in which 

0 0 = y + 2z + xr , (9a) 

01 = z[y2(4 - x) - y(1 + 2r)) + r[y(2x - x 3) - xy) 

+ r[x2(4 - y) - x(1 + 2x2)) , (9b) 

0 3 = r [ 4xy2 + 4x2y + 2x2r - 4x2y - 4x3r - 4xy 

(9c) 
Ao =y, AI = 4r, (4) and 

A2 =2[1 +2xy) , AI =2x4[1 +2y), 

h3 = 2[1 + 2xr + 2xy + 3x2r + 2x2y) , 

A4 = 4X3 + 4X2 + 2yx4 + 4yx3 + yx2 , 

As = 2x4 [1 + 2x), A6 = X 
7 

• 

In Eqs. (3) and (4), we adopt the convention that 
IN.q(X,y) = 0, if q <0 or if q> 2N. 

The grand canonical (bivariate generating) function is 
written as 

2N 
gN(X,y,z) = L IN.q(X,yJz'l , (5) 

q=O 

where 

z=m exp[J.t/kT) , 

in which J.t is the chemical potential, m is the adsorbed parti­
cle partition function 

m = m(x)m(y)m(z) exp[ - VoIkT), 

and Vo is the interaction potential between the particle and 
the surface. It should be mentioned that in the Langmuir 
model for adsorption,2 mIx), m(y), and m(z) are single-parti­
cle harmonic oscillator partition functions. 

We can now obtaingN(x,y,z) by substituting Eq. (3) into 
Eq.(5): 

gN(X,y,z) = [y3 +z(1 +xy) +x3r)gN_I (x,y,z) 

+ [y3( 1 _ xy)z + xy( 1 _ x2y2)r 

+ x3r (1 - xy) )gN- 2 (X,y,z) 

- [xy(1-xy)3r )gN_3(X,y,z), (6) 

where the initial conditions are 

bo= 1, 

bl = - [y3 +z(1 +xy) +rx3) , 

b2 = - [z(1 - xy)) [y3 + xyz(1 + xy) + rx3] , 

b3 = xyz3( 1 - xy)3 , 

(lOa) 

(lOb) 

(lOc) 

(lOd) 

and r(71) is a quadratic function of 71, while s(71) is a cubic 
function of 71. From 

1 I aNh I 
gN(X,y,z) = N! anN 1/=0' (11) 

and using a partial fraction expansion of h (x,y,z, 71), we obtain 
3 

gN(X,y,z) = L kj R J' ' (12) 
j=1 

and the kj's are given by 

kj = - r(Rj)/s'(Rj) ' (13) 

and where the Rj's are the reciprocals of the roots of the 
cubic [see Eq. (8)] 

(14) 

If711 is the smallest root ofs(71), then, as N-+oo, Eq. (12) 
becomes 

(15) 

whereR I =71I-
I
• 

This explicit expression for the grand canonical parti­
tion function can now be used to determine the expectation 
of the lattice coverage and the normalized fraction of the 
number of occupied nearest neighbor pairs. 

gl(x,y,z) =y + 2z +xr, (7a) III. THE DETERMINATION OF «(» 
g2(X,y,z) = y4 + 4y2z + 2T( 1 + 2xy) + 4x2r + X4Z4 , 

(7b) 

g3(X,y,z) =y7 + 2y4[1 + 2y)z 

+ [4y + 4y2 + 2xy4 + 4xy + xy2)r 

+ 2[ 1 + 2xr + 2xy + 3x2y2 + 2x2y]r 

+ [4x3 + 4x2 + 2x4y + 4x3y + x 2Y)Z4 

+ 2x4[1 + 2x]zS +X7Z6
• (7c) 

To obtain an explicit relation for gN(X,y,z), the grand 
canonical partition function, we first form the polynomials 
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To determine the expectation of the lattice coverage we 
define «() ) to be 

«() N=(q) N/2N , 

where 

(q) = {~n~oo qA [N,q,nwnoo]xnllynooz'l} 

+{L L A [N,q,n w noo )xlllly"ooz'l}. 
q nll ,1Ioo 
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Thus 

z a «() N = 2N az In[gNlxJ',z)] 

= ~ ~ [~lkIRf]. (18) 

For N-+rt:J, we may write 

«() = _z_ aRI = _ ... ~.J}111 . 
2RI az 2111 az 

(19) 

From Eq.(14), we see that 

a",1 _ { 11bl + 2 ab2 + 3 ab3 } az - 111 az 111 az 111 az 
+{b1 + 2b2111 + 3b3 11~ J • (20) 

Utilizing Eq.llO), and assuming thaty = Iino vacancy­
vacancy interaction), Eq. (19) becomes 

«() ="::"{[I +x+2x3z) + (l-x)[1 + 2xz+ 2x2z 
2 

+ 3x3r)111 - 3rx(l - X)3 11D 

+([ 1+ z(l + x) + rx3) + 211tlz(l - x») 

X [I +xz(l +x) +rx3) - 311~xz3(l-x)3}, 
(21) 

which, for x = I, i.e., no particle-particle interaction, re­
duces to 

«() =z/ll +z), (22) 

the Langmuir isotherm. Figure I shows «() ) as a function of 
loSe lu), where u = X

3
/
2
Z, for several values of x. 

IV. THE DETERMINATION OF <()11> 
We wish to determine «()ll)' the expectation of the nor­

malized number of occupied nearest neighbor pairs. In this 
calculation we will assume that y=l, i.e., that there is no 
interaction potential between vacant pairs on the lattice. 
Here we define «() 11) to be 

-10 -8 -6 -4 -2 0 2 4 6 8 10 

10g
e 

(u) 

FIG. 1. Shows (8} as a function oflog.(u) for various values ofx .... Vll/kT. 
(a)x = 0.0625; (b) x = 0.125; (c) x = 0.25; (d)x = 0.5; (e)x = 1.0; (f)x = 2.0; 
(g) x =4.0. 
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-10 -8 -6 -4 -2 o 2 4 6 

log (u) 

FIG. 2. Shows (911} as a function of log. (u) for various values of .PEVIII 
kT. (a) x = 0.0625; (b) x = 0.125; (c) x = 0.25; (d) x = 0.50; Ie) x = 1.0; (f) 
x = 2.0; (g) x = 4.0. 

«()ll) N=(nll) NI13N - 2) , 

where 

(nll)=={r r nll A [N,q,nwnoo)xllllz'l} 
9 nil 

+ {r r A [N,q,nwnoo)xllllz'l} 
q nil 

= X ...£....In [gNlx,z)] . ax 
Thus, from Eqs.(23) and (24), 

«()ll)N= x ...£....In[kIRf]. 
3N-2 ax 

As N-+rt:J, Eq. (25) becomes 

«()u) = 2- aR I = _....!... a",1 . 
3R I ax 3111 ax 

From Eq.(14) 

1.0 

0.9 

0.8 

0.7 

0.6 

(811 ) 0.5 

0.4 

0.3 

0.2 

0.1 

0.1 0.2 0_3 0_6 0.7 0.8 0.9 1.0 

(8) 

(23) 

(24) 

(25) 

(26) 

FIG. 3. Shows (9 •• } as a function of (9 } for various values ofx .... V •• /kT. (a) 
x = 0.0625; (b) x = 0.125; (c) x = 0.25; (d) x = 0.50; Ie) x = 1.0; (f) x = 2.0; 
(g) x = 4.0; (h) x = 8.0; Ii) x = 16.0; Ul x = 32.0. 
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025 

2xN 0.20 

1xN 0.15 (e)~ I;' 

0.10 

0.05 
5 kT 

·5 -4 ·3 ·2 ·1 V11 

FIG. 4. Shows r=(811 ) - (8)2 as a function of kT /Vw the reduced tern­
peraturefora2XN lattice (solid line) and fora 1 XN lattice(dashedline),for 
(8) = i. 

~1 = - {11{'::) + 11~ (~:) + 11~ (~)} 
+ (b1 + 2b2111 + 3b3 11n , 

SO that Eq. (26) becomes [see Eqs. (10)] 

(811 ) = ~ {('::) + 11{~) + 11~ (~)} 
+ (b1 + 2b2111 + 3b311~} 

= (~) ( +z(1 + 3zx2
) -z[1 +z(3x2

- I) 

(27) 

+ z2x2(4x - 3)111 + ~[(4x - I)(x - W] 11n 

+([1 +z(1 +x)+z2xl] +2z(I-x)[1 +xz(1 +x) 

+ z2x3] 111 - 3u(1 - x)3 11n . (28) 

For x = I, i.e., for no particle-particle interaction, Eq. 
(28) reduces to the expected result: 

602 J. Math. Phys .• Vol. 27, No.2, February 1986 

(29) 

Figure 2 shows (811 ) plotted as a function of log.(u) for 
several values of x. 

In Fig. 3, we show (811 ) as a function of (8) for several 
values of x. Curve (e) (x = 1.0) is the parabola 
(811 ) = (8 )2. We see that for large repulsive potentials 
(811 ) is small until the coverage is greater than !, beyond 
which occupied nearest neighbor pairs are formed in spite of 
the repulsive interaction. For large attractive potentials, oc­
cupied nearest neighbor pairs are easily formed even when 
the coverage is low. 

V. COMPARISON WITH A 1 XNLATTICE SPACE 

We define r to be the deviation of (811 ) from its random 
value, i.e., 

(30) 

Figure 4 shows r as a function of kT /Vw the reduced tem­
perature, when (8) =!. For comparison we show r for a 
2XN lattice and for a I XN lattice for which 

r = - !tanh[ V11/4kT] . (31) 

VI. CONCLUSION 

We have developed exact statistics for occupied nearest 
neighbor pairs when simple, indistinguishable particles are 
distributed on a rectangular 2 XN lattice. Expressions have 
also been derived that yield exactly the expectation of the 
coverage and of the density of occupied nearest neighbor 
pairs. 

Results are compared with analogous results for a one­
dimensional lattice. 

IR. B. McQuistan and J. L. Hock, J. Math. Phys. 25, 261 (1984). 
2T. L. Hill, Statistical Thermodynamics (Addison-Wesley, Reading, MA, 
1960). 
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The purpose of this paper is to examine the relationship between the entropy balance equation, the 
Gibbs formula, and the Boltzmann equation. Consider a system of a mixture of gases contained in 
an arbitrary region n with volume V, where no chemical reactions take place. Let/; be the one­
particle distribution function of species i. First, suppose there exist some/;, such that the entropy 
density pS, the entropy flux J., the entropy production u, and the Boltzmann H-function, H(t), 
satisfy, respectively, the entropy balance equation and the Boltzmann H-equation under 
appropriate boundary conditions on the surface an of n. Then/; can be shown to satisfy the 
Boltzmann equation. Under the functional hypothesis, where/; depends on time t and the spatial 
coordinates r only in terms of the thermodynamic variables-particle density of species i, PI' 
hydrodynamic velocity v, energy density E, stress tensor *1' heat flux Q;, and mass flux J it and 
possibly the spatial derivatives of {Pj, v, E, *j' Q;, Jj}, the entropy balance equation together 
with the semipositive definiteness of the entropy production, u>O, then provides an alternative 
method of solving the Boltzmann equation. The thermodynamic variables, in turn, are governed 
by their corresponding evolution equations with appropriate boundary conditions. Second, to the 
linear order of the spatial gradients ofthe temperature T, the hydrodynamic velocity v, and the 
ratio of the particle number nJn, the entropy balance equation then yields a generalized Gibbs 
formula and a nonlinear solution of/; in terms of the thermodynamic variables, such that u>O. 
The generalized Gibbs formula is an exact one-form of the thermodynamic variables that contains 
the equilibrium Gibbs formula. Furthermore, if/; is linearized, it is identical to the expression 
given by Grad's 13-moment method. Finally, we consider the stability problem of the evolution 
equations for fit Q;, and J j • 

I. INTRODUCTION 

It is well known that the Gibbs formula plays an impor­
tant role in equilibrium thermodynamics. 1 Whether the 
same assertion holds true or not for nonequilibrium thermo­
dynamics has been a controversial question for some time. In 
1949, Prigogine2 showed that, to the first order, the Chap­
man-Enskog solution3 of the Boltzmann equation4 was con­
sistent with the Gibbs formula of equilibrium form. Recent­
ly, De Groot and Mazur analyzed the entropy balance 
equation in terms of the Chapman-Enskog solution of the 
Boltzmann equation. They concluded that, beyond the first 
order, the statistical expression of the entropy density con­
tained the spatial gradients ofthe thermodynamic variables, 
which inevitably led to contradiction with the Gibbs for­
mula. This inconsistency can be attributed to either an inap­
propriate approach in the series expansion and the con­
straints imposed on the Chapman-Enskog method or 
incompatibility of the Gibbs formula with the Boltzmann 
equation in general. It would be ideal if a satisfactory theory 
of irreversible thermodynamics can be constructed from ki­
netic theory in terms of the Boltzmann equation. With this 
aim in mind, recently Eu6 proposed a modified moment 
method similar to Grad's 13-moment method.7 In order to 
conform with the second law of thermodynamics, Eu em­
phasized the importance of the Gibbs formula and the en­
tropy balance equation, thereby closing the gap between ki­
netic theory and irreversible thermodynamics. Based on 
these considerations, he was able to obtain some interesting 

results in nonlinear transport processes and a new formula­
tion in nonlinear irreversible thermodynamics. 8 

603 J. Math. Phys. 27 (2), February 1986 

The main purpose of this paper is to further examine the 
relationship between the entropy balance equation, the 
Gibbs formula, and the Boltzmann equation. 

In the following discussions we shall adopt the same 
notations and definitions as given in Eu's paper6 except for 
some minor changes. For convenience, these notations are 
given in Appendix A. 

Consider a system of gases with r components contained 
in an arbitrary region n with volume V, where no chemical 
reactions take place. Let/; (t, Uit r) be the one-particle distri­
bution function of species i. The Boltzmann equation for the 
system can be written as 

a/; -a + Uj • V/;= L C(/;,fj), (1) 
t j 

where Uj is the velocity of molecular species i and C(/;,fj) is 
the Boltzmann collision integral. 

By Eq. (1) we can derive the following set of evolution 
equations for the infinite hierarchy of moments, such asp, v, 
E, fit Q;, J it etc.: 

dp dc· (p) di = - pV . v, P d: = - V • J j Cj = ; , (2) 

dv .... 
Pdi= -V·P, 

dE .... P-= -V·Q-P:Vv, 
dt 

0022-2488/86/020603-09$02.50 @) 1986 American Institute of Physics 

(3) 

(4) 
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(5) 

(6) 

(7) 

(8) 

· , 
whereZ(PI Z(hl Z(dl Z(bl A(P) A\h.l A\~l andA\b.lareaivenin 

I , I , I' I' I}' 'J' I)' IJ eta 

Appendix A and d /dt = a/at + v • V is the substantial dif-
ferentiation. 

Equations (2)-(8) are the evolution equations considered 
by Grad and by Eu. We note that each evolution equation 
depends on the rest of the set. Henceforth, without a closure 
relation, the infinite set of evolution equations must be con­
sidered. However, it is interesting to note that by the defini­
tion of the moments, we can rederive the Boltzmann equa­
tion (1) from each evolution equation except for the 
conserved equations (2)-(4), where the collision contribution 
vanishes. In fact it will be proved in Appendix B that the 
infinite hierarchy of evolution equations for the moments of 
/; is formally equivalent to the Boltzmann equation. Hence, 
if/; can be expressed as a series of moments of/; , then solving 
the set of evolution equations of the moments will be equiva­
lent to solving the Boltzmann equation. However, from a 
practical point of view, it is impossible to study the infinite 
hierarchy of the moment equations. In order to study the 
hydrodynamic state of a fluid, Grad truncated the hierarchy 
by including only the 13 moments { p, v, E, 1T, Q}. Inspired 
by Grad's method, recently Eu developed a generalized 
moment method for nonequilibrium thermodynamics, 
where the state of the thermodynamic system (of mixtures) 
is described by W = {Po v, E, '*0 Q;, J j}. Based on 
Eqs. (2)-(8), a general closure relation can be written as /; 
= /;(UOPj' v, E, '*j, Q;, Jo Va), where Va denotes the spa­

tial gradients of W. If/; can be determined uniquely in terms 
of Wand Va, then Eqs. (2)-(8) form a complete set equivalent 
to the Boltzmann equation. 

In order to determine/; in terms of Wand Va (approxi­
mately), we consider the following nonlinear functionals of 
/;: pS, J s' and 0" defined, respectively, by 

pS = - K ~ i, dUj /; (log/; - 1), (9) 

J s = - K ~ i, duj(uj - v)/;(log/; - 1), (10) 

0"= -K~ LidUj C(/;,fj)log/;, (11) 

where K is the Boltzmann constant and n j is an arbitrary 
region of Uj. 

By Eq. (1) and the definitions of pS, Js ' and 0" we can 
easily derive the following entropy balance equation: 

604 

dS 
p-= -VoJs +0". 

dt 
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(12) 

Conversely, by Eqs. (9)-(12) we can obtain 

L { dUj {a/; + Uj 0 V/;- L C(/;,fj)}log/; = o. 
j Jo, at j 

Since no chemical reactions take place, the /; are indepen­
dent for all i. Thus 

(12') 

We now show that Eq. (12') leads to Eq. (1). Let the Boltz­
mann H-function, H (t), be given by 

H(t) = ~ i dr i, duj/; log/;, 

where n is the region of the vessel containing the system with 
volume V. 

Consider an arbitrary n. The boundary an of n may be 
moving or stationary. If an is moving, the boundary condi­
tion of/; on an can be set up as described by Cercignani,9 

whereas, if an is stationary, the boundary condition can be 
set up as described by Darrozes and Guiraud. 10 

Suppose there exist some/;, such that pS, Js , and 0", 

defined by (9)-(11), satisfy (12) and H(t) satisfies the Boltz­
mann H-equation 

but 

~~ = - ~ i, du Ian (Uj /; log/;J 0 d A 

+ ~ i dr i, dUj C(/;,fj)log/;, 

a/; ~ 1 -a +UjOV/;-~c(/;,fj)=hjEL, 
t j 

where d A is a surface element of an. Then 

{ dr ( dU j hj(t,uor) Jo Jo, 

= i, dUj i dr hj(t,uor) = I I hj = O. 

(1 ') 

Since n and nj are arbitrary with finite measure (volume) 
and hj ELI, thus hj = 0 almost everywhere. 

Proposition 1: Consider a dilute system of a mixture of 
gases contained in an arbitrary n with volume V, where no 
chemical reactions take place. Suppose there exist some /;, 
such that, pS, Js , and 0" satisfy (12) and H(t) satisfies the 
Boltzmann H-equation with appropriate boundary condi­
tions as described by Cercignani, or by Darrozes and Guir­
aud. Then/; satisfies the Boltzmann equation (almost every­
where). 

Notice first that in the proof of Proposition 1, no bound­
ary condition of nj is required. Thus, nj is completely arbi­
trary. However, from a physical point of view, n j should be 
sufficiently large so that/; vanishes outside the region n j. In 
that case, pS is the entropy density, J s the entropy flux, 0" the 
entropy production, and Eq. (12) is usually referred to as the 
entropy balance equation. Furthermore, the condition 
f f hj = 0 is equivalent to the conservation of mass (of the 
system) as can be easily verified by (I'). Second, the Boltz­
mann equation is valid only for dilute systems, whereas the 
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entropy balance equation is practically valid for all systems. 
Third, if there are no oblique stresses of the gases exerting on 
the surface an, nor is there net energy flow from the gases 
into the solid body that constitutes the boundary of the ves­
sel, Cercignani and Darrozes and Guiraud have, respective­
ly, proved the Boltzmann H-theorem based on the Boltz­
mann H-equation. 

Hence, instead of solving the Boltzmann equation di­
rectly,lI we look for some /; indirectly through Eq. (12), 
which satisfies the Boltzmann H-equation with appropriate 
boundary condition. In order to achieve this goal, we assume 
the functional hypothesis (closure relation) that/; depends 
on t and r only in terms of the thermodynamic variables W 
and possibly their spatial gradients, where the thermody­
namic variables W, in tum, are governed by the evolution 
equations (2HS). The boundary condition of/; must be re­
formulated in terms of the boundary conditions of the ther­
modynamic variables W for the evolution equations (2HS). 
Since this is a very delicate and difficult problem, we shall 
not discuss it in this paper. We assume that the boundary 
conditions can be set up so that Eqs. (2HS) can be solved. On 
the other hand, the second law of thermodynamics requires 
that 0';;"0. Henceforth, by the functional hypothesis, we look 
for some/;, which satisfies Eq. (12) and the condition 0';;..0, 
where the thermodynamic variables W are determined by 
the evolution equations under appropriate boundary condi­
tions. The functions/; obtained in this manner certainly sa­
tisfy the Boltzmann equation. We therefore call them the 
thermodynamic solutions of the Boltzmann equation. In the 
next section we show how/; can be obtained (approximately) 
in this alternative approach, where the Gibbs formula plays 
an important role. 

II. GIBBS FORMULA AND THE THERMODYNAMIC 
SOLUTION OF THE BOLTZMANN EQUATION 

Let/; =/; (Pi' V,E, VP) = I}O) (1 + ¢i ) ,where Vp de­
notes the spatial gradients of Pi> v, and E. Equation (12) 
then yields 

P { ~~ - ~ [ ~ + p ~; - + Ili ~; ]} 

= - [Q -+ Ili J i ] • v( ~) 
1 1 

+ -;r:Vv + r -Ji • V(,ui) 
TiT 

-K + V· {f dui(ui - v)/; 10g(1 + ¢/)} + 0', (13) 

where the divergence is with respect to the spatial coordi­
nates, v = P -1 is the specific volume, Ili is the chemical po­
tential of species i per unit mass, and Pi> pv, and pE are 
defined by 

{:v} = ~ f du, mJ;{!/ } 
pE' !(ui - V)2 

= 2: J dUI m i 1\°) {!i } . (14) 
I !(u

i 
_ V)2 
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Equation (14) then implies the following constraints on ¢i: 

f du;/IO)¢i {(~i - v) } = O. (15) 
~(Ui - V)2 

By the definition of the entropy density, we have 

S= ~ {E +pv- +lliCi} 
_p-1K+ f dui/; 10g(1 +¢i)' (16) 

Hence, S becomes a first-degree homogeneous function of 
the extensive variables (Pi' v, E), which gives rise to the local 
equilibrium Gibbs formula 

T dS = dE + p dv _ ~ . dCi , 

dt dt dt +Il. dt 
(17) 

if and only if 

f dui /; 10g(1 + ¢i) = o. (IS) 

We now define the thermodynamic solution of the 
Boltzmann equation as the solution of the entropy balance 
equation (13), which satisfies the Gibbs formula (or the 
generalized Gibbs formula to be defined later) and the con­
dition 0'>0. 

With the Gibbs formula (17), it is evident that /; is a 
thermodynamic solution of the Boltzmann equation if 

0' = - { ~ ;r:Vv + ~ Q • V log T + + J I • V(';: ) } 

+ K + V· {f dui(ui - v)/; 10g(1 + ¢i)}' (19) 

and 0';;"0. Conversely, we can solve Eq. (19) for ¢i subject to 
the constraint (15). If ¢i satisfies the condition (IS), then/; 
certainly satisfies the Gibbs formula (17). Therefore, /; is a 
solution of Eq. (13). By examining the conditions f dU i /; 

X log( 1 + ¢i) = f dUi 110)¢i' we notice that either ¢i = 0, the 
trivial solution, or (1 + ¢i)log(1 + ¢i)-¢i' Equation (19) 
then yields 

0' = - { ~ ;r:Vv + ~ Q • V log T + + J i • V(Il; ) } >0, 

(20) 

which can be shown to be the first-order solution of the 
Chapman-Enskog method. Hence, by the entropy balance 
equation (13), we have recovered the following well-known 
result. 

Proposition 2: Suppose /; =/;(Pi' v, E, VP) 
=1\0) (1 + ¢i)' Then/; is a thermodynamic solution of the 
Boltzmann equation with respect to the Gibbs formula (17) 
if, and only if, either (i) /; = 1\°) or (ii) /; is the first-order 
solution of the Chapman-Enskog method. 

By Proposition 2,ft is called the linear thermodynamic 
solution of the Boltzmann equation, because if can only de­
scribe linear irreversible thermodynamics.s This drawback 
is attributed to the following possibilities: (i) the constraints 
on ¢i are too restrictive; or (ii) the Gibbs space spanned by 
the thermodynamic variables (Pi' v, E) is inadequate. Re-
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cently, in order to study nonlinear irreversible thermody­
namics, Eu proposed a modified moment method to over­
come the above difficulties. The ensuing discussion is a 
reformulation of Eu's method. 

Let us now enlarge the hydrodynamic variables to 
(Pi> V, E, 1fi> QI' Ji> Va). Assume h =h (PI' Vi> E, 1fi> Q;, 
Ji> Va) =/\°1 (1 + ,p;), wherepi>pv, andpE are still defined 
by Eq. (14). In Eq. (13), Pi> V, E, 1fi> Q;, Ji> and Va are now 
considered as independent variables. According to the defi­
nitions of A'f), A\~ I, A\j I, ~\ pI, and .. JIIh I given in the Appendix, 
we can eliminate the 10g(1 + ,pI) term in Eq. (13) by setting 

10g(1 + ,pI) 

1 -= - K [(ul - v)(ul - v)] (21:X\pl 

- ~ [~m.(u. - V)2 - ~KT](U. - v). X\hl 
K 2 ' , 2 ' , 

(21) 

where X\PI, X\h l, and X\d l are independent ofui> and the su­
perscripts p, h, and d represent pressure tensor, heat, and 
diffusion. The last term - E(ul - V)4, with € as an infinitesi­
mal real number, is needed to ensure the normalizability of 
h. That is, if we write 

log/\Ol = __ 1_ (H. _ II.) = __ 1_ {~m.(u. _ V)2 _ II.} 
, KT' r, KT 2 ' , r, 

and (1 + ,pI) = exp( - (1IKT)H\II), we can include 
exp[ - E(ul - V)4] into/\Ol and defineI-L, by 

exp( - PI-LI) = lim n l- I J du, exp [ - €(ul - V)4] 
£-.0 

xexp( -PHI -PH\II), 

withP = 11 KT. Henceforth, in the following discussions we 
shall drop the term - €(ul - V)4. 

With Eq. (21), we have 

- K J du,(u, - v)h 10g(1 +,p;) 

= X\PI:~\PI + X\h l • 'JIIh' + X\d l • ,W', 
and 

{
_ d1f. dQ~ dJ·-

= ~ X\pl:-_' + X\hl. --' + X\dl. --' - X\pl:Z\pl 
"'7- 'dt ' dt ' dt " 

- Xlh) • Zlh) - Xld) • Zld) }. (22) 

Equation (13) then reduces to 

!!... {T dS _ dE _ P dv + LI-L' dc
, 

_ T L [X\PI: d1f
, 

T dt dt dt I dt P I dt 

+X\h l • dQ; +X\d l • dJ, ]} 
, dt 'dt 

=~1f:Vv + ~Q. V log T+ L J I • v(I-LI) 
TTl T 

- L {X\PI:Z\pl + X\h l • 'ZJlhl + XI,dl. ZldlJ - V· D, 
I 
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where 

D = L {X\PI:~\PI + X\hl: "'\hl + X\d l • PI J. (23) 
I 

IfX\PI, X\h l, and X\d l can be determined in terms of Pi> v, E, 
1f1' Q;, and Ji> thenh is independent of Va. By Eq. (9), S 
becomes a first degree homogeneous function of the exten­
sive variables Pi> v, E, 1f1' Q;, and J I. We therefore look for 
such an approximate solutionh ofEq. (23) that satisfies the 
condition 0-;;;.0. Let 

X\PI = X\Pol (pi>v,E,1f
"

Q;,J,) + terms involving Va, 

X\h l = X\hol (pi>v,E,1f
"

Q;,J, ) + terms involving Va, 

X\d l = X\dol (p"v,E,1fi>Q;,J;) + terms involving Va, 

Z\PI = Z\Pol + higher-order terms of Va 

= - 2p;[VV](2) +"', 

Z\hl=Z\hol+ ... = _~ Kp, VT+ ... 
" 2 ' ml 

Z\dl=Z\dOI+ ... =p[V(~)+(~ -:)VIOgp] + ... 

= V fp;lT) + .... 
Equation (23) then becomes 

!!... {T dS _ dE _ p dv + ~ {I-L. dc, _ X \ Pol: d1f, 

T dt dt dt "'7- 'dt ' dt 

_ X~ho). dQ; _X(do). d J I }} + ... 
, dt ' dt 

= ~ {[ 2p, Xl Po) + ~ 1f1 ]:[VV](2) + [ _ ~:I Xlho) 

- ;2 Q;] . VT + [p X\dol + ;~I JI] 
.[V(~)+(~ -:)VIOgp]} 

+ higher-order terms of Va, (24) 
A +-+ A A 

where X\Po) = (T /p) X\Pol, X\hol = (T /p) X\hol, X\dol 

= (T /p)X\dol.1t is evident that the left-hand side (lhs) of (24) 
is a generalization of the lhs of (13) such that S depends on t 
and r only in terms of the thermodynamic variables 
W = (PI' v, E, 1fi' Q;, J i). Since the spatial gradients of W 
are independent quantities, to the linear order of [Vvl2), VT, 
and V(n;ln), (24) in conjunction with (2)-(8) yields 
lhs = rhs = O. Consequently, 

T dS = dE + P dv _ ~ I dc, + ~ {X \ Pol: d1fi 
dt dt dt "'7-I-L dt "'7- dt 

+X\ho). dQ; +X\do). dJ, } 
, dt ' dt' 

(25) 

where 

X (.Pol = __ 1_,*.= __ I_ fr. 
, '2" 2p,P Pi 

(26) 
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All A 

X~do) = ---JI = --J/, 
PIP PI 

and the distribution function/; can be written as 

/; = f~.ol exp{ 1 + ~ [(ul - v)(ul - v)] (2):fl 
2PI KT 

2ml [ 1 )2 5 T]( ) Q' + 2 -ml(ul -v --K u/-v· I 
5K2pIT 2 2 

+--'-(ul -v)·JI . m· } 

PIKT 
(27) 

A A A 
Since X \ Pol, X\hol, andX\dol are independent of the den-

sity P, they are intensive variables, and thus can be defined as 
the conjugate variables of f I' Q;, and J I' respectively. By Eq. 
(27), S becomes a first degree homogeneous function of the 
extensive variables (P/O V, E, f/O Q; • J I ) and gives rise to Eq. 
(25), which can therefore be defined as the generalized Gibbs 
formula. Note that by (25), T dS can be shown to be an exact 
one-form. 

Second, the entropy production is given by 

(j = I {X\Pol:A\rol + X!hol. A!~l + X!dol. A!~ol} 
Ij 

= -KIfdUI C(/;,.Ij)log(I +~I)' 
Ij 

where A~rol, AI~ol, A!'ll, are obtained from A~)l, A~~l, and A!~l, 
respectively, with/; given by Eq. (27). By the properties of 
the Boltzmann collision integral, one can easily show that 

(j = - _1_ '" f dr .. fIOlf}I.ol(H ':1'. - H. .) 
4KT f:t ')' ') ') 

(28) 

where HI =log(l +~I)' HI} =H/ +H}, H~ is the post­
collision value of HI}' and dr I} is the measure of the collision 
integral. 

Finally, by linearizing Eq. (27) we have 

{ 
m· 

/; = f!.o) 1 + --' - [(ul - v)(ul - v)] (2):fl 
2p/KT 

2ml [ 1 2 5KT] + -m.(u. -v) -- (u. -v) 
5K2PIT2 2 ' , 2' 

.Q; +--'-(ul -V)·JI , m· } 
PIKT 

(29) 

which can be shown to be identical to the 13-moment meth­
od of Grad. We can summarize our results in the following 
proposition. 

Proposition 3: Suppose/; depends on t and r in terms of 
the thermodynamic variables W=(P/O v, E, fl' Q;, J/), 
which in tum are governed by the evolution equations (2H8) 
with appropriate boundary conditions. Then, to the linear 
order of [VV](2), VT, and V(n;ln),1t is a nonlinear thermody­
namic solution of the Boltzmann equation with respect to 
the generalized Gibbs formula (25), if, and only if,1t is given 
byEq. (27). 

In view of the definitions given by Eqs. (9Hll), S, J s ' 

and (j can be considered as nonlinear integral transforms of 
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/;. Consequently, the entropy balance equation (22) is also a 
nonlinear integral transform of the Boltzmann equation (1). 
In Eq. (24), the entropy balance equation is solved to the 
linear order of [VV](21, VT, and V(nJn), which in tum gives 
rise to the nonlinear solution ofEq. (1). This is in contrast to 
the first-order Chapman-Enskog solution of the Boltzmann 
equation. 

By the closure relation (27), we have a closed set of evo­
lution equations (2H8). If Eq. (2H8) can be solved, we can 
then obtain a complete description of the thermodynamic 
solution of the Boltzmann equation. Recently, in a sequence 
of papers, Eu 7 has extensively studied the nonlinear trans­
port coefficients based on Eqs. (6H8). We shall not repeat 
these topics in this paper. However, it is essential to know 
whether or not the distribution function/; given by Eq. (27) 
indeed approaches equilibrium as t-+ ~. In the next section 
we discuss the stability and asymptotic behavior of fl' Q;, 
andJ/. 

III. THE STABILITY AND THE ASYMPTOTIC BEHAVIOR 
OF THE EVOLUTION EQUATIONS FOR *" Q;, AND J, 

In order to simplify the notation, we introduce the fol­
lowing column vectors H, X, ~, Z, A with 3r - 1 compo­
nents given by 

H = [H!ll, ... ,H~ll,,H\21, ... ,H~I,H\3), ... ,H~~ I]' 

where 

H!ll = [m/(ul - v)(ul - v)] (2), 

H!21 = Um/(ul - V)2 - 5KT /2 ](ul - v), 

H!31 = ml(ul - v); 

X = [X\ll, ... ,x~ll,x\21, ... ,x~21,x\31, ... ,x~3~ I ], 

where 

X(11 = Xl/Pol, X\21=x\hol, xI.31 = X\dol, 
, I I , I 

~ = [fl, ... ,f"Q; ,···,Q;,JI, .. ·,J,_I ]; 

Z= [Z\ll, ... ,Z~ll,Z\21, ... ,Z~21,Z\31, ... ,Z~3~1]' 

where 

Z(11 = Z\Pol, Zl
1
21 = Zl/hol, zl.31 = Z\dol. 

" " , 
A = [A\ll, ... ,A~ll,A\21, ... ,A~21,A\31, ... ,A~~ I ], 

where 

Na l = '" N~) = '" f dr. ·f\.olf\.ol H\al 
I ~ IJ ~ IJ' J I 

} } 

x {e- YI, - e -XI,}, a = 1,2,3, 

X. = _1_ t [X\fJlH\fJ) + X\fJlH\fJl]. 
,} KT t/=I " ))' 

and 

y/} = X~ = post collision value of XI). 

To the linear order of Vv, VT, and V!/t;lT) the evolution 
equations for f/O Q;, and J I can be rewritten as 

d "Ial Ala)( T. ") -",/ = I p}'V, ,,,, 
dt 
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which is a system of first-order quasilinear partial differen­
tial equations with the same principal partl2 

dlo(a) alo(a) 
_'f'_I_ = _'f'_I_ + (v. v);\a). 

dt at 
We now define the stationary solution ;\a) (s.t.) of Eq. 

(30) as the solution of the homogeneous equation 

d;\a) a;\a) a;\a) a;\a) a;\a) 
--= --+ Vx --+ Vy --+ Vz -- = o. 
~ ~ U ~ & 

(31a) 

Thus ;\a) (s.t.) is obtained from the following system of alge­
braic equations: 

z\a) = - A\a)(pj,v,T,;(s.t)), 

i = 1,2, ... ,r, a = 1,2,3. (31b) 

By inverting ;\a)(s.t.) in terms of z\a), we then obtain the 
nonlinear consititutive relations. On the other hand, the 
characteristic equations of (31a) are given by 

dx = dy = dz = dt, 
Vx Vy Vz 

and ;\a)(s. t.) = const on the characteristics. From a physical 
point of view, due to the chaotic molecular collisions, ;\a) 
changes rapidly in space and time as compared to PI' v, T. 
Thus ;\a) reaches the stationary state defined by ;\a) (s.t.) 
within a short period of time. During this period of time, PI' 
v, T can be considered almost constant. Once the system is in 
the stationary state, ;\a) (s. t.) then depends on t and r in terms 
of PI' v, T, which in turn are governed by the conserved 
equations (2H5). 

By Eq. (22) the entropy production for the stationary 
state becomes the following familiar expression: 

1 1 
u = - L x\a)z\a) = - - '*(s.t.):Vv - - Q(s.t.) 

I.a T T 

• V log T - ~ JI(s.t.)· v(~). (32) 

However, '*(s.t.), Q(s.t.), and JI(s.t.) are related to Vv, VT, 
and V(P;lT) nonlinearly, respectively, via the nonlinear 
constitutive relations (31b). If A\a) is linearized, we then have 
the following linear constitutive relations: 

Z !\) = ~ ~ Jdr/.j(Olj.(OlH!\) [H!\) -H!llO]X!\)(s.t.) + ~ J.-Jdr .. j!Oll'!OlH(ll [H!\) - H(1l0]X!\)(s t ) , T ~ '" I I " £... T I) I J} I J J ] •• 
r=2.3 j¥-' 

= ~Jl)X\I)(S.t.) + L ~Jl)X?)(S.t.), (33a) 
j¥-I 

z(lJ) = ~ ~ f dr .. jI.O) I'?) HI.P) [Hl.r) - H(.r)O]Xl.r)(s.t) + J.- ~ ~ f dr .. j(O)jl.°)H JP)[Hl.r) - Hl.r)O]Xl.r)(s.t.) , T £.. n J J i I I " T £.. £.. IJ I ] I J J J 
r=2.3 j¥-lr=2,3 

= L~f·rlx\r)(s.t) + L L~f·r)xy)(s.t.), /3= 2,3. 
r J¥-I r 

Let the matrix g be defined by the block form 

[

gll'l) 0 0 1 
g = 0 gl2.2) gl2.3) , 

o gl3.2) gl3.3) 

where the elements of gll,l), gl2.2) , ... ,gI3.3) are given by (33a) and 
(33b). It can be shown easily that ~JI) = gI//I), ~f·rl = ~roP), 
and ~f·rl = flJroP ) • These are Onsager's relations. 13 By Eqs. 
(33a) and (33b), Eq. (32) then reduces to the linear irreversible 
thermodynamics given by Eq. (20), and the generalized 
Gibbs formula (25) becomes the equilibrium Gibbs formula 
(17). 

The system of evolution equations (30) is equivalent to 
the following system of ordinary differential equationsl2

: 

dx = dy = dz = dt, (34a) 
Vx Vy Vz 

d~;a) = A\a)( PJ,v,T,;) + z\a{ PJ,v,T,VV,VT,V( i.)). 
(34b) 

Strictly speaking, the whole set of evolution equations (2H8) 
must be considered. However, ;\a) changes rapidly in time 
toward the stationary state ;\a) (s.t.) as compared to the con­
served variables PI v, T. For this reason, we can separate the 
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(33b) 

I 
;\a) from the conserved variables, and consider only Eq. (34b) 
in terms of PI v, and Tand their spatial gradients. For simpli­
city, we start with the linearized equation of (34b): 

d;(a) 
_1_ = ~ r:.aoP) A.I.P) + Z (a), 

dt ~ 'J 'f'J , J.P 
where 

-1aoP) _ ..(a.p) alP) 
rij -lSI} j' 

with 

(35) 

(1)_ 1 aj - ---, 
2pjp 

1 
01.2) = - , 0(3) = - - . 

J 5Kpj T P J PiP 

Suppose PI , v, and Tare uniformly bounded and continuous­
ly differentiable such that !PII, lvi, and IT'I are integrable 
over the interval [to, 00), and Pi> v, and T approach their 
thermodynamic equilibrium values as t-->-oo. Then ~joP) is 
also uniformly bounded and continuously differentiable 
such that 

_'_J dt< 00, S"" I dr .. I 
to dt 

and ~joP L.~a\'joP) = const as t-->- 00 . 
Let R(t) =A +RI(t), where (RI)~'joPl =rfjoPl, 

(A) fjoPl = O}joPl. 
Then the matrix RI(t) has the property 
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S': I IRI(s)1 Ids < 00, and S;:lldRlldsllds< 00, where 
I IRI(s)1 I = l:1l:j I(RI)ijl isthenormofRI(t). Like the matrix 
g, both A and R I have the same block form. 

Now the solution ofEq. (35) can be written as 

t/J~a) = 7/f;a) + r Y(t)y-I(s)z\a)(sjds, (36) 
Jt. 

where 7/f;a) satisfies the homogeneous equation 

dt/l;a) 
_i = L r1jJJ)f/JjP) = L [A + RI(t)Hj'P) f/JjP), (35') 
dt jJJ j.P 

or,invectornotation(d Idt)t/I = [A + RI(t llt/l,and Y(t ) is the 
fundamental matrix of(35') with Y(O) = I. 

Suppose A has distinct characteristic roots AI' By the 
properties of RI (t), Eq. (35') has a fundamental system of 
solutionl4 t/l1' such that 

C2 exp[ Re(A;t) + d2 E I IRI(s)1 Ids ] 

<;;;; It/I; I = CI exp [ Re(AJ) + d l E I IRI(sli Ids ]. 

for all t>to, where C I, C2, d l, d2 are positive constants; in 
particular, log(lt/l; Illt--+Re(Ai) as t--+oo. As a matter off act, 

it can be shown that t/lr--+eA.,t5; as t--+ 00, where 5i is a charac­
teristic vector of A corresponding to the characteristic root 
A/ (see Ref. 15). On the other hand, the system (35') is uni­
formly asymptotically stablel6 if and only if there exist posi­
tive constants k and C such that II Y(t )y-l(tl)11 <;;;;k e -c(t- t,), 

to < tl < I. But this is true if and only if all Ai have negative 
real parts. For binary mixtures, the negativity of Re(A i ) can 
be confirmed by the Routh-Hurwitz method. 17 In general, it 
is almost impossible to prove that Re(A;) < O. However, if all 
Re(A;) are indeed negative, then t/J\a) approaches t/J\a) (s.t.) ex­
ponentially. This can be seen by setting t/J\a) = tfJta) 
+ t/J\a)(s.t.). Then 

!!... .J.\a) = !!... .1J..a) = ~ r,.a.JJ).IJ.8) 
dt '1'1 dt 'PI ~ IJ 'Pj 

j.P 

+ [~r1jJJ) (JjP)(s.t.) + z\a)] 

= ~ ,A.a..P) .IJ..P) 
~ IJ 'Pj' 
j.P 

Once the system is in the stationary state defined by t/J\a)(s.t.), 
it is then identical to the first-order solution of the Chap­
man-Enskog method. 

All characteristic roots of A may not necessarily be dis­
tinct. In that case, A can be reduced to the Jordan canonical 
form. Still, the system t/I' = A t/I has solutions all approaching 
zero as t--+oo, if, and only if, all Re(A/) <0. Alternatively, 
given any matrix A, there exists another matrix A ' with dis­
tinct characteristic roots 18 such that IIA - A '11 <E, whereEis 
any positive real number that can be made as small as possi­
ble (but not zero). This justifies the assumption that A has 
distinct characteristic roots. 

Let the absolute thermodynamic equilibrium state be 
defined by the absolute Maxwellian distribution function 
1/10) is independent of I and r) and the thermodynamic equi­
librium Gibbs formula Tds = dE + P dv -l:/Ill d Ct. Since 
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the stationary state t/J\a)(s.t.) is identical to the first-order 
Chapman-Enskog method, where the generalized Gibbs 
formula becomes the local equilibrium Gibbs formula (17), 
we can readily employ the thermodynamic stability and hy­
drodynamic stability theory of Glansdorff and Prigoginel9 

to/; given by Eq. (26). If t/J~a) (s.t.) is substituted into (26), then 
/; can be shown to be identical to the first-order solution of 
the Chapman-Enskog method. To summarize, we have the 
following proposition. 

Proposition 4: Suppose all characteristic roots of A have 
negative real parts. Then the solution of Eq. (35) is asymp­
totically stable. Moreover,/; given by (29) is a linear thermo­
dynamic stable solution of the Boltzmann equation. 

Next we consider the nonlinear equation in vector form 

dt/J = A((J) + Z. 
dt 

(34b) 

Letf(t/J) = A(t/J) - Rt/J. Thenf(t/J) does not contain the con­
stant nor the first-order terms. Consider the homogeneous 
equation of (34b) 

dt/l = Rt/I + f(t/I). 
dt 

We notice that t/I = 0 is a trivial solution. Furthermore, there 
exist positive constants CI and C2 such that 
V(t/I) - f(~lI<Cllt/I - ~I, where CI--+O as C2--+O, and 
It/ll < C2, I~I < C2• Since S;: IIRI(t )lldt < 00, given 1t/J(lo)1 suf­
ficiently small, it can easily be proved20 that t/I = 0 is an as­
ymptotically stable solution of the homogeneous equation if 
all characteristic roots of A have negative real parts. As a 
matter of fact, 1t/lI--+O exponentially. The general solution of 
Eq. (34b) can be written as 

t/J=t/I+ E Y(t)y-l(tt![J(t/J(tl))+Z(tl)]dtl · 

If Z (t)-o at least as fast as I -2 for large t, then (J(t)-o as 
1--+00, and the solution of Eq. (34b) is asymptotically stable. 
Consequently the solution ofEq. (34) given by Eq. (27) is also 
asymptotically stable. Moreover,/; approaches the absolute 
Maxwellian distribution function as 1--+00. 

It would be interesting to generalize the thermodynamic 
stability and the dynamical stability theory of Glansdorff 
and Prigogine to the nonlinear thermodynamic solution giv­
en by Eq. (27) and the generalized Gibbs formula (25) togeth­
er with the evolution equations (2H8) under appropriate 
boundary conditions. This will be discussed in a subsequent 
paper. 
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APPENDIX A: NOTATION 

Vector: AI' 

Tensor: iii' 
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Scalar product of vectors: Al • A2• --Tensor contraction: B I:B2• 

Local average of A: (A ) = f du; A/(r,u; ,t ). 

Density:p; = mini = (m;), 

Concentration: C; = p;l p. 

Hydrodynamic velocity: pv = L (m; u;). 
; 

Internal energy density: 

pE= ~ (~ m;(u; - v)· (u; - V)). 
Mass flux: J; = (m;(u; - v). 

Stress tensor: 

P = L P; = L (m;(u; - v)(u; - v), 
i i 

1r= L 1r; = L [P;](2) 
i i 

= ~ {~ (P; + P:) - + (p;i) ~ 

= L (m;((u; - v)(u; - V)](2), 
; 

1 -- - . P; = -:-!P;:I) I: umt tensor. 
3 

Traceless symmetric part of second rank tensor A: [A]<2). 
Heat flux: 

Q = ~ Q; = ~ (~ m;(u; - v)· (U; - V)(U; - V)), 

Q~ = Q. _ 2. (kT)J .. , , 2 m; , 

Third moment: ~IP) = (m;(u; - v)[(u; - v)(u; - v)] (2), 

~13) = (m;(u; - v)(ul - v)(u; - v). 

Fourth moment: 

~Ih) = (~m;(u; - v)· (u; - v)(u; - v)(u; - v). 

Boltzmann collision integral: 

C(/;,!;) = Clj = J dUj d4> db bgij(/U; - /Jj). 

Collisional average: 

(AC(/;,!;) = (AC;j) = (A )elj' 

AIr) = (m; [(U; - v)(u; - v)] (2) e'l' 

AI~) = ([! m;(u; - V)· (U; - v) - ~ kT ](U; - V)el)' 

AI~) = <i m;(u; - V)· (U; - v)el)' 

AltO = (m.(u. - v) . 
J " ~j 

Other definitions: 
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+ (21 p) L [J; VPj ](2) + (21 p)[ J; V 0 1Tj ](2), 
j 

Z(h) = Z'.(h) _ 2. kT Z(f) _ 2. kT J. ~ log T. 
, , 2 ' 2 'd ' m; m; t 

Z}h) = - V. ~Ih) - Q; V· V +p-IV· P:(p;E;I + Pi) 

- (Q; • V)v - ~13):VV, 

z(f) = - V·(P. -c.P) - poVc. -J·V·v - J., 
J I J " I 

Zlb
)= -jP;V·Q; + (2I3p)J;V:P-j1r;:Vv. 

APPENDIX B: REDERIVATION OF THE BOLTZMANN 
EQUATION FROM THE MOMENT EQUATION 

In this Appendix we rederive the Boltzmann equation 
from the set of evolution equations for the various moments. 
For simplicity we consider a single component system. The 
evolution equations become 

d 
-P= -pV·v, 
dt 

d -p-v= -V·P, 
dt 
d 

p-E= -V·Q-P:Vv, 
dt 

~ 17 = - V • \iiI p) - 1TV • v - 2 [ ;r:Vv] (2) 
dt 

(Bl) 

(B2) 

(B3) 

- 2p[Vv](2) + A(P), (B4) 

d - --- Q = - V· ",(h) - QV·v +p-I[V. p.p 
dt 

+ pEV· P] - ~(3):VV - (Q. V)v + A(h), (B5) 

where 

w<P) = J du m(u - v)[u - v)(u - V)](21. 

W<h) = J du ~ m(u - v)· (u - v)(u - v)(u - vlf. 

W<3) = J du m(u - v)(u - v)(u - vlf. 

A(P) = J du m[(u - v)(u - v)] (2)J (J,/), 

A(h) = J du ~ m(u - v) • (u - v)(u - v)J (J,/), 

J (/ I) is the usual Boltzmann bina!}, collision integral, and .; 
is the traceless symmetric part ofP. 

Let 

Pi) = f du m(u; - v;)(uj - vjlf. 

Si)' = f du m(u; - v;)(uj - vj)(u, - v,lf. 

Q, = f du ~ m(u - V· (u - v)(u, - v,lf. 

Then 
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But 

dplj J dt = du m(u; - v;)(uj - v/)J(f,f) 

- +l5ij f duJ(fl)m(u - v) 0 (u - V) 

2 
-p .. Vov+ ~:Vv 

IJ 3 

3 [avo av.] - L -'P.+-'P; 
r= I aXr ,r aXr r 

2 -p .. V 0 V -15"A(b) + - f:Vv 
IJ 'J 3 

3 [avo av.] L -a' Plr + -a ' P;r 
r= I ~r ~r 

dp =A(b)-2.pVov-~VoQ-~:Vv 
dt 3 3 3' 

A(b) = ! f du m(u - v) 0 (u - v)J(f,f). 

Hence, 

dPij f dt = du m(u; - VI )(uJ - v) )J(f,j) 

3 a - L -Sijr -PijVov 
r= I aXr 

or 

3 a - L - [Sijr +VrPij] 
r= I aXr 

_ ± [av; ~r + av) P;r]. 
r= I aXr aXr 

Consequently we have 
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f du m(u; - v;)(uj - Vl ){! - u 0 Vf -J(f,f)} = O. 

Similarly, by Eq. (6) we can obtain 

f du ~ m(u - v) 0 (u - v)(u - v) 

x{~ -uoVf-J(f,f)} =0. 

Except for the conserved equations (1 H3), in general, by 
the evolution equations we can obtain 

fdug(t,u,r){! -uoVf-J(f,f)} =0, 

whereg is any tensorial polynomial in u - v. Supposefis a 
class e(l) function. Then h = af fat - u 0 Vf - J(f,f) is a 
e(o) function. Thus fdugh = 0 for any g implies h = O. 
Therefore the entire set of the evolution equations of the 
moments off is equivalent to the Boltzmann equation. 
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Fermion excitations of the nonlinear SchrOdinger field in the attractive case 
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The recent inverse scattering method analysis by L. Martinez Alonso [J. Math. Phys. 25, 1935 
( 1984) ] is extended to demonstrate that the Bose quantized (attractive) nonlinear SchrOdinger 
field in 1 + 1 dimensions, admits fermion excitations in its (quantum soliton) spectrum. 

I. QUANTUM SOLITON EXCITATIONS 

The nonlinear SchrOdinger field in 1 + 1 dimensions 

i"'t = - "'xx + 2c",.""" (1) 

is quantized according to Bose statistics 

["'(x), "'·(y)L =D(X-Y), 
(2) 

["'(x), "'( Y) L = 0 = [",·(x), "'.( y) L, 
since the choice of Fermi statistics would cancel the interac­
tion term. Hence, a priori there is no room for fermions in 
this model, except for the specialized c-- 00 regime in the 
repulsive (c > 0) case. Then, indeed, the Bose model exhibits 
a metamorphosis into the free Fermi model, see, e.g., Ref. 1, 
which is accompanied by the collapse of the (Bose) Fock 
space £'B into its proper subspace (of Fermi states) £'F 
C£'B' 

The state space structure in the attractive (c < 0) case is 
much more complicated2 and does not reveal any apparent 
fermion (Fermi states of Bose systems3

) content. The in­
verse scattering method involves here a passage from the 
Fock representation of the canonical commutation relations 
{"', ",., 10)} to a countable family of independent Bose fields 
{cfJn' cfJ~, 10), n> 1} such that 10) is a common (cyclic vacu­
um) vector for both "', "'. and {cfJn' cfJ~, n> 1}, while 

[ cfJn (p), cfJ: ( q)] - = Dnm D( p - q), 

(3) 
[ cfJn (p), cfJm ( q)] _ = 0, 

so that the extended Galilei group generators acquire the 
following form:2 

If+oo nf+oo M=- dx"'·"'=L- dpcfJ~(p)cfJn(P), 
2 - 00 n> ) 2 - 00 

f
+ 00 

H = _ 00 dx( r/I: "'x + C",·2 ~) 

f+OO [2 c2 
] = L dp L_-

12
(n3 -n) cfJ~(p)cfJn(P), 

n» - 00 n 
(4) 

p= f_+oooo dx",·( -i",x) = ~f_+oooo dppcfJ~(p) cfJn(P), 

1 f+ 00 K = -- dxx",·", 
2 -00 

. f+ 00 a = - L '2n dpcfJ~ (p) -a cfJn(P)· 
n» - 00 'P 

0' Permanent address. 

The eigenvectors of H due to [H, N] _ = 0, N 
= S~:: dx ",·(x)",(x) in each n-particle sector have a 

standard (Bethe ansatz) form 

If) = f dx)'.J dXn s(x), ... , xn ) "'·(x)","'·(xn )10). 

Nevertheless, as follows from ( 4 ) instead of the 
{ fi7=) r/!r(x j ) 10)} basis, another one can be used to gener­
ate the underlying state space. Namely 

1P),n);P2n2, .. ·,Pr nr ) = cfJn, (p)"·cfJ~, (Pr) 10), 

n/> 1, VI. 

Since we have 

JVk = f_+oooo dq cfJt( q) cfJk ( q), 

(5) 

(6) 

each operator JVk commutes with the generators M, K, P, 
and H of ( 4). Hence the single interacting Galilean (Bose) 
field ",., '" gives rise to a countable set of independent (free) 
Galilean bosons cfJ: and cfJn with Hn = S dp Wn ( p) cfJ: ( p) 
XcfJn (p) and Wn (p) = p2/n - (c2/12)(n 3 

- n). 

II. QUANTUM SOLITONS AS FERMIONS 

Despite the fact that in the above we deal with bosons 
only, the diagonal (with respect to cfJ:, cfJn) structure ofgen­
erators ( 4) of the extended Galilei group, together with (6), 
suggests the existence of state space vectors which respect 
the Pauli principle. After accounting for the analysis of Refs. 
1,3, and 4 it would indicate that the nonlinear SchrOdinger 
field has Fermi states, and consequently gives rise to fermion 
excitations (paralleling the boson ones) . 

For this purpose, let us consider the following sequence 
{fin' n> 1} of projection operators in the state space of our 
Bose system (compare, e.g., in this connection the general 
construction of Ref. 5): 

(7) 

where the (alternating) function u(a) q); ... ; as qs) is de­
fined as follows: 
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O"(a l ql;"'; a. q.) = IT Pjk' 
I<,j<k<,. 

Pjk = Bajak [e( qj - qk) - e( qk - qj)] 

+ (1- B )( _ 1)1 +S( qj-qk) 
Qjak ' 

provided e( q - p) = 1, q>p, 0 otherwise. 

(8) 

Since cr = 0", 0" = ± 1 depending on permutations of 
pairs (aq) of indices, and if coinciding pairs appear in the 
sequence, then 0" = 0, and the analysis of Ref. 5 proves that 
V n, II" is a projection indeed. Moreover, if to denote $"B 
the Hilbert space of the nonlinear Schrodinger system (3) 

and (4), then on its proper subspace ~ = II" $"B' the 
following fermion field operators (Fock representation of 
the CAR algebra) do automatically existS: 

where I <p<.n and 

[ba(p),bp ( q)]+ =0, l<.a, /3<.n, 

whileba(p)IO) =O,b:(p)IO) = t,6:(p) 10), Va,p. 

(9) 

( 10) 

One should realize that each projection II" selects in 
$" B' its proper subspace ~, on which the respective Bose 
variables (i.e., t,6:, t,6a, l<.a<.n) respect the Pauli principle. 
It means that the operator 

" 9" = L ffa (ffa-1) (11 ) 
a=1 

has the eigenvalue 0 on the whole of~. Because of (6), 
these Pauli-principle-saving subspaces, are the Galilei invar­
iant sectors in $"B' thus giving rise to the Galilean/ermion 
excitations in $" B . 

Moreover, projections { II", n> I} form a decreasing se­
quence 

(12) 

But then, according to the standard knowledge: (1) there 
exists a strong limit II = s-lim II", which is a projection on 
$"B' (2) the property II" II = II holds true for all n, and 
(3) for any vector If)eJYB for which lim II" If) #0, upon 
setting It/!) = lim II" I f) we have It/!) #0 and 
II" I t/!) = It/!), V n. On the respective subspace 
II $" B = $" F of $" B the operator 
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00 

9 = L ffa (ffa - 1) 
a=1 

has the eigenvalue 0, and the generalization of the formula 
(9) to n-oo is possible. Then, however, we arrive at the 
conclusion that the Bose quantized nonlinear Schrooinger 
field with attractive coupling, in addition to bearing the infi­
nite set of Galilean bosons, gives rise as well to the infinite set 
of Galilean fermions 

IIHII = L dp L __ ( n3 -n) I +oo [2 c2 
] 

,,;;.1 - 00 n 12 

in I+ 00 a IIKII= - L- dpb:(p)-b,,(p), (13) 
,,;;.1 2 - 00 ap 

which live in the Hilbert space of our Bose system. 
Since, a priori, each field t,6" (p) can be given as a func­

tion of the primary interacting fields t/!*(x), t/!(x), it hap­
pens so in the case of fermions b : ( p), b" ( p). However we 
cannot present the corresponding formulas. As well, we do 
not know how the primary fields t/!(x), t/!*(x) act on the 
Pauli-principle-saving domain II $"B = $"F' Nevertheless, 
since 

== b:, (q,) ... b:,( q.IO) 

= O"(a l ql;"'; a. q.) t,6:, (ql)'''t,6:, (q.IO), (14) 

the analysis of Ref. 2 apparently can be applied to determine 
the scalar products 

1 
--(XI"'" X" la, ql;"'; a. q. )F' 
.[iif 

n = n l + ... + n., 

Ix
" 

... , x,,) = t/!* (xI)"'t/!* (x" ) 10). 

(15) 

It is, however, quite transparent that unlike our previous 
investigations3

,4 the property [ H, II] _ = 0 does not suffice 
to convert the Bose HamiltonianH = H(t/!*, t/!) of (4) into 
the (Fermi) Hamiltonian HF = II H II, where the primary 
bosons t/!*, t/! are simply replaced by the respective fermions. 
In the present case, the fermion content of the model be­
comes manifest on another level of the theory. Albeit, the 
basic (boson-fermion unduality) mechanism 
HB = P HB P + (1 - P) HB (1 - P), P HB P = HF is still 
the same as previously, see Refs. 1, 3, and 4. A more detailed 
study of the issue in connection with the boson and fermion 
Fock space unification can be found in Refs. 6 and 7. 
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Axially symmetric soliton solutions for self-dual SU (N) gauge fields on Euclidean four­
dimensional flat space are found using an extension of the Belinsky-Zakharov solution generating 
technique. The new solutions depend at most on N - 1 arbitrary solutions of the usual Laplace 
equations in cylindrical coordinates. The inverse scattering method using the chosen seen solution 
reduces to the computation of at most N - 1 quadratures. The n-soliton solution is written in a 
determinantal form. Three particular cases of one-soliton solutions for the SU (5) group are 
exhibited. 

I. INTRODUCTION 

The self-dual Yang-Mills equations are more conve­
niently described in the R gauge, first introduced by Yang I 
for the SU(2) case and subsequently extended by Prasad,2 
Ardalan,3 and Brihaye et al.4 to the SU(N) group. For this 
group the self-duality equations are 

at(gt g-I) + a,(g," g-I) = 0, (1.1) 

where the SUbscripts S and ~ denote partial differentiation, g 
is an N XN Hermitian matrix with unit determinant, and S 
and ~ are complex coordinates related to the four-dimen­
sional Euclidean-space Cartesian coordinates by 

S = (lIv'2)(x + ;y), ~ = (lIv'2)(z - ;x4) • (1.2) 

Here and in the sequel the bar operation denotes complex 
conjugation. 

A number of authors5 have studied the self-dual equa­
tions (1.1) using different methods. In particular, the present 
author6 extended the Belinsky-Zakharov solution generat­
ing technique7.8 (BZSGT) used in general relativity to in­
clude the axially symmetric SU(2) case. In a similar manner 
Papadopoulos9 studied the SU(3) case. 

The purpose of this paper is to generalize the BZSGT in 
order to include the SU(N) case and to present explicit pure 
soliton solutions (1.1). This generalization is studied in Sec. 
II. In Sec. III we study the equation for the "wave function" 
1{l0 associated to the particular "seed solution" go that is a 
solution to (1.1) built with solutions of Laplace equation in 
cylindrical coordinates. For this particular seed solution the 
solution of the inverse scattering problem reduces to quadra­
tures. In Sec. IV we present a determinantal form of the n­
soliton solution associated to the particular go previously 
described. Finally, in order to visualize the solution, we ex­
hibit three different one-soliton solutions of the SU(5) gauge 
theory (Sec. V). 

II. THE SOLUTION GENERATING ALGORITHM 

If we restrict the matrix g to be a function only of 
r = (2tt )1/2 and z = (~+ -; )/21/2, we find that (1.1) reduces 
to 

a,(/g,g-I) + az!/gzg-I) , 

Also, we have 

g = gt , det g = 1 . 

(2.1) 

(2.2) 

The extension of the BZ method presented in Ref. 6 can 
be generalized in a straightforward manner to include the 
SU(N) case. Thus, we shall only present the results. The BZ 
method for solving Eq. (2.1) is based on the fact that the 
condition of integrability for the system of equations 

D,1{l = [(rU + AV)/(A 2 + r)]1{l, 

D z 1{l = [(rV - AU)/(A 2 + r)]1{l, 

where 

D, = a, + [Ur/(A 2 + r)]a,t , 

Dz == az - [U 2/(A 2 + r)]a,t , 

(2.3a) 

(2.3b) 

(2.4a) 

(2.4b) 

U = /g,g-I, V =/gzg-I (2.5) 

is just the same as Eq. (2.1). Here 1{l is an N XN complex 
matrix function of r, z, and the spectral parameter A. Putting 
A = 0 in (2.3), we have that t/l(A = 0) = g. Solutions with pure 
soliton character are associated with solutions ofEqs. (2.3) of 
the form 

(2.6) 

(2.7) 

where 1{l0 is a solution to Eqs. (2.3) for a knowng, say go, the 
Rk are complex matrix functions of rand Z only, and the J..Lk 
are scalar complex functions of r andz only. The pure soliton 
character of the solution is associated with the particular 
form of X given by (2.7), i.e., with the existence of simple 
poles 10 in the matrix X. The number of poles will tell us the 
number of solitons appearing in the solution. Note that let­
ting A = 0 in (2.6), we get 

g = (x1,t =o)go' (2.8) 

A condition that guarantees the fact that g = gt is 

g = X( - rIX,r,z)go[X (A,r,z) P . (2.9) 

From (2.3H2.9) we find 

(g ) ~ 
N~)(r-I)/kN~) 

gab = Oab - _ , 

J..LkJ..L1 
m(k)·m(l) 

r -J..Lkiil 

m(k).m(l)=m(k)(g) m(1) 
- a Oab b' 

N (k)- b (g) 
a =m(k) 0 ba , 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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m~)=m~t)Mlt) , 

Mlk) = 1/Io-IL.t = J-lk , 

J-lk =ak -Z± [(ak _Z)2+,.z]1/2. 

(2.14) 

(2.15) 

(2.16) 

The sum convention on the indices a and b is assumed; a and 
b run from 1 to N. The m~~) and ak are sets of arbitrary 
complex constants. Note that the solution (2.10) is com­
pletely determined by go, 1/10' and these sets of constants. 
Regardless of the fact that the matrix whose elements are 
(2.10) is Hermitian, we have, in general, that det g =1= 1. To 
remedy this problem, we can define a new matrix 

gPh = gl(det g) liN (2.17) 

that satisfies both conditions (2.2). Taking the trace of Eq. 
(2.1) one can prove that the new gPh is also a solution to (2.1) 
whenever g is a solution. The determinant of (2.10) can be 
explicitly computed: 

detg1n) = (- I t ,.ztVI lJ-ltl- 2)det go . (2.18) 

Since det go = 1 we conclude that we can only have an even 
number soliton solution associated to go. We can have an odd 
number of solitons6 by defining a new seed solution g~ that 
satisfies (2.1) and 

(g~ ) t = g~, det g~ = - 1 . (2.2') 

Now the odd number soliton solutions constructed with g~, 

i.e.,~h', satisfies (2.1) and (2.2). 
Finally, we want to point out that in Refs. 6 and 7 a 

different condition for the determinant of go and g~ is used. 
One can do so due to the fact that the equation satisfied by go, 

i.e., (2.1), is also satisfied by go = r'go whenever a is a con­
stant. 

III. THE FUNCTIONS IJo AND 1/10 

We shall take as our seed solution the particular solution 
to (2.1) given by 

l1a exP ;a, 
;a' 
exp (ica ), 

(gO)ab = 

exp ( - iCa _ 1 ), 

0, 

a = b = 1,2, ••• 08, 

a = b = s + 108 + 3, ... ,N - 1, 

a=b-l (3.1) 

= s + 108 + 3, ... ,N - 1, 
a = b + 1 = s + 208 + 4, ... ,N, 

otherwise, 

where the l1a are indicators that can take the values ± 1, Ca 
is a set of real constants, s is a number such that (i) O<.s<.,N 
and (ii) (N - s)/2 is an integer, and the;a are functions that 
satisfy the usual Laplace equation in cylindrical coordinates, 

;a.rr + ;a.rlr + ;a,zz = 0 , 

and 

The determinant associated to (3.1) is 
s 

detgo = (- 1)IN-S)/2 II l1a . 
a=1 

(3.2) 

(3.3) 

(3.4) 

In order to visualize (3.1) we present the SU(5) case. For 
N = 5 we have three possible s:s = 5, 3, and 1. The corre­
sponding matrices go are 

go = diag(111 exp ;1' 112 exp ;2' 113 exp ;3' 114 exp ;4' 115 exp ;5) , (3.5) 

111 exp;1 0 0 0 0 

0 112 exp;2 0 0 0 

go= 0 0 113 exp;3 0 0 (3.6) 

0 0 0 ;4 exp iC4 

0 0 0 exp( - ic4) 0 

0 0 0 0 

;2 exp iC2 0 0 

go= 0 exp (- iC2) 0 0 0 (3.7) 

0 0 0 ;4 exp ( - ic4) 

0 0 0 exp( - ic4) 0 

The function 1/10 obeys the differential equations (2.3) 
with g replaced by go, i.e., 

Dr1/lo = [(rUo + ..iVo)/(..i 2 + ,.z)]1/Io, 

Dz1/lo = [(rVo -..iUo)/(..i 2 + ,.z)]1/Io, 

(3.8a) 

(3.8b) 

where Uo = r(gO)rgo- 1 and Vo = r(go)zgo- 1 . Furthermore 1/10 
must satisfy the initial condition 

1/IolA. = 0 = &l . (3.9) 

A direct verification shows that the matrix whose elements 
are 
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a = b = 1,2, ..• 08, 
a = b = s + 1, s + 3, ... ,N - 1, 

a=b-l =s+ 1, (3.10) 

s+ 3, ... ,N-l, 

exp ( - iCa_I)' a = b + 1 = s + 2, s + 4, ... ,N, 

0, otherwise, 

is the solution to (3.8) and (3.9) associated to the particular 
seed solution (3.1) whenever the functions Fa = Fa (r,z"i) 
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satisfy the system of equations 

DrFa = (rt/Ja,r + Art/Ja,z)/(A 2 + r), 

DzFa = (rt/Ja,z - Art/Ja,r)/(A 2 + r), 

(3.11a) 

(3.11b) 

Thus 

F~)[ t/Ja] = ~ f :k [(Plc,rt/Ja,r - JLIc,zt/Ja,z)dr 

together with the initial condition + (Plc"t/Ja,z + JLIc,zt/Ja,,)dz) • (3.16) 

Pa 1.<=0 = t/Ja . (3.12) 

In the final formulas (2.1 OH2.14) the matrix "'0 appears 
in the form "'ol-t =I'k' Thus, to construct the soliton solutions 
we only need 

The existence of (3.16) is guaranteed by Eq. (3.2) and the fact 
that InJLk is also a solution to (3.2). Note that 

(JLlc,r/JLk )11'.--0() = 2/r, (JLk,z/JLk )1".--0() = 0 . (3.17) 

F lk)_1:' I 
a =L'a -t=I'k ' (3.13) 

i.e., the functions Fa along the poles' trajectories. These tra­
jectories obey the equations8 

JLk,r = 2rJLk/(JL~ + r), JLk,z = - 2JLV(P~ + r). (3.14) 

Thus, (3.16) is compatible with the initial condition (3.12). In 
other words, the overdetermined system of equations (3.8) 
for the solution (3.1) is completely determined along the 
poles' trajectories; its solution reduces to a single quadra­
ture. 1I Note that (3.3) and (3.16) imply that 

From (3.11H3.14) we get (3.18) 

a F lk) a Flk) - .,J" r r a - JLk z a - r'f'a,r , 
ap1k)+ aplk)- .,J" JLk r a r z a - r'f'a,z . 

(3.15a) 

(3.15b) 
i.e., that the number of linearly independent functionsF~k) is 
equal to the number of linearly independent t/Ja. 

IV. THE n-SOLITON SOLUTION 

In the general case the elements of ~h for n simple poles can be cast in the following determinantal form: 

,.ph = -2n/N (lIn I 12(1 -N)/N) det[PI JLkrlk - (gO)ab 'N~W~)] (g ) 
lSab r JLm d t r Oab' 

m=1 e 

In deriving (4.1) we have made use of (2.10), (2.17), and the identities 

det(k,kj +Dij) = [1 + /,% 1 k,kj(D -I)ij] detD, 

det(kjkjDij) = (k 1k2• .. kM )2 detD, 

which are valid for a nonsingular M xM matrix D and an arbitrary vector kl • 

(4.1a) 

(4.1b) 

(4.2) 

(4.3) 

The expressions (4.1) are particularly useful in the study of the general properties of the multisoliton solutions,u To 
compute the different quantities that appear in (4.1) we need first to compute M(k) and m~) as (2.10) and (2.11) indicate, we find 

and 

lIa exp( - F~k», a = b = 1,2, ... ,s, 

exp(ica ), a=b-1 =3+ 1,s+ 3, ... ,N-1, 

(M(k»ab = -F~~" 

exp( - ica ), 

0, 

b ob b , 
Ik) (k) (') mb = mob+l exp -ICb , 

a = b = 3 + 2,s + 4, ... ,N, 

a = b + 1 = 3 + 2,s + 4, ... ,N, 

otherwise, 

b<:.s, 

b = s + 1,s + 3, ... ,N - 1, {1I 
mlk)exp( - F1k)) 

Ik) Ik) Ik) . - mobF b-l + mob - 1 exp(lcb _ d, b =s + 2,s + 4, ... ,N. 

Then, we get 

{

lIbm,:/} exp(t/Jb - F~)), 

N lk)- mlk)+mlk) (,J" -F(k))exp(-ic) b - ob ob + 1 'f'b b b , 
m1k ) ob' 

b<:.s, 

b = s + 1,s + 3, ... ,N - 1, 

b =s + 2,s + 4, ... ,N, 
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(4.4) 

(4.5) 

(4.6) 
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and 

where 1;' indicates a sum on b = s + 1,s + 3, ... ,N - 1. 
An interesting feature of the solution (4.1) is that it is 

equivalent to solving the stationary, axially symmetric Ein­
stein-(N - 2)-Maxwell field equations. 13 

V. SU(5) ONE-SOLITONS 

To illustrate the previous results we shall compute the 
one-soliton solutions associated to the particular SUI S) seeds 
solutions (3.S), (3.6), and (3.7). 

For the diagonal case (3.5) we get 

~i = 17alr/1l118/5a-1 exp(¢a)[IIlI/rI 2a 

-17a(l + IIlI/rI2)lqaI2exp(¢a -2ReF~I))], 

(S.la) 

when a = b, and for a=/=b, 

~i = -17a 17b I r/Il I 1815(1 + IIlI/rI2)qaqb 

Xexp(¢a + ¢b - F~) - F~)), 

where 
5 

a == L Iqb 12 exp(¢b - 2 Re F~)), 
b=1 

qa == m~. 
Note that in this case we must have 

5 

II 17a = - 1. 
a=1 

(S.lb) 

(S.2) 

(S.3) 

(S.4) 

For the case (3.6) we get, whena,b<3, similar formulas 
to (S.l), but now 

a = 2 Re(q4q5 exp iC4) + Iq512(¢4 - 2 Re F~)) 

3 

+ L Iqb 12 exp(¢b - 2 Re F~)) 
b=l 

and 171172173 = - 1. For a,3 and b = 4 we have 

~! = -17a Ir/1l11 8/5(1 + IIlI/rI2)a- 1 

X [qaq4 exp(¢a - F~)) 

(S.S) 

+ qaq5(¢4 - F~))exp(¢a - F~I) - ic4)], (S.6a) 

and for a,3 and b = S, 

~; = -17a Ir/1l11 8/5(1 + IIlI/rI2)a -lqaq5 

Xexp(¢a - F~)). (S.6b) 

Also, 

grz = Ir/lld 8/5a -1[IIlI/rI 2a¢4 - (1 + IIlI/rI 2)lq4 

X exp iC4 + q5(¢4 - F~W], (S.6c) 

gf; = Ir/1l11 8/5a -1{llll/rI2a exp iC4 

- (1 + IIlI/rI2) [q4q5 
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+ Iq512(¢4 - Fil)exp( - ic4 )]}, 

gf~ = -lr/1l11 8/5a -1(1 + IIlI/rI2) Iq512. 

(4.7) 

(S.6d) 

(S.6e) 

The non listed components can be obtained from the proper­
ty g=gt. 

And for the (3.7) seed solution we obtain 

gf~ = -lr/1l11 8/5a -I[ 1Ill12a + (r + 11l11 2)lq112], 

(S.7a) 

gf~ = -lr/1l11 8/5a -1(1 + IIlI/rI2) 

X [qlq2 + qlq3(¢2 - F2)exp( - iC2)], (S.7b) 

gf~ = -lr/1l11 8/5a -1(1 + IIlI/rI 2)qlq3' (S.7c) 

gf! =gf~(2-4,3_S), (S.7d) 

gf; =gf~(3-S), (S.7e) 

gf~b = Ir/1l11 8/5a -l[ Illtirla¢2 - (1 + IIlI/rI 2)lql 

Xexpic2+q3(¢2-F~IW], (S.7f) 

gf~ = Ir/1l11 8/5a -1 { IIlI/rI2a exp iCa - (1 + Illl/rI2) 

X [q2q3 + Iq31 2(¢2 - F~I))exp iC2] j, (S.7g) 

gf! = - Ir/1l11 8/5a -1(1 + IIlI/rI2) 

X [q2 + q3(¢2 - F~l))exp ic2] 

X [q4 + q5(¢4 - F~l))exp( - ic4)], (S.7h) 

gf~ = -lr/1l11 8/5a- I(1 + IIlI/rI2) 

X [ti2Q5 + q3Q5(¢2 - F~l))exp ic2] , 

gf~ = gfW-3), 

gf! = gf~ ( 1_3,2_ 4,3_S), 

gf~ =gf~(1_3,3_S), 

grz =gf~(2_ 4,3_S), 

gf~ =gf~(2_ 4,3_S), 

gf~ =gf~(3_S), 

(S.7i) 

(S.7j) 

(S.7k) 

(S.71) 

(S.7m) 

(S.7n) 

(S.70) 

where gf~(2_4,3_S), etc. means that we let 2_4 and 
3_S in the expression (S.7b), etc. For this case, a is given by 

a = IQl12 + IQ21 2(¢2 - 2 ReF~I)) + IQ412(¢4 - 2 ReF~)) 

(S.8) 
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The equations in compactified Minkowski space that describe SU (N) Yang-Mills fields 
minimally coupled to Dirac spinor fields transforming under the lowest-dimensional 
representation(s) ofSU(N) are reduced by the action of an SO(4) subgroup ofthe conformal 
group of space-time. The reduced systems can be interpreted as Hamiltonian systems with 
symmetry constrained by a condition on the associated moment maps. 

I. INTRODUCTION 

In a previous paper, 1 we considered the reduction of the 
SU(n), SO(n), and SpIn) Yang-Mills equations under the 
SO(4) subgroup of the conformal group of space-time C (3, 1). 
This work was based on an earlier study2 of the geometric 
formulation of invariant gauge fields under smooth group 
actions. These methods have also been applied to derive the 
dimensional reduction procedure,3 to reduce and solve 
gauge4 and matter-coupled gauge systems,5.6 and to deter­
mine invariant spinor fields with gauge freedom. 7 

Our purpose in the following is to extend these investi­
gations to the case of coupled Yang-Mills-Dirac equations 
on conformally compactified Minkowski space with mass­
less Dirac spinor fields transforming under the lowest-di­
mensional representation(s) of the gauge group SU(N). For 
N = 2, reductions under certain compact subgroups of 
C(3,1), including SO(4), have already been done and invar­
iant solutions found.6.8 Here, we consider higher-dimension­
al gauge groups. 

In Sec. II, we give the characterization of SU(N) gauge 
fields and Dirac spinors invariant under the SO(4) action. 
Such actions are generally characterized by a homomor­
phism of the isotropy subgroup ofSO(4) into SU(N), but for a 
large class of homomorphisms, either no nontrivial invariant 
Dirac spinor fields exist, or, as shown in the Appendix, the 
field equations force the invariant spinors to be zero. Thus, 
only particular homomorphisms allow Yang-Mills systems 
coupled with one lowest-dimensional multiplet of spinors, 
and we consider some of these in Sec. III. More precisely, we 
look at the reduction of the SU(2n) Yang-Mills-Dirac equa­
tions on the manifold SiX S 3 with Lorentzian metric (diffeo­
morphic to the compactified Minkowski space) for typical 
SO(4) embeddings. In a convenient gauge, the reduced sys­
tems are seen to be interpretable as Hamiltonian systems 
with U(n) symmetry constrained by the condition that the 
SU(n) part of the moment map (i.e., the associated conserved 
quantities) vanishes. Assuming that either one of the two 
Weyl components equals zero, we further simplify the resid­
ual systems by use of this constraint to obtain a set of one­
dimensional systems interacting via inverse square poten-

a) Address after 1 September 1985: Department of Pure and Applied Math· 
ematics, Stevens Institute of Technology, Castle Point, Hoboken, New 
Jersey 07030. 

tials. Finally, we present a nontrivial invariant solution to 
the SU(4) coupled system, the solution on the compactified 
space being expressible as a solution on Minkowski space by 
an appropriate transformation.6.9 

II. SO(4) INVARIANT FIELDS 

First, we summarize some of the notations given in Refs. 
1-6 that will be used in the following. Let Ai be the confor­
mally compactified Minkowski space, identified with the 
group U(2) and, for simplicity, let us work on the twofold 
covering U(1)XSU(2), identified as SIXS3, with points 
P = (eitP,v), eitPeU(l), and veSU(2). 

We also consider the following natural group actions on 
U( 1) X SU(2): (a) left action of SU(2); L g : (eitP,vHetP ,gv), 
where geSU(2); (b) right action of SU(2); Rg : (eitP,vjt---+(eitP,vg), 
where geSU(2); (c) left action of SU(2) X SU(2): L(g', g); (eitP,v) 
l---+(eitP, g'vg- 1

), where g, g'eSU(2); and (d) left action 
of the diagonal subgroup SU(2)D =(SU(2) X SU(2))D; 
Dg : (eitP,vjt---+(eitP, gvg-l), where geSU(2) 

In terms of the Cartesian coordinates [x I-' I, the injection 
of the Minkowski space (M) in its compactified version Ai is 
defined by 

(2.la) 

(i = 1,2,3), with [(7i I representing the Pauli matrices, where 

(2.lb) 

and 1" = [x~ + W - xl-' xl-'fr /2
. Its (singular) inverse is 

given by 

(eitP,vjt---+[xI-' = ul-'/(u4 + u5
)} • (2.2) 

The subgroup SO(4) C SOo(4,2) - SU(2,2)/Z2 (where the 
subindex 0 specifies the identity component) acts on the 
(U

1
,U

2
,U3,U

4
) subspace, and its twofold covering 

SU(2) X SU(2) is the corresponding subgroup ofSU(2,2). The 
isotropy subgroup SU(2) X SU(2) at the reference point 
Po = (eitP, 12) is the diagonal subgroup SU(2)D and the orbits 
are the S 3 corresponding to fixed "'. 

On U( 1) X SU(2), there exists a natural SO(2) X SO(4) left 
invariant Lorentzian metric, denoted g, which is conformal 
to the Minkowski metric g: 

g=rg=r(eo®eo_ ~ei®e} (2.3) 
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The one-forms () 0 and () j are defined as left invariant forms 
and they constitute a global set of orthonormal coframes on 
8 1 X8 3• Explicitly, they can be expressed as 

()o = d", and () j = !(vtdv)j [veSU(2)]. (2.4) 

We denote the associated dual frames {ell}' Since these are 
orthonormal, the linear generators {rll} of the Clifford alge­
bra are just the ordinary Dirac matrices. As in Ref. 6, we use 
the following representation: 

y> = [ 0 U 2], r = [ 0 
U 2 0 U2Uj 

and (2.5) 

r = iY>rlrr = [10
2 

0] -12 . 

A.lnvarlant SU(N) Yang-Mills fields 

It follows from the result of Ref. 2 that each equivalence 
class of principal bundles P (M -8 1 X [(SU(2) X SU(2))1 
SU(2)D]' SU(N)), admitting a lift of the group action of 
SU(2) X SU(2), is characterized by a conjugacy class of homo­
morphisms (A ) of the isotropy subgroup SU(2)D into the 
gauge group (structural group) SU(N). Since SU(2) is a simple 
and simply connected group, the problem of determination, 
up to conjugacy, ofits homomorphisms into SU(N) is equiva­
lent to the classification of the su(2) subalgebras into su(N). 
Mal'cevlO and Dynkinll have solved this for all semisimple 
Lie subalgebras. In the case of su(2) C su(N), these classes are 
in one-to-one correspondence with the systems of highest 
weights (spins) of (nontrivial) su(2) irreducible representa­
tions constrained so that the sum of their associated dimen­
sions is less than or equal to N. 

Among these classes, we shall mainly be interested in 
homomorphisms, which we shall call "homogeneous." For 
m,N, and N ImEN (natural numbers), these correspond to 
SU(2) subgroups formed from N 1m identical irreducible 
SU(2) representations D j(g) of (highest) weight j = (m - 1)1 
2: 

A: (g, g)ESU(2)Df--+lNlm ®D j(g)ESU(N) , geSU(2). (2.6) 

The explicit calculation of the SO(4) invariant gauge 
fields for these classes of bundles is given in Ref. 1, and we 
recall the results below. The invariant connections m(",) ob­
tained are 

m("') = H ' (",) ®D 1( r j )() j + r(",) ® Im()O , (2.7) 

where H 'eK(N 1m), the space ofN ImXN 1m Hermitian 
matrices, r(",)ESu(N 1m), {rj=uJ2i}, and ,pesl. The 
r ("') component may be thought of as a gauge potential on 
8 1 with respect to the residual gauge group. This may, of 
course, be gauged to zero. However; for the purposes of 
Euler-Lagrange variations, it is preferable to retain this 
gauge freedom. 

The "nonhomogeneous" homomorphisms may in gen­
eral be written as embeddings of the type 
A: (g,g)ESU(2)D 

f--+(IM.,Im" ®D joe g» ED (lMl/m, ®D j,( g») 

ED ••• ED (IM.,Im, ®D j,( g»)ESUC~o M" ), (2.8) 
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where jk=(mk - 1)/2, MkEN, VkE{O,I, ... ,n J. A calcula­
tion shows that the resulting invariant fields correspond to 
an uncoupled direct sum of each homogeneous invariant 
field except for every pair of weights (j,j + 1), which in addi­
tion produces "off-diagonal" contributions. For example, if 
the embedding A is 
A: (g, g)ESU(2)D 

'+1 ) f--+( 1 M 12}+ 3 ® D ' ( g) 

ED (I M '/2)+ 1 ®D j( g))E SU(M + M/), (2.9) 

the most general SO(4) invariant gauge field has the simple 
form 

[
HM ®D j+ I(rj ) 

m("') = _Kt®Ot(r
j

) 

K ® O( r j ) ]. 0 

H D
j() ()I+ C(",)() , 

M' ® rj 
(2,10) 

whereHMeK(M 12j + 3), HM,eK(M'12j + 1), Kis a M I 
2j + 3 XM '12j + 1 complex matrix, the {O(rj) J stands for 
(2j + 3)X(2j + 1) matrices, which are expressed in terms of 
Clebsch-Gordan coefficients for the coupling of j and j + 1 
to 1, and the element c("') belongs to the centralizer of the 
image A. (SU(2)D) in the gauge Lie algebra su(M + M '). 

B. Invariant SU(N) Dirac splnor fields 

Let us define \f1EC4 X CN as a massless Dirac spinor field 
transforming under the fundamental representation of 
SU(N), denoted D. With respect to our choice of Dirac ma­
trices and orthonormal coframes, the SO ( 4) invariance con­
dition reads (for details, see Refs. 6 and 7) 

[
D 1112,0)( g) 0] 

'I'(LI g', g) p) = 0 D 1112,0).( g) 

®D (p-I(( g', g),p))'I'(p) , (2.11) 

V(g',g)ESU(2)XSU(2) and pEU(I)XSU(2), where DI I12
,O) 

and D (0,112) (equivalent to the complex conjugate of D (112,0)) 

are basic representations of SL(2,q, The "transformation 
function" p-I(( g', g),p), which characterizes the group ac­
tion on the principal fiber bundle (see Ref. 2), may be chosen 
independent of the point p since the homomorphism A ex­
tends smoothly to an homomorphism (A) of SU(2) X SU(2) 
into SU(N). In fact, we may define 

p-I(( g', g),p) = A(( g', g)) = A (( g, g)) , (2.12) 

Consequently, the Dirac spinor field must satisfy the 
following linear isotropy condition at the reference point 
Po = (e jrP,12) for any homogeneous homomorphism: 

'I' [g 0] . T (Po) = 0 g* 'I'(Po)(INlm ®D'(g)) , (2,13) 

VgeSU(2), 'l'E~XN. However, Schur's lemma forbids the ex­
istence of nontrivial invariant Dirac spinor fields unless the 
highest weight j equals ~, In that case, the corresponding 
invariant spinor takes the form 

'1'("') = [5 T(",) ® U2] , 
l1 T

(",) ® 12 
where 5, l1EC" x 1 are functions of,pes I, 

(2,14) 

We remark that spinors transforming under any repre­
sentation of the gauge group will have nontrivial SO ( 4) in­
variant fields if the restriction to A. (SU (2) D ) of the represen-
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tation contains at least one irreducible j = ! component. For 
example, the reduction by SO(4) of simple super Yang­
Mills systems for any homogeneous homomorphism is equi­
valent to the sourceless Yang-Mills case since these embed­
dings do not provide any nontrivial invariant spinor field in 
the adjoint representation ofSU(N). 

III. SU(2n) YANG-MILLS-DIRAC EQUATIONS 

In the orthonormal basis {(} p} defined above, the pseu­
do-Riemannian connection of g (r~) is derived from the 
Maurer-Cartan structure equations: 

d(}o=O and d(}i+Eljk(}JI\(}k=O. (3.1) 

This implies that the only nonzero components of r tv are 

is the reduced Lagrangian density written in terms of a resid­
ual gauge element (r) of zero curvature, a set of "scalar com­
ponents" (H), and spinor remnants (S and 1J). The "covariant 
derivatives" with respect to the residual component r are 
defined by 

fPH=H + [r,H] , 

fPs=t +rs, 

fP 1J=iJ + r1J , 

(3. lOa) 

(3. lOb) 

(3.lOc) 

where the dot indicates the derivative of the variable with 
respect to 1/1. The variational equations consist of 

fP(fPH) - 2H(I-H2) = - 2kh', 

[H,fPH] = (4ikI3) ho, 

(3.11a) 

(3.llb) 

(3.2) and 

for 

(3.3) 

Thus, we can write the canonical spin connection6 as 

u= up (} p = HrP,rV]r J'Pv(}P = HrJ,rk]Eljk(}i. (3.4) 

It follows that the action ( d) on U(I)XSU(2) with or­
thonormal basis {(} P} is given for the Yang-Mills-Dirac 
system by 

d = r {- _1_ tr( F 1\ * F) + i. [tr('VrP(ep + up)qJ 
);w- 2k 2 

+ 'Vr PqJ 15( Ap ) T) - Hermitian conjugate] v} . 
(3.5) 

Here V = (} ° 1\ (} I 1\ (} 2 1\ (} 3 is the volume element, 
F = Dw = ! F;v Ta (} P 1\ (} v is the curvature associated to 

the gauge field w = A ; Ta (} P, and *F represents its dual rel­
ative to the metric g. The { Ta } forms a basis of the gauge Lie 
algebra such that tr( Ta Tb) = k8 ab' and k may be any nega­
tive real constant. 

The Yang-Mills-Dirac equations determined from d 
are (i) Yang-Mills, 

(3.6) 

which possess a one-form spinor current with values in the 
gauge Lie algebra 

J = i tr('Vrp qJT:)(} PTa; (3.7) 

and (ii) Dirac, 

rP[(ep +up)qJ+qJ15(Ap)T] =0. (3.8) 

A. Reduction 

Inserting the explicit forms (2.7) and (2.14) for the re­
spective SO(4) invariant gauge and spinor fields in the action 
(3.5), we arrive at the reduced action 

(3.9a) 

where 

.!fR =tr{H(fPH)2-(1-H 2f] 

- (2ik 13)[fPss t + fP1J1Jt - S (fPS)t -1J(fP1J)tJ 

- 2k [(1J1Jt - sst)H]} , (3.9b) 
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fP s + (3i/2)Hs = 0 , 

fP1J - (3i/2)H1J = 0, 

(3.llc) 

(3.l1d) 

where resu(n), H'==H + lneK(n), ho is identified as the 
traceless part of h =1J1Jt + sst, and h '=1J1Jt - sst. We 
can check that the reduced Lagrangian density (.!f R) and 
the corresponding equations are left invariant by the gauge 
transformations UeSU(n): 

r _utru + uti!, 
H_UtHU, 

s-uts, 

(3.12a) 

(3.12b) 

(3.12c) 

(3.12d) 

We shall now choose a gauge in which the residual com­
ponent r vanishes, and thus the Eqs. (3.11) simplify to 

and 

iI - 2H (1 - H 2) = 2kh ' , 

[H,H] = (4ik 13) ho , 

t + (3i/2)Hs = 0 , 

iJ - (3i/2)H1J = 0 . 

(3.13a) 

(3.13b) 

(3.13c) 

(3.13d) 

Note that if this gauge had been fixed before the Euler­
Lagrange variation (in d R ), Eq. (3.13b) would not be ob­
tained. Substitution of the invariant fields in (3.6) and (3.8) in 
the gauge r = 0 also produces (3. 13aH3. 13d), as the SO(4) 
reduction derived for a multiplet of spinors transforming 
under the contragredient fundamental representation 15 * . 

From the equations (3. 13a), (3. 13c), and (3. 13d), it fol­
lows that the anti-Hermitian matrix, 

I = [HPJ - (4ik 13) h , (3.14) 

is conserved. This constant is related to the invariance of the 
system under the U(n) transformations: H_UHUt, S-US, 
and 1J-U1J(UeU(n)). The second Yang-Mills-Dirac equa­
tion, Eq. (3. 13b), may be recognized as the vanishing of the 
traceless (su(n)) part. Moreover, taking the trace shows that 
the quantity Is 12 + 11J12 must be a real constant. Note that I 
is the sum of two terms coming, respectively, from the 
Yang-Mills and Dirac spinor fields. 
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B. Hamiltonian system 

In the following, we formulate the above as a Hamilton­
ian system with symmetry constrained by a condition on the 
associated moment map. 

Consider K(n) and C" as spaces with the respective 
Hermitian inner products (H,H') = tr(HH'), 
H,H 's!1t"(n), and (S,1T) = l:~= IS i1T'*,S,1TEC". Correspond­
ingly, we define on KXKxC"xC" the symplectic struc­
ture 

O(H, P,s,"') = tr(dH AdP) 

- 4ik i (ds i Ads l* + d",i Ad",i*) , 
3 i=1 

(3.15 ) 

where (H, P,s,,,,)s!1t"XKXC"XC". 
On this space, the Hamiltonian 

KR = pr(p 2 + (I_H2)2) + 2k(H""",) - (Hs,s») 
(3.16) 

gives rise to the following (Hamilton) equations: 

and 

H=P, 
p= 2H(I-H2) - 2k(",,,,t - sst), 

t = - (3i/2)Hs, t *T = (3i/2)s *TH , 

ij = (3i/2)H"" ij*T = - (3i/2)",*TH , 

(3.17a) 

(3.17b) 

(3.17c) 

(3.17d) 

which are equivalent to the three reduced equations (3.13a), 
(3.13c), and (3.13d) of the Yang-Mills-Dirac system. The 
U (n) action defined by 

U: (H, P,s,s *,,,,,,,,*) 

~(UHUt,UPUt,Us,U*s*,U""U*",*) , 

is symplectic and preserves the Hamiltonian. Its moment 
map12 is 

I(H, P,s,s *,,,,,,,,*) = [H, P] - (4ik /3)(",,,,t + sst)eu*(n) 

(the dual U(n) Lie algebra). (3.18) 

Adding the condition that the su(n) part (I - (l/n)tr I) 
equals zero, reproduces the entire system (3.13a) - (3.13d) 
interpreted as a constrained Hamiltonian system. We also 
have the real constant Is 12 + 1",1 2, which remains free. 

C. Additional reduction 

If we suppose that one of the two Weyl components 
vanishes, that is, either", = 0 or S = 0, we can further reduce 
the Yang-Mills-Dirac equations with the help of the relli­
tion (3. 13b). Let us assume that", = 0, the trace of the mo­
ment map I then implies that 

(3.19) 

where C is an arbitrary real constant. However, since H is 
Hermitian, it can be diagonalized with a ,p-dependent trans­
formation in U(n): 

_ t _ [A 1(,p) _ 0] 
HD(,p) - U(,p)HU (,p) - 0 ""A,,(,p) , (3.20) 

with UeU(n). We also define 
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P=Uput, 

S'=US, s'*=U*s*· 

The constraint I (3.18) now reads 

(Ai -AJ}Pij =(4ik/3)(S;sj*-Ct5ij)' 

(3.21a) 

(3.21b) 

(3.22) 

where i,j takes the values 1, ... ,n. For C #0, it follows that 
AI #AJ for i#j. Substituting Hamilton's equation (3.17a) in 
the relation (3.22), we get an expression for the element 
u(,p)=uut of the Lie algebra u(n) ofU(n): (i) if i#j, 

(3.23) 

and (ii) if i = j, the terms uij are left undetermined since they 
correspond to the elements of the centralizer of H D in u(n), 
and hence can be ignored. 

Upon substitution of(3.23) in the two remaining Yang­
Mills-Dirac equations, we derive from the diagonal terms of 
(3.13a) that 

)il + L 32k
2
c

2 
3 -U.I(1-A;) -2kC=0, 

J",I 9(Aj - Ai) 
(3.24) 

for every i = 1, ... ,n; while the off-diagonal contributions are 
automatically satisfied. Finally, Eq. (3.24c) reduces to 

i-,_4ikC~ 1 1:,+3iA,.I:~=0 (3.25) 
~ I 3 ~ (A

J 
- AI)2 ~ I 2 I~ I , 

for every i = 1, ... ,n. Setting S = 0 instead of", leads to a 
similar set of equations. 

We remark that the system (3.13) can be regarded as a 
set of n one-dimensional systems with quartic potentials and 
Calogero type interaction. 13,14 Once solved for the eigenval­
ues {Ai J, s is determined by quadrature and the solution 
U (,p) from the definition of u. In the case of vanishing Fermi 
fields, we have S = 0, ", = 0, and C = 0 in Eq. (3.24). It is 
then found that U is a constant and (3.24) decouples giving 
the general solution in terms of elliptic functions as in Ref. 1. 

We have not been able to integrate (3.24) in general, but 
in the next section, a particular solution to (3.13) is present­
ed. 

D. SU(4) solution 

As noted above, the moment map splits into the sum of 
two parts, corresponding to the gauge field and spinor field 
contributions. We shall derive a specific solution for the case 
where not just the sum, but each term separately vanishes. 
That is, we assume 

[HP] = 0, (3.26a) 

and 

(3.26b) 

However, Eq. (3.26b) can only be satisfied by nontrivial S 
and",ifn = 1 or2. Thenn = 1 casecorrespondstotheSU(2) 
Yang-Mills-Dirac system, which has been solved in Refs. 6 
and 8. For n = 2, (3.26b) implies that 

S t", = 0 , (3.27a) 

and 

(3.27b) 

Let us suppose for simplicity a normalization 
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Is 12 = 1'1112 = 1, and initial conditions that respect the con­
straint (3.27a): 

So = [~] and '110 = L~.] , (3.28) 

with real numbers;,;'. We can thus expresss ("') and '11("') as 

s("') = U("'lSo and '11("') = V("')'11o. (3.29) 

where U. VeU(2) depend on the parameter VIES I. Conse­
quently. the relation (3.26b) becomes 

UU3Ut - Vu3vt = 0, (3.30) 

and the first Yang-Mills-Dirac equation takes the form 

iI - 2H(1- H2) = 2kUU3Ut . (3.31) 

However, (3.26a) requires that H ("') = h 0(",)1 2 

+ h 3(",)UU3Ut. where h 0 and h 3 are real functions of ",. 
From the Dirac equation. it then follows that (3.31) is solved 
by 

[
A ("') 0] 

H ("') = 0 w(",)' (3.32) 

where A and w satisfy, respectively, the equations 

(3.33a) 

and 

iiJ - 2w + 2w3 + 2k = 0 . (3.33b) 

The solutions to (3.33) can be expressed in terms of elliptic 
functions and correspondingly, the Dirac spinor solutions 
are given by 

s ("') = [e~ eXp((3/~'lf~oA d"')] , (3.34a) 

and 

(3.34b) 

For a different choice of initial condition gso and g1Jo, with 
g a constant element of U(2). the solution can be written as 
gs("'), g1J("'), and gH(",lgt, 

IV. SUMMARY 

In this work. we have examined the reduction by SO(4) 
symmetry ofSU(N) Yang-Mills fields minimaJly coupled to 
massless Dirac spinor fields transforming under the lowest­
dimensional representation(s) of SU(N). We showed that 
only a restricted class of homomorphisms characterizing the 
SO(4) invariant SU(N) gauge fields allows nonvanishing in­
variant Dirac spinor fields. These homomorphisms are 
specified by sets of consecutive spins (highest weights) in­
creasing by one unit and starting with value i. We also expli­
citly reduced the SU(2n) Yang-Mills-Dirac systems corre­
sponding to the "homogeneous" homomorphisms with 

624 J. Math. Phys .• Vol. 27. No.2. February 1986 

spin-i. An interpretation of these systems in terms of Hamil­
tonian systems with symmetry constrained by a condition on 
the associated moment maps was formulated. This condition 
requires the vanishing of the traceless part of the conserved 
quantity, which is composed of the sum of contributions 
coming from the gauge and spinor fields. In the case where 
each contribution of the traceless part equals zero. the spinor 
fields is trivial for every n > 2 and the solution to the corre­
sponding sourceless Yang-Mills systems is presented in Ref. 
1. For the gauge groups SU(2) (n = 1) and SU(4) (n = 2). the 
coupled systems can be completely solved in terms of elliptic 
functions, with nontrivial spinor solutions. Finally. setting 
one of the two residual spinor components to zero. we were 
able to further reduce the SU(2n) Yang-Mills-Dirac systems 
to derive a set of one-dimensional systems interacting via a 
Calogero-type potential. 

ACKNOWLEDGMENTS 

One of the authors (M.L.) gratefully acknowledges 
scholarships from the National Sciences and Engineering 
Research Council of Canada and the Universite de Mon­
treat. This work is supported in part through funds provided 
by the United States Department of Energy (DOE) under 
Contract No. DE-AC02-76ER03069. 

APPENDIX: NONHOMOGENEOUS HOMOMORPHISMS 

We discuss here the reduction of the Yang-Mills-Dirac 
equations by nonhomogeneous homomorphisms of SU (2). 
Specifically. we find from the field equations that the homo­
morphisms that may lead to nonzero SO (4) invariant spinor 
solutions are consisting of a sequence (2.7) with 
io = i.il = ~ ..... i" = i + n (n> 1). To see this. we consider 
the () 0 component (or constraint component) of the Yang­
Mills equations with spinor sources. 

Let us write any homomorphism A as a sum of homo­
geneous parts associated with disjoint sets of consecutive 
highest weights: 

{i.~ ... ·,! + n} ED {j~.i~ + l, ... ,i~ + nl} 

ED ••• ED {jci.ici + l, ... jci +ni} (nl, .... n1.leNu{0}). 

I ". 

A: (g,g)eSU(2)D'- L L ED(lmf®D
j8

+
i
(g») 

a=O 1=0 

(Al) 

with jg = i, Mf = [(2.fo + 1) + 2i]mf, mf. naeNu{O}. 
In a convenient gauge, we know that the () 0 contribution 

to the SO(4) invariant gauge field can be made to vanish. 
Corresponding to the homomorphism (4.1). the invariant 
field w is expressed as the direct sum of overlapping sums 
(associated to each disjoint set) of contributions (2.10). For 
instance. if I = 0 (i.e .• one set of consecutive weights with 
jg = i, MI = M~. m l = m~, and n = nO), then 
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where H; EK(m; ), G; are complex matrices, and the matrices 
flu + 1'))(1"/) are expressed in terms ofClebsch-Gordan coeffi­
cients coupling j + 1 and j to 1. We add (direct sum) to the 
right-hand side of (A2) a similar matrix expression for each 
supplementary disjoint sequence . 

As we recall from Sec. II, only the j = ~ homogeneous 
part of the embedding allows a nontrivial contribution to the 
SOC 4) invariant spinor field transforming under the funda­
mental representation of the gauge group. Explicitly, we get, 

fi ,TI .r4X l:/IM: or TE'U , 

(A3) 

where AEc-XM',M' = .I7= 1 M/ + .I~= 1 .I7~o M~, and 
S,lIECTnoxl. 

We now insert the invariant fields into Eq. (3.6) and 
evaluate the () 0 component of each member. The () 0 part of 
the spinor current ( J) is found to be 

J leo = ia(lll1 2 + Is 12)( - (lIMo)IMo E9 (lIM')IM,) ()o , 

(A4) 

where a = ( - kMoM'/(Mo + M'II is a constant. 
We also compute the part *D *F leo of the Yang-Mills­

Dirac equation (3.6). However, each disjoint sequence is as­
sociated with a different element [i.e., matrix of type (A2)] of 
the direct sum in the expression for the invariant Cl) and the 
field equations do not mix the components of different ele­
ments. Thus, let us consider the element corresponding to 
the sequence of highest weights beginning with ~: 
{!,~, ... ,jn = ! + n}. Taking the trace on each side of the () 0 

contribution of (3.6), we derive that 

(1) 

(2<i<n) 

[3/(2jn + 1)] ~n-I = i(aIM')(11I1 2 + IsI2)mn , 

(3/(2jn+I-; + 1)]( - ~n+I-; + ~n-;) 

(n + 1) 
= i(aIM')(11I1 2 + Is 12)mn+ 1-; , 

3 ~ 0 = ia(lll1 2 + Is 12) , 

where by definition 

~ ;=tr(G;G / - G;G /) , 

for i = 1, ... ,n + 1. 
From these (n + 1) relations, it follows that 

M. n 

M" ;~I (11112 + Is 12) = (11112 + Is 12) . 

(AS) 

(A6) 

(A7) 

But this is only satisfied if either (1) mf = 0 for every a> 1 and 
every iE{O, ... ,na

}, or (2) 11112 + Is 12 = 0, which implies that 
s=lI =0. 

We thus conclude from the reduced field equations (()o 

part) that only those "nonhomogeneous" homomorphisms 
associated with the sequence of spins ofSU(2): {!,~, ... ,! + n}, 
may lead to a coupling with a nontrivial SO(4) invariant low­
est-dimensional multiplet of spinors. All the other nonho­
mogeneous homomorphisms require that S = 11 = 0 and 
hence reduce the problem to Yang-Mills systems without 
sources. 
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The feasibility of doing multiloop calculations in the noncovariant light-cone gauge n,..A; = 0, 
n2 = 0, is investigated by evaluating various Feynman integrals arising in a two-loop Yang-Mills 
self-energy. Application of a consistent prescription for (q • n) -1 is essential. 

I. INTRODUCTION 

Old-fashioned perturbation theory, with its emphasis on 
Feynman diagrams, continues to play an essential role in 
quantum field theory. The success of the perturbative ap­
proach depends to a large measure on the accurate evalua­
tion of multiloop Feynman integrals. 1 There exist, of course, 
many varieties of these integrals, but here we shall only be 
concerned with the distinction between covariant-gauge and 
noncovariant-gauge Feynman integrals. As the name im­
plies, covariant-gauge Feynman integrals occur in theories 
that are quantized in a covariant gauge, such as the Landau 
or Feynman gauge, while noncovariant-gauge integrals arise 
whenever a noncovariant gauge is employed, such as the 
axial and planar gauges,2 or the light-cone gauge.3-5 It is no 
secret that noncovariant-gauge integrals are much trickier to 
handle than their covariant counterparts, which may ex­
plain, in tum, the absence of detailed calculations beyond the 
one-loop level, both in quantum chromodynamics (QeD) 
and supersymmetric theories. (For multiloop covariant­
gauge Feynman integrals, we refer to Ref. 1). 

The purpose of this article is (1) to demonstrate the feasi­
bility of performing accurate two-loop calculations in the 
noncovariant light-cone gauge and (2) to highlight some of 
the technical difficulties symptomatic of this peculiar gauge. 
Specifically we shall evaluate the two-loop Yang-Mills (YM) 
self-energy in Fig. 1, having overlapping divergences. 

II. REVIEW OF LIGHT-CONE GAUGE 

The light-cone gauge is specified by n,..A; = 0, 
p, = 0,1,2,3, where n,.. is a constant vector with n2 = ° and 
A ; is the gauge field with a the group index. The propagator 
in this gauge reads 

G ab ( ) = _i~ab (~ _ n,..qv +nvq,..) E>O', (1) ,..v q (2 .) ,..v , 
q +IE n· q 

we use a ( + , - , - , - ) metric and employ dimensional 
regularization in a space-time of 2w dimensions. Our pre­
scription for the (q . n) - 1 term in the resulting F eynman inte­
grals is4 

1 . q. n* 
--_lim , E>O, 
q . n ~ q . n q . n* + iE 

(2) 
n,.. = (no,n), n! = (no, - n), 

leading to well-defined, local momentum integrals that re­
spect naive power counting. 

III. TWO-LOOP YM SELF-ENERGY 

The amplitude for the two-loop self-energy shown in 
Fig. 1 reads 

nal ( ) =..!. I I dq dk vabcd G q ( ) ,..v P 31 (211")4<»,wrp pa q 

where 

XG~(p - k -q)G~(k)V=-v' 

dq==d 24>q, dk ==d lo>k, 

V~~p = -ir[rberde(~,..tr~Ap -~I"P~).tr) 

+ face fbde(~,..;. ~trp - ~1"P~).tr) 

(3) 

(4) 

denotes the four-gluon vertex of zero-loop order. Substitut­
ing (1) and (4) into (3), shifting the variables of integration, 
and simplifying the resulting expressions, we get 

nal( ) = - 3ig
4
N

2
(2w - 3) 8'/[A( )~ _ (B ( )n 

,..v p 2(211")4<» P,..v,.. P v 

+Bv(p)n,..)-n,..nvC(p)], (5) 

where N = 3 for SU(3), and 

A (p) = I I q2k 2(;q~~ _ q)2 ' (6a) 

II dqdkq,.. 
B,..(p) = 2k 2( k )2 ' q p- -q q·n 

(6b) 

C( )=II dqdkk.q 
P ik 2(p-k-q)2q . n k.n 

(6c) 

The remaining portion of this paper is devoted to a systema­
tic study of integrals A (p), B,..(p), and C(p). 

q 

k 

FIG. 1. Two-loop Yang-Mills self-energy. 
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A. The Integral A( p) To evaluate the q-integral we proceed as follows. 

Evaluation of the integral (6a) is unproblematic and 
leads tol 

(1) Perform a Wick rotation to Euclidean space and use 
prescription (2), replacing (q. n)-I by4 

A (p) = i( - 1T)"T(2 - w)B(w - 1,w - 1) 

xI dq 
q2[ (q _ p)2]2 -", 

= - ( -1T)2O>n3 - 2w)B(w - 1,w - 1) 

XB(w - 1,2w _ 2)(p2)2O>-3, 

A( p) = - ( - 1T)2O>r(E)R, e==4 - 2w, 

R = (3 - 2w)-IB(w - 1,w - 1) 

(7) 

1 - (q • n + inolJ4) 
-- -+ --'-=--:--'---== 
q . n (q • nf + n~q~ . 

(9) 

(2) Exponentiate all propagators via 

1 1 roo 
A N = qN) Jo da aN - I exp( - aA), A > O. (lO) 

(3) Write d 2O>q = d 2", - Iq dq4; this separation is neces­
sary since (9) is not Lorentz invariant; finally, integrate over 
q4- and q-space by employing the basic formulas4 

B. The Integral B,.(p) I d2O>-lqexp [ - aq2+2,8q·p-y(q·n)2] 

This is a typical noncovariant-gauge integral. Since the 
k-integral is covariant, it can easily be integrated to give 

B,. (p) = i( - 1T)"'r(2 - w)B(w - 1,w - 1) 

_ (1T/a)",-1I2a l/2 [,82p2 y,82(p. n)2] 
- exp -- - -'-'-.....:..::'--....:...... 

(a + yn2)1/2 a a(a + yn2) , 
(1Ib) 

with additional formulas listed in Appendix B. 

(8) These three steps enable us to write the q-integral (in 
Minkowski space) as6 

2i( - 1T)"'r(U + 2 - w)p . n p . n*n* i l 

- II. dxdyxy"'-IH",-U-2 
r(u) (n . n*)2 0 

2i( -1T)"'nu+2-w)(p.n*)2n" ild I 2 
_ r xdyxy"'- H"'-u- , 

nu) (n . n*)2 0 
(12) 

withH = (1 - y) p2 + 2xy p. np· n*/n . n* and u a complex number. Substitution of (12) with u = 2 -w into (8) yields 
the following answer for the divergent part of the double integral: 

(-1T)2O>r(E)(2 2p.np.n* (p.n*)2) 
B (p) = p n* - 2 P . n* P + n* + nil. , w-+2, 

II. 2n . n* II. II. n . n* II. n . n* 
( 13) 

which is seen to possess only a simple pole. 

c. The overlapping Integral C( p) 

The integral (6c) is particularly challenging, due to the propagator [( p - k - q) 2] -I and the light-cone gauge-related 
factors (q • n) -I and (k • n) - I. There are several ways of attacking this difficult integral, but here we shall only concentrate 
on two distinct methods. The first method, presented below, is probably the most direct approach; a second method is 
summarized, for comparison, in Appendix A. Consider 

(6c) 

I dk k,. I dq q,. - (14) 
- k 2k.n q2(p_k_q)2q . n ' 

C( ) = i( -1T)"'n2-w) J dkk·n* i1 
d d ",-2H",-2 2i( -1T)"T(3-w) J dk(P-k) .n*k.(p-k) 

p 2 X YY + 2 
n . n* k k· non· n* k k· n 
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with 

H=(1- y)(p - k)2 + 2xy(p - k). n (p - k)· n·/n· n·. 

Thus 

(16) 

where 

II=i(-1T)"'r(2-W)f ~k(p-k).n. i ldY y"'-3{K",-I_[(1-y)k 2]"'-I}, (17a) 
2(w-I) (p-k) (p-k) ·nk·nk·n· 0 

12 = i( -1T)"'r(3 - w) f d\k.( p - k) i l 

dy y"'-2{K",-2 - [(1 - y)k 2]",-2}, (17b) 
w - 2 (p - k) k· n (p - k) . n 0 

1
3
=i(-1T)"'r(2-W)f dk(P2- k ).n. ildYy"'-2KOJ-2-/1, (17c) 

n . n· (p - k) (p - k) . n 0 

14= i( -1T)"T(2-w) f dkk·n· i l 
dyy"'- 2K"'-2+ i( -1T)"'r(1-W) f dk i l 

dyy"'- 3K"'-1 
n·n· (p-k)2k.n 0 2 (p-k)2(k.n)2 0 

_i(-1T) OJr(I-W)r(W-2)r(W)f dk(k 2)OJ-I (17d) 
2r(lw - 2) (p - k)2(k. n)2 ' 

where 
K(k,y)=(1- y)k 2 + 2y k· n k· n·/n· n·. 

Adding the integrals (17a)-( 17d), we obtain 

C( p) = i( _ 1T)"'{ r(2 - w) i ldY y"'- 2f dk( p - k) . n·K",-2 + r(3 - w) i ldY y"'- 2f dk k.( p - k) 
n . n· 0 (p - k)2( P - k) . n (w - 2) 0 (p - k)2k . n (p - k) . n 

X{K",-2 _ [(1- y)k2]OJ-2} + r(2 - w) i l 
dy y"'-2 f dk k· n·K",-2 + r(1- w) 

n . n· 0 (p - k)2k . n 2 

Xild -3f dkK",-1 _r(1-w)r(w-2)r(w)f dk(k 2)OJ-I } 
o y y'" (p - k)2(k. n)2 2r(lw - 2) (p - k)2(k. n)2 . 

(18) 

The remaining k-integrals can all be evaluated by following 
the procedure outlined between Eqs. (9)-( 11) and using the 
identity7 

1 = _1_ [ 1 + _1_]. (19) 
k'n (p-k).n p·n (p-k)·n k·n 

The most important of these are listed in Appendix C; other, 
related integrals can be found in Ref. S. We shall refrain from 
showing here the various substitutions and reductions. Suf­
fice it to say that C( p) reduces eventually to the form 

C( p) = - ( - 1T)2OJ(a2/~ + al/E + ao), (20) 

where the coefficients a; = al (p,n,n·), i = 0,1,2, are finite. 
A somewhat less direct method of evaluating C( p) is dis­
cussed in Appendix A. This completes our analysis of the 
overlapping integral C ( p). 

IV. DISCUSSION 

We have demonstrated the feasibility of performing 
bigher-Ioop calculations in the noncovariant light-cone 
gauge nl'A: = 0, n2 = 0, by evaluating in detail various 
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Feynman integrals arising in a two-loop Yang-Mills self­
energy n:!. We find that use of a consistent prescription for 
(q . n) -I, such as formula (2), enables us to compute all 
momentum integrals unambiguously. The computation of 
n:! is aggravated by the appearance ofthe vector n! and by 
the presence, in one of the double integrals, of an overlapping 
divergence. The above results may not sound particularly 
impressive, but it is worth remembering that none of the 
multiloop techniques, developed during the past dozen years 
for covariant-gauge integrals, are applicable in the case of 
the light-cone gauge, the trickiest of all ghost-free gauges. 
This work is a very modest attempt at analyzing and syste­
matizing the computation of multiloop Feynman integrals in 
noncovariantgauges. 
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APPENDIX A: ALTERNATIVE METHOD FOR C(p) 

In view of the complexity ofC(P) in Eq. (6c), we discuss 
here a second method of evaluation. We begin by making a 
change of variables in (6c), so that X (P) becomes 

C (P) = f f dq dk q . (p - k - q) 
q2k 2(p _ k - q)2q . n (p - k - q). n 

- f f dq dk q . (p - k - q) 
- q2k 2(p _ k _ q)2(P - k). n 

X [_I + __ 1_] 
q • n (p - k - q) . n ' 

or 

C(P)=2CI (p) - 2C2(P) , 

where 

C(P)=ff dqdkk.q 
I q2(k _ qf(k _ p)2 q . n k . n ' 

C (P) = f f dq dk 2 2 2 . (k - q) (k - p) q . n k . n 

(AI) 

(A2) 

(A3) 

(A4) 

Since the "four-propagator" integral C2(P) is easier to com­
pute than CI(P), we shall discuss it first. By following the 
procedure for Bp ' Eq. (S), C2(P) can be derived in closed form. 
Integration over qp -space first, yields 

i( -1T)"T(2 - UJ) ( 2 )"'-1 C2(P) = --
UJ - In· n* 

f 
dk(k.n*)",-I 

X (k _ p)2(k. n)3-", 

= -(-1Tf"'[r(E)/E]T, (A5) 

T= 2[r(UJ - IW (2p . n*)2w-2(p. n)2",-4. (A6) 
r(2UJ-I) n·n* 

Thus C2 (P) possesses a double pole. 
It is worth noting, in this connection, that reversing the 

order of integration, i.e., integrating (A4) over kp first, 
seems to lead only to a simple pole for C2 (P). The line of 

reasoning in this case would go something like this. Since the 
momentum integral 

f dk[(q-k)2(k-p)2k·n]-1 F(q,p,n), 

q¥O,p¥O, isfinite [see Eq. (14b) of Ref. 4], the total inte­
gral 

f dq 
-F(q,p,n) 
q·n 

(A7) 

should at most contain a simple pole. This argument is obvi­
ously too simplistic, as can be seen by studying the purely 
covariant integral 

(AS) 

Integrating (AS) over qp first [i.e., proceeding as between 
Eqs. (A4) and (A6)], we get 

J = i( - 1T)"'r(2 - UJ)B (UJ - I,UJ - I) f dk 
k2[(k _p)2P-'" 

= - ( - 1T)2"'r(2 - UJ)(r(4 - 2UJ) 

X [r(3 - UJ)] -IB (UJ - I,UJ - I) 

(A9) 

The double pole arising from r(2 - UJ)r(4 - 2UJ) is well do­
cumented in the literature. I 

By contrast, suppose we start the evaluation of (AS) by 
doing the k-integration first: 

J'-f dq f dk 
- (q_p)2 k2(k_p)2(k_q)2· 

Since f dk[k 2(k - p)2(k - q)2] -I is both ultraviolet and 
infrared finite, the double integral J ' would appear to contain 
only a simple pole, thus contradicting expression (A9). 

There remains the integral C1(P) in (A3), which may 
be analyzed by using either one of the following two proce­
dures. 

Procedure A: Using Eq. (12) in the text with u = I, and 
simplifying we get 

C(p)=i(-1T)"'r(I-UJ) (Id ",-3(1_ )"'-2(1-3 )f dk (k
2
+tk.nk.n*)"'-1 

1 2 Jo Y y Y ~ (P _ k )2(k . n)2 

+ 2i( -1T)"'r(2 - UJ) (I dy y",-2(1 _ y)",-3 f dk k· n*(k 2 + t k· n k· n*)",-2 
n . n* Jo (P - k )2k . n 

+ i( - 1T)"'r(2 - UJ)B (UJ - I,UJ - 2) f dk (k 2)'" - 1 
2 (P - k )2(k. n)2 ' 

with t = 2y/((1 - y)n . n*). The necessary integrals are giv­
en in Appendix C, specifically Eqs. (C I ), (C2), and (C4). 

Procedure B: Let k. q = Hk 2 + q2 - (k - q)2] and 
take f dq(q2q. n) -1=:0, in which case (A3) reduces to 

C(P) = ( -1T)2"'[r(E)/E] T + C3(P) , 

where 

C (P) = f f dk dq k 2 • 
3 q2(q _ k )2(k _ p)2k . n q . n 

(AW) 

(A12) 

(A13) 

Reduction of the double integral (A13) may be summar­
ized as follows. Express C3(P) as 

Hence C (P) in (A2) becomes 
C

3
(P) = f dk k 2F(k) , (A14) 

(k _p)2k. n 
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where 

F(k )= f dq[q2(q - k )2q • n]-I 

= i( - 1T)"T(3 - m)k . n* 

X f dad{3{3OJ-2(1-{3)"'-3A- 2 

X (k 2 + t k . n k . n*)'" - 3 , (A1S) 

t=(1 - a){3 /(A(1 - {3»), A = a + (1 - a)n~, 

n~ =!n. n*, 

so that 

C3(P) = i( -1T)"'B(JI - t J2) , (A16) 

with 

B=r(3-w) fdad{3{3",-2(1_{3)",-3A-2, (AI7) 

JI(P) = f dk k· n·[(k - p)2k. n(k 2 

+tk.nk.n*)2-",]-I, (A1S) 

J2(P) = f dk (k . n·)2 [(k - p)2(k 2 + t k . n k . n*)3 - OJ] -I • 

(AI9) 

The integrals (A1S) and (A19) are given, respectively, by 
Eqs. (C2) and (C3) in Appendix C. 

The final expression for C(p) reads 

C(P) = ( - 1T)201 [r(c)/c]T + C3(P) , (A20) 

with Tand C3(P) given by Eqs. (A6) and (AI6), respectively. 
The result (A20) is to be compared with the form of C (P) 
given in the main text, Eqs. (IS) and (20). 

APPENDIX B: SOME GAUSSIAN INTEGRALS 

1. The Integrals S~ "" dq.,(q"r e - M, M~ ~ - 2bq4/J4 

The subsequent integrals can be derived from the stan­
dardexpression (11a) in the text by partial di1ferentiation 
with respect to the parameter a or b: 

(B1) 

(B2) 

2. The Integrals S d 201 - 1 q f (q)e - v , V==yq2 - 2(3 q . P 
+ a(n. q)2 

The integrals (BS) to (B9) below can be derived from 
the basic formula (11 b) by differentiating the latter partial­
ly, either with respect to a, {3, or y. We define 

E=exp [f3p2 _ a{32( p' 0)2], A =y + a02 . (B4) 
y yA 
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d201-I e-v ='11 Y _ anp'o E f _-1/2 -"''/3 ( ) 
q q A 1/2 P A ' 

f d ~·· I V 17""'-112 p' o{3yl-OIE 
U»- qq.oe- = __ ~...."....,.;~ __ 

A 3/2 ' 

(BS) 

(B6) 

f d 201 - 1qq(q'0)e-v 

_ 17""'-1I2y l-OJ [ 2/32 p' 0 ( ao p' 0)] 
- 3/2 0 + P - E, 

2A Y A 

f d 201 - 1q q' 0 q2e- V 

17""'-1I2y -OJ{3p,0{ 1 3a02 

= A 3/2 W + 2" - 2.A"" 
+ ~ [p2 _ 2a(~. 0)2 + a202~ • of]} E. 

APPENDIX C: SPECIAL INTEGRALS IN THE LIGHT· 
CONE GAUGE 

(BS) 

(B9) 

The following momentum integrals, obtained by using 
the procedure discussed in the text between Eqs. (9) and 
( 11 ), are required in the computation of the coefficient 
C(p), Eq. (IS). We find, in Minkowski space, 

f dk(k2+tk.nk.n*)",-1 
(p _ k)2(k . n)2 

= 4i( -1T) OJr(4 - 2aJ) (p. n*)2 
r(1 - w)(n. n*)2 

xf dudv(1-u)v- OJ (1-V)201-2(1 +uvtn~)-3 

{ 

2 2(1-V)(1-u+uvtn~)p.np.n*}201-4 
X vp + , 

(1 + uvtn~)n . n* 

f dk k . n*(k 2 + t k • n k . n*)'" - 2 

(P - k)2k. n 

= 2i( - 1T)"'r(4 - 2aJ)(P . n·)2 
r(2 - w)n . n· 

X f du dv uv l 
- "'(I - v)201 - 2(1 + uvtn~)-3 

(C1) 

{ 

2 2(1 - v)(l - u + uvtn~)p. np. n.}201-4 
X vp + , 

(1 + uvtn~)n . n* 

f dk (k. n·)2(k 2 + t k· n k . n*)'" - 3 

(P-kf 
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and 

_ i( - 1T)"T(4 - 2tv)(P . n·)2 

r(3 - w) 

x f dv v",-2(1 - V)2",-2(1 + vtn~)-3 

X {p2 + (1- V)tp. np' n· }2ro-4, 
I + vtn~ 

f dk(k2)",-1 

(p _ k)2(k. n)2 

_ 4i( - 1T)"'r(4 - 2tv) (p. n·)2 

- r(1 - w)(n . n·)2 

X f du dv(1 - u)v-"'(1- V)2ro-2 

x {Vp2 + 2(1- u)(1 - v)p' np· n.}2ro-4, 
n ·n· 

(C3) 

(C4) 

where t is an arbitrary parameter. Note that the last integral 
may be obtained from (CI) by setting t = O. 
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Determination of coexistence wave functions from two-neutron-transfer 
data 

M. Carchidi and H. T. Fortune 
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(Received 26 March 1985; accepted for publication 20 September 1985) 

An analysis of wave functions in a generalized two-state model for a series of even-even nuclei is 
presented here. With minimal assumptions, necessary and sufficient conditions for consistency in 
obtaining these from data on /p,t ) and (t,p) cross-section ratios are exhibited. 

I. INTRODUCTION 

If I{Ij represents the jth physical state of a system and 
I rPI' rP2' rP3, .. ·rPn , ... ) a set of basis states, then we may write 

00 

I{Ij = L cjirP; 
i=1 

with the usual orthonormality conditions, i.e., (rP; IrPj) = t>ij 
or 

00 

L Cj;C~ = t>jk' 
;=1 

In general, the set of eigenstates is infinite in number. 
An example of such a system would be the 0+ levels in an 
even-even nucleus. Each physical level can be represented as 
a linear combination of basis levels. In general, all 0+ levels 
can interact with each other requiring an infinite number of 
basis levels needed to describe the physics. If, however, a set 
n of these states, I rPI,rP2,rP3, ... ,rPn ) are related strongly to each 
other and only weakly with any state outside of the set, then 
this particular set of physical states may be described "al­
most" completely by a finite number of (suitably chosen) 
basis states I rPI,rP2,rP3, ... ,rPn ). This circumstance is referred 
to as an n-state model configuration of the physical states. 
An example of such a situation is again found in the 0+ levels 
of an even-even nucleus, 01+ , O2+ , 03+ , ... ,On+ . 

For the purpose of this paper, we want to focus on a two­
state model. We assume in an even-even nucleus that the 
lowest 0+ basis state, labeledg, mixes with only one other 0+ 
level, labeled e, which usually is, but need not be, the first 
excited 0+ aboveg. If we let I{IA (g.s.) and I{IA (0+') repre­
sent the physical ground state and excited 0+ state in nucleus 
A and rP: and rP: be the basis levels, then because of the ortho­
normality in rP: and rP: for each A, we can write for I{IA (g.s.) 
and I{IA (0+') the most general two-state model wave func­
tion as 

I{IA (g.s.) = aArP: + PArP:, 

I{IA (0+') = PArP: - aArP:, 

with a~ + P~ = 1. 

( 1) 

In a series of even-even nuclei, it may be that the proper­
ties of the basis states rP: and rP: change slowly and smoothly 
withA whereas the physical states exhibit more complicated 
behavior. If this hypothesis is to be tested, then the test must 
involve a process that can connect a 0+ in A to a 0+ level in 
A' in a simple, direct way so as to involve only I{IA (g.s.), 
I{IA (0+'), I{IA' (g.s.), and I{IA' (0+'). The (p,t) and (t,p) re-

actions are ideal for this purpose. We therefore wish to inves­
tigate the degree to which (t,p) and (p,t) cross-section data 
on a series of nearby nuclei can be described in such a model, 
with as few assumptions as possible. 

Throughout the analysis, we assume that all kinematic 
effects, etc., have been removed, e.g., by dividing experimen­
tal cross sections by distorted-wave Born-approximation 
(DWBA) cross sections, calculated for the appropriate kine­
matics and standard form factor. Then, for the /p,t ) and (t,p) 
cross sections, we write 

a(A + 2X /p,t) AX (g.s.)) = (I{IA (g.s.)I/P,t )II{IA + 2(g.S.)2, 

a(A + 2X/p,t) AX (0+')) = (I{IA (O+')I/P,t )II{IA + 2(g.S.)2, 

a(AX(t,p) A + 2X(g.S.)) = (I{IA + 2(g.s.)I(t,p)II{IA (g.S.)2, 

a(AX (t,p) A + 2X(0+')) = (I{IA + 2(0+') 1 (t,p) II{IA (g.S.)2. 

Putting in Eq. (1), we get for each cross section 

a(A + 2X/p,t) AX (g.s.)) =f~(aAaA +2 + aAPA +2SA 

+aA+2PA rA +PAPA+2 R A)2, 

a(A + 2X/p,t) AX(O+')) = f~ (f3AaA + 2 + PAPA + 2SA 

-aA+2a ArA -aAPA+2 R Af, 

a(AX(t,p)A+2X(g.s.))=f~(aAaA+2 +aAPA+2sA (2) 

+aA+2PA rA +PAPA+2 RAf, 

a(AX(t,p)A +2X(0+')) =f~(aAPA+2 +PAPA+2rA 

- aA + 2aASA - PA aA + 2RA )2, 

wheref~, rA, SA' and RA are measures of the basis states 2n­
transfer overlaps and are given schematically in Fig. 1. To 
eliminatef~ from the analysis, we consider the cross-section 
ratios 

a(A + 2X/p,t) AX(O+')) 

a(A + 2X /p,t) AX (g.s.)) 

[ 
XA+2SA -xAxA+2rA -xARA ]2 

= XAXA+2 +xA+2rA +XASA +RA ' 

a(A X (t,p) A + 2X (0+ ')) 

a(AX(t,p) A +2X(g.S.)) 

[
XA + rA - XAXA+2SA -XA +2RA]2 

= XAXA +2 +xA +2rA +XASA +RA ' 

where 

(3) 

(4) 
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FIG. 1. Basis state definitions of rA , SA' and RA • 

xA = aAI/3A' 

and hence 

a~ = x~ I( 1 + x~ ) = 1 - /3 ~ . 

(5) 

(6) 

We shall denote these ratios as P ~ and T~ , respectively, and 
call these the calculated values of the (p,t) and (t,p) cross­
section ratios. The experimental ratios and their uncertain­
ties are denoted by P~o' T~o' aP~o' and aT~o' The goal of 
this and any empirical model is to minimize the expression 

X2=(~) r ,{[P~ _;~o]2 + [T~ -2T~o]2} 
n A =A aP Ao aT Ao 

with as few parameters as necessary. Here, n is the number of 
data points fitted minus the number of degrees of freedom. 

IfweallowrA,sMandRA to vary arbitrarily withA then 
we have more parameters than data and everything can be 
fitted exactly. The problem is overdetermined and informa­
tion deduced from such a model tells us almost no physics. 
We therefore make the first assumption about the basis 
states ¢: and ¢:. 

Assumption 1: We assume the basis state 2n-transfer 
overlap ratios are independent of A, i.e.,'rA = r,sA = s, and 
RA = R are all constants with A. This assumption may be 
too restrictive in some cases, e.g., in nuclei in which a single 
orbital is dominant. However, we would normally treat 
those cases in a totally different manner. 

With this assumption P~ and T~ become 

(2) first and in the process we shall also develop a procedure 
for answering question (I). 

Todeducea~ and/3 ~ from T~ andP~, we need merely 
invert Eq. (7) for each value of A. Such a process is simplified 
by considering TA and P A instead of their squares. This 
would introduce sign ambiguities but these will tum out to 
be not much of a problem and will be considered later. The 
equations to solve are then 

xA +r-xAxA+2S-XA+2R 
TA=----------------~--

XAXA+2 +xA+2r+xAs+R 

Solving these equations for x A + 2 yields 

(r - TAR) + (1 - TAs)xA 
X A + 2 = , 

(TA r + R ) + (s + TA)x A 

and 

(8) 

(9) 

(10) 

(11 ) 

Equating these yields the following quadratic equation for 
xA : 

[PA(1 + S2) + TA(R - rs) + (r + Rs)]x~ 
+ [(R 2 + r) + 2PA(r+sR) - (1 +~)]XA 

+ [PA(R 2 + r) + TA(R - rs) - (r+sR)] = O. (12) 

Ifwe then take Eqs. (8) and (9) for TA _ 2 and PA _ 2 and solve 
each for x A _ 2' then we have 

(r - TA _ 2 R ) - (R + rTA _ 2)X A 
X A _ 2 = (13) 

(sTA _ 2 - 1) + (s + TA _ 2 )x A 

and 

Equating these gives another quadratic equation for x A' 

(7a) [TA_ 2(1 + r) + PA_ 2(R - rs) + (s + rR )]x~ 
+ [(R2+~)+2TA_2(s+rR)-(1 +r)]xA 

(7b) + [TA _ 2 (R 2 + S2) + PA _ 2 (R - rs) - (s + rR )] = O. 

At this stage, we have two major concerns: (1) What are 
the calculated values of T~ and P ~ that give the best fit to 
the data T~o and P~o with their uncertainties aT~o and 
aP~.? (2) What wave-function probabilities a~ and /3~ 
would produce this fit via Eq. (7)? We shall answer question , 

(15) 

Solving Eqs. (12) and (15) simultaneously for x A and x~ and 
setting (x A f equal to x~ leads, after much algebra, to an 
expression involving only r, s, and R, along with the TA 's and 
PA's given as follows: 

[(R - 1)2 + (s + rf]{ (R - rs)(R + 1)2 [,8IA (R - rs) + /32A ((R + If + (s - r)2)] 
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+ (s - r)(R + 1) [,83A(R - rsf + ,84A(R - rs)(R 2 + r + S2 + 1) + ,8sA(R + 1)2((R - 1)2 + (s + r)2)] 

+ (s - r)2[,86A (R - rsf + ,87A (R - rs)(R 2 + r + S2 + 1) + /3 SA (R + 1)2((R - 1)2 + (s + r)2)] 

+ (s - r)3(R + 1)f39A [(R - 1)2 + (s + rf] + (s - r)4,8lOA [(R - 1)2 + (s + r)2] J = 0, 

where 

,8IA = (TA _2 TA - PA_ 2PA)2 + (TA 
+ TA_ 2 -PA -PA- 2f, 
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(17a) 

/32A =(TA_ 2 -PA)(PA- 2 -TA), 

,83A =4(TA_ 2 -PA)(TA- 2 PA + TAPA- 2 ), 

,84A =2(TA_ 2 -PA)(TA_ 2TA +PAPA- 2 ), 
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(16) 

(17b) 

(17c) 

(17d) 
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/35A = - (TA_ 2 -PA), (17e) 

/3M = (TA _ 2 TA + PAPA _ 2)2 + (PA _ 2 + TA)2 

+(TA_ 2 +PA)2+4T!_2P!, (17f) 

/37A = (TA_ 2 +PA)(PA- 2 + TA) 

+2TA_2PA(TA_2TA +PA- 2PA), (17g) 

/38A. = (TA _ 2 - PA)2 - (1 + TA _ 2PA)' (17h) 

/39A = (TA _ 2 - PA )(1 + 2TA _ 2PA)' (17i) 

/3UlA. = TA_ 2PA(1 + TA- 2PA)· (17j) 

An immediate solution to Eq. (16) is for 
(R - 1)2 + (s + r)2 = 0, i.e., R = 1 and s = - r. When these 
are put back into Eqs. (7) we get P! = T!, the purely sym­
metric situation. As such a situation is uncommon, we shall 
assume that (R - 1)2 + (s + r)2:/=0 and proceed. Equation 
(16) divided by this quantity holds for all values of A for 
which data exist. We shall refer to this equation as the con­
straint equation and each such equation represents a surface 
in the r, s, R space and these equations represent the intersec­
tion of a set of such surfaces. To simplify matters consider­
ably, we now make our second and last assumption about the 
basis states. 

Assumption 2: We assume symmetry in the basis state 
2n-transfer overlap ratios, i.e., r = s. (The general R, r, s 
problem with r:/=s is left for later development.) Of course, 
the special cases = r can always be transformed, by a change 
of basis, into the case r = s = O. However, we keep the gen­
eral form with r:/= 0 because of its similarity to the r:/=s situa­
tion and because the "best" choice of basis states will prob­
ably have r:/=O. 

With assumption 2, the expressions for PA and TA be­
come 

XA+ 2 +(I-xAxA+ 2)r-xAR (18) 
PA = , 

XAXA +2 + (XA +2 + xA)r + R 

XA + (1 - XAXA + 2)r - XA + 2R (19) 
TA = , 

XAXA+ 2 +(XA+ 2 +xA)r+R 

and the constraint equation [Eq. (16)] becomes 

(R - r)(R + I )[/31A (R - r) + /32A. (R + 1)2] = O. (20) 

Equations (12) and (IS) become 

[PA(I +r)+ TA(R -r)+r(R + I)]x! 

+ [R + 2PAr-I](R + I)xA 

+ [P A (R 2 + r) + TA (R - r) - r(R + I)] = 0 

and 

[TA_ 2(1 + r) + PA- 2(R - r) + r(R + l)]x! 

+ [R + 2TA_2r-I](R + I)xA 

(21) 

+ [TA _ 2 (R 2 + r) + PA _ 2 (R - r) - r(R + I)] = O. 
(22) 

If R + I = 0, these equations give 
(PA - TA ) (1 + r) (1 + x! ) = 0, which is again the purely 
symmetric situation P! = T!. If R - r = 0, these equa-
tions give (I + r) (PA - TA _ 2) (XA + r)2 = O. 
Since x A + r = 0 (with R = r) would yield 
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o(AX(t,p) A+2X(g.S.») =0, we are led 
to PA = TA _ 2 , again a very symmetric situation. Both of 
these special cases are actually covered by the single equa­
tion /3 1A (R - r) + /32A. (R + 1)2 = O. Therefore, we can 
reduce Eq. (20) to the constraint equation, 

r = R + KA(R + 1)2, (23) 
where 

KA = (TA_ 2 - PA )(PA- 2 - TA)/ 

[( TA _ 2 TA - PAPA _2)2 

+ (TA_ 2 + TA -PA -PA_ 2)2]. (24) 

Requiring rand R to be constants automatically re­
quires KA to be independent of A. We can thus test assump­
tions I and 2 for the basis states 2n-transfer overlap ratios. 
When written as 

KA =(r-R)/(R + W, (25) 

the equation relates the basis states 2n-transfer overlap ratios 
rand R to the physical state 2n-transfer overlap ratios, TA , 

PA, TA_2, and PA- 2 and can serve as a starting point for 
constructing the basis states;: and r/J1 because it relates their 
overlaps to experimentally determined quantities in K A • 

Since it is wave-function overlaps that are directly measura­
ble, we can continue with the analysis even though we do not 
have explicit expressions for tP: and tP1. Equations (23) and 
(24) represent necessary conditions for the existence of solu­
tions x A to Eqs. (18) and ( 19) for all A. The A independence 
of K A' however, is not a sufficient condition for solutions x A 

to exist. To determine a sufficient condition on the TA and 
PA 's, it will become useful to make the following definitions: 

ZA = (TA -PA- 2)/(TA- 2 -PA), (26) 

WA = KA (1 + ZA ), (27) 

VA =KA(TA +PAZA)· (28) 

Then, 

KA = -zA/[(TA +PAzAf+(1 +ZA)2]. (29) 

These parameters are all related by the identities 

(30) 

KAzA + v! + w! = O. (31) 

The mathematical and physical importance of each param­
eter will be discussed later. 

To continue with the derivation of x A' we take Eqs. (21) 
and (22) along with Eq. (23) to deduce the simple results 

X
A 

= R+wA(R+l) = -r-vA(R+I) , (32) 
- r + VA (R + 1) I + W A (R + I) 

leading to 

- (1 +2wA) +2rvA + (R + 1)(1 +WA +2KA) a! = -.....:..........:....-.::..:..~-~~---:....-......:.:--.:..=.-
(R + 1)(1 + 4KA ) 

(33) 

For a given R value we can calculate r via Eq. (23) and then 
a! (andhence/3! = 1 - a!) viaEq. (33). These equations 
represent all necessary conditions for consistency in Eqs. 
( 18) and (19). They are all based on the premise that K A is 
independent of A . We still must obtain a sufficient condition 
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for Eq. (32) or (33) to represent solutions to the TA and PA 
equations. To find this condition we go back to Eqs. (18) 
and (19) and rewrite them as 

X A +r 

rXA +R 

and 

= 
XA- 2 +PA- 2 

l-xA - 2 PA - 2 

XA +r XA+2 + TA 
----.:::....--= 
rXA +R l-xA+2TA 

Equating these gives 

XA_ 4 = (8A_ 2xA + 1)/(8A_ 2 -XA) 

or 

XA+4 = (8A+2xA -I)/(8A+2 +xA), 

where 

8A =(1 + TAPA- 2)/(TA -PA- 2)· 

(34) 

(35) 

(36) 

(37) 

(38) 

Equations (36)-(38) are really special cases of a more 
general result. Using Eqs. (30), (34) and the fact that 
K A = K A' for any A and A " we arrive at the more general 
result 

XA-XA' WA-WA, VA-VA' 
EAA , = = = ,(39) 

1 +XAXA' VA + VA' 1 + wA + wA' 

an expression that can be evaluated from the experimental 
I 

quantities without knowing the value of R. If we incorporate 
this result with the previous expressions for X A , then after 
much algebra, we arrive at the condition 

(WA + TAvA) +ZA(WA+2 + TAvA+2 + 1)=0. (40) 

Solving this equation for TA + 2 and using the fact that Eq. 
(29) can be written as 

1 + 2KA(1 + PATA) = -KA [~(1 + P~) + (1 + T~)] 

Eq. (40) reduces to 

LA = 1, 
where 

LA =zA+2(1 + T~)/zA(1 +P~). 

(41) 

(42) 

HavingKA independent of A does not imply LA = l,but 
LA = 1 does yield KA independent of A. For proof, we write 

K _ -ZA 
A - (TA + PAZA)2 + (1 + ZA f 

-ZA 

(1 + T~) +~(1 +P~) + 2zA(1 +PATA) . 

Putting in Eqs. (41) and (42), which give 

ZA =zA+2(1 +T~)/(1 +P~), 

we get 

K _ -ZA+2 

A - !( 1 + T~) + ~ (1 + P ~) + 2z A (1 + P A TA ) 1 [( 1 + P ~ )/( 1 + T ~ ) ] 

-ZA+2 -ZA+2 

{(1+P~)+~+2(1+T~)+2zA+2(1+PATA)} (PA +TAzA+2)2+(1+ZA+2)2' 

But by definition of ZA h + 2 = (TA + 2 - PA )/( TA 
-PA + 2 ), so 

PA + TAzA+2 = TA+2 +PA+2ZA+2 , 

hence 

Therefore we can replace the necessary condition K A 

independent of A by the condition LA = 1. The advantage 
here is that LA = 1 is also a sufficient condition for solutions 
to Eqs. (18) and (19) to exist. As proof, it is best to consider 
the summed (t,p) and (p,t ) strengths 

SA (t,p) = U(AX(t,p) A +2X(g.S.») + o(AX(t,p)A + 2X(0+'») , 

(43) 

SA (p,t) = u(A + 2X (p,t) AX (g.s.)) + u(A + 2X (p,t) AX (0+')) , 

which becomes 

SA (t,p) =f~ [r + 1 + (R 2 - 1).8~ + 2aA/3Ar(R + 1)] . 
(44) 

UsingthefactthataA/3A = xA/( 1 +x~) andEqs. (32) and 
(33), we get 
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vA(R + 1) - r(1 + 2wA) - 2VA 
a/3--.:.:..~-~~--:..:...:.-.-~ 

A A - (R + 1)( 1 + 4K A ) 
(45) 

Finally, if we put this and Eq. (23) into Eq. (44) we get the 
surprisingly simple result 

SA (t,p) = - ZAKAf~ (R + 1)2. (46) 

By definition of T~ , we can also write 

SA (t,p) = [u(AX(t,p)A+2X(g.s.))](1 + T~) 
= [o(AX(t,p) A+2X(0+'))](1 + T A- 2) 

leading to both 

o(AX(t,p)A +2X(g.S.)) = -ZAKAf~(R + 1)2/(1 + T~) 
(47) 

and 

u(AX(t,p) A + 2X(0+')) = - zAKA T~~(R + 1)2/(1 + T~) , 
(48) 

showing that the solutions deduced from Eqs. (23), (32), and 
(33) will give 

u(AX(t,p) A + 2X(O+'))/u(AX(t,p) A +2X(g.S.)) = T~ , 

for any value of R, that is, the solutions will work. Ifthe same 
calculation is done for the (p,t ) summed strengths, we get 

M. Carchidi and H. T. Fortune 636 



                                                                                                                                    

so 

(50) 

and 

(51) 

yielding 

a( A + 2X(p,t) AX (O+'))/a(A + 2X(p,t) AX(g.S.)) = P~ , 

again independent of R. The only condition which needs to 
be satisfied is the result a(AX(t,p)A+2X(g.S.») 
= a(A + 2X(p,t)A X(g.s.»), which is true as long as LA = 1. 
Remember we are using kinematically reduced cross sec­
tions, always. So LA = 1 is both necessary and sufficient to 
guarantee that the wave functions of Eq. (33) with Eq. (23) 
do reproduce the TA and PA ratios used to deduce them for 
any value of R ! We have therefore an infinite number of 
solutions to Eqs. (18) and (19) all described in terms ofthe 
one parameter R. 

The beauty of the preceding discussion is that it not only 
answers question (2) from the introduction, but also question 
(1). To find the best fit to the data T~o and P~o we need only 
look at TAo and PAo and minimize 

X2=~ I {[TA- TAo]2+[PA- PAo]2} (52) 
n A=A' A TAo MAo 

subject to the restriction that LA = 1 for A = A' + 2, 
A ' + 4, ... ,A " - 2. 

This calculation will produce the best fit calculated val­
ues TA and PA which are then used to find a~ and {3 !. In 
addition, the selection of Ymin as a function of sign combina­
tion will aid in choosing the best sign for the quantities TA 
and P A in a chi-squared sense. If, after looking at all sign 
choices, we find there is no satisfactory X!.in (i.e., X!.m > 1), 
then we conclude that a two-state model will not fit the exist­
ing data under assumptions 1 and 2. 

II. THE MINIMIZATION TECHNIQUE 

The problem of minimizing X2 subject to the LA = 1 
constraint is itself a very interesting mathematical problem 
with many properties. In discussing these properties, we 
consider the string of isotopes from (A - 2) to (A + 4) as 
shown in Fig. 2. Changing the signs of all the T's and P's 
(both calculated and experimental), gives K A ---+K A' 

0; 0; 0; 0; 
---P;:~A-2 PAV'TA PA+¥::;-­
~~~~~~~ 

A-2 A A+2 A+4 

FIG. 2. Schematic representation of the ratiosP .. _ 2' p .. , p .. +21 T .. _ 21 T .. , 
and T .. + 2 • 
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KA + 2---+KA + 2,LA---+LA, and hence X!.in---+Ymin' So a change 
in sign of all experimental and calculated numbers leaves 
K A , K A + 2' LA' and X!.in invariant. The transformation 

TA- 2---+- TA_ 2, PA- 2---+PA- 2, 

TA---+TA, PA---+ - PA, 

TA + 2---+ - TA + 2' PA + 2---+PA + 2 
(or its negative) in both the experimental and calculated 
points leaves LA and X!.m invariant but changes K A in such a 
way that 1 + 4KA---+( 1 + 4KA ) - t, as can be seen by writing 

1 +4KA =(TA_ 2TA -PA_ 2PA)2 

+ (TA_ 2 - TA + PA- 2 -PA)2 

X [(TA_ 2TA -PA- 2PAf 

+ (TA_ 2 + TA -PA- 2 - PAf] -1. (53) 

Because of this result, we can arbitrarily choose that sign 
combination which sets 1 + 4KA 0;;; 1 (or just KA 0;;;0) and not 
affect the goodness of fit in a chi-squared sense. In addition, 
Eq. (53) requires 1 + 4KA ;>0 so we need only consider 

(54) 

This result is especially appealing from a physical point of 
view as K A 0;;;0 gives r o;;;R [from Eq. (23) ]. Since r measures 
the "nonorthogonality" of the basis state 2n-transfer overlap 
ratio between tit: and;1 + 2, we would expect it to be small or 
at least smaller than R which measures the 2n-transfer over­
lap between (J1 and ;1 + 2. 

The Ymin for various sign combinations should therefore 
occur in groups of four with each group given by 

{ITA -21,ITA I,ITA +21,IPA -21,IPA 1,IPA +21}, 
{ - ITA - 21, - I TA I, - ITA + 21, 

-IPA-21,-IPAI,-IPA+21}, 

{-ITA- 21,ITA I, -ITA+21,IPA- 21, -IPA 1,IPA +21}' 
{ITA- 21, -ITA 1,ITA +21, -IPA- 21,IPA I, -IPA +21}, 
as choices of signs. 

The calculations involved in minimizing Eq. (52) sub­
ject to the LA = 1 conditions in general are difficult because 
of the nonlinear nature of L A as a function of the PA 's and TA 
'so But, since any useful physical result should have r min <; 1 
and hence calculated values not far from experimental val­
ues ofthe (p,t) and (t,p) ratios, we can expand LA as a six­
dimensional Taylor series about the experimental numbers 
TAo and PAo ' This expansion linearizes the minimization 
problem and reduces it to a standard problem in multivaria­
ble calculus whose solution is unique. 

We have therefore accomplished our goal in that (1) we 
have a technique for determining the best fit calculated 
points in a chi-squared sense; (2) we have expressions for the 
solutions a! and f3! that are infinite in number and can be 
described in terms of the one parameter R; and (3) we have a 
necessary and sufficient condition for testing our two as­
sumptions and the two-state model. We shall apply this to 
the germanium region in Sec. VII, but first we want to study 
some of the properties of the preceding model. 
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III. THE CONSTRAINT EQUATION: t4 = R + KA (R + 1)2 

By completing the square we obtain 

(R + 1 + lI(2KAW r ------= 1. (55) 
[(1 + 4KA )/(4K ~)] [(1 + 4KA )/(4KA)] 

As 1 + 4K A :;;.0, the curve in the R vs r plane is a conic section 
whose shape depends on the sign of K A • In particular, for 
KA < 0 we have an ellipse, for KA = 0, a parabola, and for 
KA >0, a hyperbola. Because we can alwayschooseKA nega­
tive, the result will always be an ellipse with the mathemat­
ical restriction on R given by 

IR + 1 + lI(2KA) 10;;;;[1 + 4KA r /2
/( - 2KA ). (56) 

This restriction is appealing because physically we would 
expect R to be bounded. In the same way, r is bounded by 

(57) 

Physically we can require x A :;;.0 for all A as a choice of basis 
phase, and so we may restrict the value of R even more. If no 
value of R can be consistent with both x A >0 for alIA and Eq. 
(56), then a two-state model with assumptions 1 and 2 is not 
adequate to fit the (p,t) and (t,p) cross-section ratio data. As 
x A can have singularities [see. Eq. (32)], it becomes more 
convenient to study, in place of x A' the mixing potential in a 
two-state model. This potential is given by 

where P A and TA representthe set of PA and TA numbers. It 
is clear from this expression and Eq. (23) that 

xA(-r,R;-PA,-TA)= -xA(r,R;PA,TA) , (61) 

and 

XA( - r,lIR;PMTA) = - lIxA(r,R;PA,TA) , (62) 

where - P A and - T A mean change the sign of all the PA 
and TA numbers. So sets 2 and 1 are related by 

xA( - r,R;PA,TA) = -lIxA(r,lIR;PA,TA) 

yielding 

Set 2 Set 1 
a~( - r,R;PA,TA) =/3~(r,lIR;PA,TA)' 
/3~( - r,R;PMTA) = a~(r,lIR;PA,TA)' 
UA( - r,R;PA,TA) = - UA(r,lIR;PA,TA)· 

Sets 3 and 1 are related by 

xA(r,R; - PA' - TA) = lIxA(r,lIR;PA,TA) 

yielding 

Set 3 Set 1 
a~(r,R; - PA' - TA) =/3~(r,lIR;PA,TA)' 
/3~(r,R; - PA' - TA) = a~(r,lIR;PA,TA)' 
UA(r,R; - PA' - TA) = UA (r,lIR;PA ,TA) . 

(58) Sets 4 and 1 are related by 

where EA is the energy separation between the two physical 
states (and is a positive number). In terms of x A' this be­
comes 

(59) 

and since E A is positive, the sign of - UA is the same as that 
of x A • In addition, if we use Eq. (45) we can write 

- UA vA(R + 1) - r(1 + 2wA) - 2VA 

EA (R + 1)(1 + 4KA) 
(60) 

IV. PROPERTIESOFTHE FUNCTIONSa~, P~,XA' and UA 

We had shown earlier that the best fit chi-squared solu­
tions occur in sets offour. We now show that the functions 
a~, /3 ~, X A' and UA also occur in sets offour. Table I lists 
four solutions which all have the same X~in and KA value. 
These four solu~ions, however, are not all independent in 
that sets 2, 3, and 4 in Table I are all related to set 1. To see 
this, we use the full functional notation for a~ , /3 ~ , X A , and 
UA • We therefore write Eq. (32) as, 

R + w A (R + 1) - r - VA (R + 1) 
xA(r,R;PA,TA) = = , 

- r + VA (R + 1) 1 + W A (R + 1) 

TABLE I. Four sets, all with the same X2 min, L" = 1, and -l<K" <0. 
Here (P" , T,,) represents a set of P" , and T" values as defined in the text. 

Set # r (PA,T,,) 

+ (P",TA) 

2 (P",TA) 

3 + (-P",-T,,) 

4 (-P",-T,,) 

638 J. Math. Phys., Vol. 27, No.2, February 1986 

XA( - r,R; - PA' - TA) = -xA(r,R;PA,TA) 

yielding 

Set 4 Set 1 
a~( - r,R; - PA' - TA) = a~(r,R;PA,TA)' 
/3~( - r,R; - PA' - TA) =/3~(r,R;PMTA)' 
UA( - r,R; - PM - TA) = - UA(r,R;PA,TA). 

In essence, physically, sets 1 and 3 (and sets 2 and 4) are 
related by just interchanging the nature of ;: and ;:. Thus, 
only one set of these four is independent and could be used to 
describe the wave functions. Of course we should choose 
that set yielding - UA >0, as we can physically require 
X A >0 for alIA. 

From the constraint equation (23), if we take d /dR of 
both sides, we get 

.!!!....= 1+2KA(R+l) (63) 
dR 2r 

Equations (33) and (60) then produce 

da~ UA --= , 
dR EAr(R + 1) 

(64) 

showing that the critical points for a~ correspond to the 
zeros of UA • Solving for the critical points, RdA ), yields 
UA(Rc(A)) = 0 or 

The corresponding rc(A) values are then obtained from 

rc±(A) = ± vA(R c±(A) + 1), 

and the values a~ (R c± (A )) are 

a~ ( - (1 + wA- I) ± I) = (1 ± 1)/2. 

M. Carchidl and H. T. Fortune 
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V. SIGNIFICANCE OF THE PARAMETERS: W AI VAl LAI 

ZA/ANDKA 

A. The parameter WA 

Mathematically, W.t gives the location of critical points 
for a!. Physically, since UA (R c± (A») = 0, W A also gives a 
measure of the physical region for R in the following way. 
Since we can always choose - 1 <K A <0, then from Eq. (30) 

(WA + !)2 + v! = KA + 1 (68) 

would give 

(WA +!f + v! <1, 
showing that the allowed values of W A and v A in the W A VA 
plane lies inside a circle of radius! and center ( - !,O) and 
that - !<vA <! and - l<wA <0. If we choose the r>O set, 
then we can define 

M= min [-(1 +WA1)-I} 
(A Iv .. <O) 

and 

m= max [_(I+WA-l)+I}, 
(A Iv .. >O) 

then - UA >0 for all A in the region m<R<M. For any 
other set (e.g., r<O) we can use the results ofEqs. (61) and 
(62) to get the physical bound onR. Ifwe couple this with the 
mathematical limits of the ellipses 

- (1 +2KA) +~1 +4KA 

2KA 

- (1 +2KA) -~1 +4KA 
<R< , 

2KA 

we get the physical bounds on R given by 

[ 
- (1 + 2KA) + ~1 + 4KA ] mu ,m 

2KA 

. [ - (1 + 2KA) - ~1 + 4KA ] 
<R<~n N . 

2KA 
(69) 

If these restrictions cannot be met, then the two-state model 
with assumptions 1 and 2 will not fit the (p,t) and (t,p) cross­
section ratio data for any value of R. 
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FIG. 3. Low-lying 0+ states in the even germanium isotopes. 
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FIG. 4. Schematic representation of the basis ground state and basis intrud­
er state in a string of isotopes. 

B. The parameter VA 

We have seen that the parameter WA gives a measure of 
the physical region of R. The parameter v A gives the choice 
of which critical point occurs depending on whether the r>O 
or r<O solution is chosen. In particular, from Eqs. (65), 
(66), and (67), if the r>O solution set is chosen, then for 
VA >0 we have R / (A) = - (1 + WA-1)+1 and 
a!(R / (A») = 1 while for VA <0, we have 
R c- (A) = - (1 + WA-1)-1 and a!(R c- (A») = O. The 
sign of VA gives a measure of whether a! isOor 1 at its critical 
points. In particular, using r>O shows that for a! (Rc (A») to 
give 1, we need VA> 0 and a~ (Rc (A») gives 0 when VA < O. So 
V A can be a measure of whether the physical state will favor 
cfJ: or cfJ:. We shall elaborate later when we look at the meth­
od applied to the germanium isotopes. 

C. The parameter LA 

The significance of the parameter LA is that it serves as a 
test of the entire model mathematically in that LA = 1 serves 
as the necessary and sufficient condition. Physically, LA = 1 
is just the statement that 

a(AX(t,p)A +2X(g.S.)) = a(A+ 2X(p,t) AX (g.s.)) , 

assuming, of course, that all kinematic corrections have been 
divided out. 

D. The parameter ZA 

Equation (46) gives SA (t,p) = -ZAK,J~(R + W show­
ing that the ratiozA + 2/ZA is the ratio of SA + 2 (t,p) to SA (t,p), 

TABLE II. Experimental 0+ cross-section ratios in the germanium iso­
topes. Here E .. is the excitation energy of the excited 0+' state. 

A EA o(A+ 2Ge(p.t) AGe(O+») o(AGe(t.p) A+ 2Ge(0+») 

(MeV) o(A + 2Ge(p.t)AGe(g.s.») o(AGe(t,p) A+ 2Ge(g.s.») 

68 1.753 0.0058 ± 8% 

70 1.216 0.068 ± 4% 0.0020±20% 

72 0.6915 0.280 ± 3.5% 0.200 ± 5% 

74 1.486 0.010 ±80% 0.025 ± 10% 

76 2.901 0.0167 ± 8% 

78 2.326 
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TABLE III. DWBA 0+ cross-section ratios in the germanium isotopes. 
Here Eo4 is the excitation energy ofthe excited 0+' state. 

A Eo4 o(A+ 2Ge(p,/) o4Ge(O+») o(o4Ge(t,p) A+ 2Ge(0+») 

(MeV) o(A+2Ge(p,/) AGe(g.s.») o(o4Ge(t,p) A+ 2Ge(g.s.») 

68 1.753 0.8198 ± 2% 

70 1.216 1.0040 ± 2% 1.0230 ± 5% 

72 0.6915 1.0450± 3% 1.0110 ± 3% 

74 1.486 1.1370 ± 2% 0.9660± 3% 

76 2.901 0.8780±2% 

78 2.326 

i.e., physically, ZA is a measure of summed (t,p) and (p,t) 
strengths. 

E. The parameter KA 

Finally, the parameter KA provides the connection 
between the physical state 2n-transfer overlap ratios repre­
sented by PA and TA and the basis states of2n-transfer over­
lap ratios rand R. In addition the parameter KA along with 
the critical points R c± (A) given by Eq. (65) can give a mea­
sure of the physical (but unmeasurable) cross-section sum 
QA (t,p) given by 

QA(t,P) = o{AX(O+')(t,p)A + 2X(g.S.)) 

+ a(AX(O+')(t,p)A +2X(0+')) . 

We could now easily show that 

SA (t,p) + QA(t,P) =f~(1 + 2r + R 2), (70) 

which is just the condition that total flux is conserved. Put­
ting in Eqs. (23) and (46) gives 

QA(t,P) (1 + WA) +KA KA + (R c-(A) + 1)-1 
----
SA (t,p) KA -WA KA +(Rc+(A)+ 1)-1 

giving the A dependence of QA ISA. 

VI. A SIMPLE LIMITING CASE 

If K A ...... -!, Eq. (23) yields R ...... l and r"""O. Equation 
(53), rewritten as 

(TA + PAZA)2 + (1 - ZA)2 
1 + 4KA = 2 2' 

(TA +PAZA) +(1 +ZA) 

shows thatzA ...... l and TA + PA......o, for allA. In addition, we 

get W A ...... - ~ and vA......o. Such a result is an important limit­
ing case as previous models of this type I have assumed R = 1 
and r = 0, which is equivalent, via Eq. (23), toKA = -!. As 
KA = - !ifandonlyifPA + TA = 0, we have an immediate 
test to whether such a naive model (r = 0, R = 1) will work. 
The quantity 1 + 4KA is then a measure of the deviation 
from the simple model. 

VII. EXAMPLE: APPLICATION TO THE GERMANIUM 
DATA 

In many regions of the periodic table, there exist chains 
of nuclei in which an intruder state (or more than one) is 
obviously present. A signature of such a state can be found in 
the low-lying energy-level spectra. For example, in the ger­
manium isotopes (Fig. 3), we notice a parabolic dependence 
in EA (the energy of the ot state) with A. Such a pheno­
menon is interpreted by saying that the ground state and the 
physical 0+' state (usually the O2+ state, but need not be) 
result from mixing between the basis ground state and a basis 
0.+ excited intruder state. These basis states mix or interfere 
with each other and can therefore "switch" positions as we 
move from lighter mass to heavier. This situation is shown 
schematically in Fig. 4. These nuclei, for which an intruder 
state exists, are somewhat collective, but not strongly de­
formed. From Fig. 3, we see that the place where the basis 
0/ and basis ground state of germanium "switch" position 
occurs at the minimum in EA -i.e., around N = 40 
(A = 72). There exists in the literature I a staggering amount 
of data for the germanium region, all of which also indicates 
a change in structure occurring at N = 40. Many models 
have been proposed I to try and explain the origin of this 
transition, all with limited success. We shall show that the 
generalized two-state model developed above will not only 
account for the Ge(p,t) and Ge(t,p)u(O+')/u(g.s.) ratio 
data, but also present a possible explanation for the existence 
of this transition between the lighter and heavier mass ger­
manium isotopes. 

We shall use the Ge(p,t) and Ge(t,p)u(O+')Iu(g.s.) data 
measured2

-
lo in the literature. These are summarized in Ta­

ble II. In the above model, all (p,t) and (t,p) O+'/g.s. cross­
section ratios must be corrected for Q-value effects. To com­
pensate for Q-value effects, DWBA calculations were 
performed with the code DWUCK, II using optical-model pa­
rameters from Ref. 9, and a two-neutron bound-state (B.S.) 
wave function of the form 

TABLE IV. Q-corrected 0+ cross-section ratios and calculated ratios using the sign combinations given in Table VI in the Ge isotopes. Here EA is the 
excitation energy of the excited 0+' state. 

Q-corrected ratios 
Eo4 

A (MeV) p2 
040 

T2 
Ao 

68 1.753 0.0071 ± 0.0007 

70 1.216 0.0680 ± 0.0040 0.0020 ± 0.0005 

72 0.6915 0.2700 ± 0.0160 0.2000 ± 0.0160 

74 1.486 0.0090 ± 0.0072 0.0250 ± 0.0034 

76 2.901 0.0190 ± 0.0020 

78 2.326 
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p2 
A 

0.0071 

0.0680 

0.2740 

0.0060 

Calculated ratios 

T~ 

0.0020 

0.1950 

0.0250 

0.0190 
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TABLE V. The sign combinations in the PA's and TA's that give the best fit 

chi-squared. Also given are the corresponding KA values. 

set P70 Pn P74 T70 Tn T74 KA 

+ + + -0.2452 

2 + + 12.7519 

3 + + + + 12.7519 

4 + + + - 0.2452 

-N (1)2 N 2 
g9/20 + (1/s/2)o 

~2(9/2) + I ~2(5/2) + I 

+ N (2p3/2)~ + N (2P1/2)~ , 
~2(3/2) + I ~2(1/2) + I 

where N = 0.992 for normalization. 
To reduce Coulomb effects, calculations were per­

formed for all beam energies at which experimental numbers 
were measured. Ratios of the DWBA cross-sections are 
summarized in Table III. To investigate configuration de­
pendences in the DWBA calculations, we also ran the code 
DWUCK for two-neutron bound-state wave functions of pure 
(lg9/2)~ and pure (2P1/2)~ and used these results to estimate 
uncertainties in the DWBA ratios. The final Q-corrected ra­
tios, along with their uncertainties to be used in this analysis, 
are summarized in Table IV. Note that in the above data and 
DWBA calculations, we are using the ot state as the phys­
ical excited state in 68-14Ge, and the 03+ state in 16.18Ge. This 
is because from Fig. 3 we see that from 68Ge to 18Ge each 
isotope has a 0+ state at about 2.22 MeV as indicated by the 
solid horizontal line. These states at about 2.22 Me V could 
be inert for all the germanium isotopes and not mix with any 
other 0+ states. If that is the case, then for 76Ge, the next 
candidate to consider with the ground state in a two-state 
model would be the 03+ state at 2.901 MeV. For 18Ge, the 04+ 
state at 3.350 Me V would seem too far away from the ground 
state and the ot state at 1.546 MeV seems to contradict the 
parabolic trend in E A, with A. Although the 03+ state at 2.326 
Me V would want to fall into the possible "inert" state cate­
gory mentioned above, we shall choose the worst of three 
evils and assume that the 03+ at 2.326 MeV in 18Ge is the 
excited 0+ I mixed state. Since 18Ge represents an "endpoint" 
in the germanium isotope chain, the particular choice of 
state here will not affect any of the calculations for 68-76Ge. 
The reason is because data exist for enough nuclei (four) to 
calculate one LA" viz., Ln and so the cross-section ratio in 

TABLE VI. The sign combinations in the PA 's and TA 's that give the best fit 
chi-squared. Each set has KA = - 0.2452. 

set r P70 P72 P74 T70 T72 T74 

a + + + + 

b + + + 

c + + + + 

d + + + 
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TABLE VII. Calculated values of the parameters K A' VA' W A' and Z A for Ge. 
These are calculated using set a of Table VI, P 63 < 0, and T76 > O. (Note that 
v A changes sign as A goes from 70 to 76.) 

A KA VA WA ZA 

70 - 0.2452 +0.0629 -0.5292 1.1583 

72 - 0.2452 + 0.0502 -0.5438 1.2342 

74 - 0.2452 -0.0141 - 0.5679 1.3159 

76 - 0.2452 - 0.0314 -0.5618 1.2912 

16Ge(t,p) 78Ge will not be involved in the best fit minimiza­
tion procedure. In fact, in that procedure, we need only mini­
mize 

subject to the one condition Ln = 1. The results ofthis cal­
culation show that the "best" fit in a chi-squared sense oc­
curs for four sign combinations in the PA, 's and TA, 'So These 
are given in Table V along with the K A, values. Each calcula-

• • 2 
tlon gives Xmin ::::;0.068 and KA, values which are related via 
I + 4KA,-( 1 + 4KA ) -1 as promised earlier in the model­
developing sections above. Also as promised, we can always 
choose the negative K A, value leaving us with only two sign 
choices. As for the constraint equation [Eq. (23)], we also 
have two choices of sign for r, leaving a total of the four 
possibilities given in Table VI. These all have been shown to 
be related in Table I and so only one of these four needs to be 
considered. Using set a in Table VI and assuming that 
P 68 < 0 and T76 > 0 allows one to calculate the unmeasurable 
ratios T68 and P16 so that L 10 and L14 are equal to 1. Knowl­
edge of PA, and TA, for A = 68 to 76 allows us to calculate the 
parametersKA,> zA,> WA" and VA, (for A = 70, 72, 74, and 76), 

1.5,---,----,----,---,-----, 

w~ -

0.5 -

+--+--+--+ KA 

-0.5 +---+'---'-1-+ WA -

72 74 76 
A 

FIG. 5. Plots ofzAO WA, VA' and KA vsA for the germanium data. 
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FIG. 6. Plotsofa~8 and - U68 (in MeV) versusR for 68Ge. (The solid curve 

is for r>O while r<O is given by the dashed curve.) 

which are summarized in Table VII and plotted versus A in 
Fig. 5. Note that VA changes sign as we move from lighter 
mass to heavier suggesting a change in structure occurring in 
the sense that the value of a~ (R c± (A )) flips from ° to 1 or 
vice versa. The quantities a~ and - UA (in MeV) For 
A = 68 to 78 can be calculated using Eqs. (33) and (60) and 
are plotted (for both r;;;oO and r,O) as functions of R in Figs. 
6-11. Notice, as predicted by the V A parameter, the flip in 
structure from lighter A to heavier. As indicated earlier, we 
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FIG. 7. Plotsofa~ and - U7o (inMeV)vsR for 70Ge. (The solid curve is for 

r>O while r<O is given by the dashed curve.) 
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FIG. 8. Plotsofa~2 and - U72 (inMeV)vsR for 72Ge. (The solid curve is for 

r>O while r<O is given by the dashed curve.) 

need only consider, say, r;;;oO (Le., set a of Table VI). The a~ 
and - UA (in MeV) resulting from these are all plotted on 
one graph as shown in Figs. 12 and 13. (Note that the plots 
for a~ and - UA for A = 68 and 78 are dotted indicating 
that the signs of P68 and T76 are chosen as negative and posi­
tive, respectively, and are not determined by the chi-squared 
minimization process.) Each of the a~ will produce fits to the 
data which are summarized in Table IV and plotted in Fig. 
14 for any value of R. The only limits on R are given by Eq. 
(69), which for the germanium data given is 0.889 ,R, 1.282. 

-0.2 

- 0.4 

-0.6 

-0.8 

\ 
\ 
\ 
\ -U 74 1 
\ I 
\ / 

\'<0 / 
\ ! , / 

" / .................. // 
......... _---./"" 

-1.0 '--__ L.------lL----1 __ -.l __ -.l __ .-l1 __ ..J 
0.8 0.9 1.0 1.1 1.2 1.3 1.4 

R 

FIG. 9. Plotsofa~. and - U7• (in MeV) vsR for 74Ge. (The solid curve is for 
r>O while r<O is given by the dashed curve.) 
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Especially evident in Fig. 12 again, is the change in structure 
between the lighter and heavier Ge isotopes with the transi­
tion occurring between 72Ge and 74Ge. Therefore the origin 
of the transition in the Ge isotopes is due to the drastic 
change in mixing (a~) from the lighter mass to the heavier. 
Notice also in Fig. 13 the congestion occurring between 
R = 1.06 and 1.26, suggesting that in that region of R, the 
perturbed two-state Hamiltonian causing the mixing is slow­
ly changing withA. 

ThevalueofKA = - 0.2452 ± 0.OOO9showsthatKA is 
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FIG. 11. Plotsofa~8 and - U78 (in MeV) vsR for 78Ge. (The solid curve is 
for r>O while r<O is given by the dashed curve.) 
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FIG. 12. Plots of a~ vs R for the gennanium data with r>O. 

very close to its minimum value of - 1 but is still five prob­
able errors away from this limiting value of - 1. This result 
implies that previous choices I of <fJ: and <fJ: assuming R = 1 
and r = 0 and hence K A = - 1 are incorrect. The nonzero 
value of r in the physical range shows some "nonorthogona­
lity" between <fJ: and <fJ: + 2. This nonorthogonality probably 
arises in the process of constructing particle-hole states of 
good isospin, and must be considered in the construction of 
<fJ: and <fJ:. 

VIII. CONCLUSION 

We have shown that a two-state model can be used to 
describe the oiO+ ')/ oig.s.) cross-section ratio in (t,p) and (p,t ). 
We have determined necessary and sufficient conditions for 
such a model to work based on two simple assumptions. 
Although we do not describe <fJ: or <fJ: in terms of any shell­
model basis or similar type descriptions, we do give starting 
points by describing how the basis state 2n-transfer overlaps 
must behave via the constraint equation, 
,.z = R + KA (R + If and Eqs. (46) and (49). The quantity 
KA is an extremely sensitive measurement of the 2n-transfer 
overlap ratios and in the case of the germanium data, is suffi-

2.1 ,.----.-----,_----.--__r--~---

1.7 

- 0.7 L-__ '------'L-----" __ ----'-__ -----" __ ----' 
0.76 0.86 0.96 1.06 1.16 1.26 1.36 

R 

FIG. 13. Plots of - u'. (in MeV) vs R for the gennanium data with r>O. 
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0::: 
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CJ'I ........ 
+ 
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68 

-EXP 
--- MODEL 

70 76 
A 

FIG. 14. Experimental and calculated (1(O+')/(1(g.s.) ratios for the Ge 
data. 

ciently far from its minimum value of -! that the simple 
models previously applied cannot work. We have been able 
to fit the 0+' Ig.s. state (p,t) and (t,p) cross-section ratio data 
almost exactly and the results of the fits exhibit the change in 
structure between the lighter and heavier masses. 

The solution of the present germanium data problem 
allows one to use the resulting wave functions to predict 
other observables. We have shown these wave functions to 
be consistent with 1fs/2 proton occupation numbers in the 
A Ge ground states, 12 with (d,6Li) and (6Li,d) cross-section 
ratios leading to AGe (see Ref. 13), and with BE2 ratios from 
22+, 2t, to ot, ot, states in 70Ge and 72Ge (see Ref. 14). 
With very few assumptions, we have been able to fit much 
data and we still do not need to specify any value of R, so that 
we continue to have ft.exibility in fitting even more data. 
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We have done a survey of this analysis to (t,p) and (p,t) 
data for all nuclei (total of 15) from calcium to uranium and 
have found the present model successful in every case. The 
detailed results of this work will appear in a later publica­
tion. 

Other possible special cases of Eq. (16), i.e., R + 1 = 0 
and R - rs = 0, have already been considered by us and 
these results will appear in a later publication. We are also 
working on the general solution to Eq. (16) for any values of 
r,sandR. 
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The one-dimensional magnetotelluric (MT) inversion problem is well known to be ill posed and 
nonlinear. This paper seeks an understanding of the mappings underlying the nonlinear 
relationships. These properties are used to study the validity of some exploration aspects of the 
problem that are essential for the practical use of MT as an exploration tool. This study has two 
major segments-results in response space and results in geologic space. In response space, the 
existence of optimal admittance curves has been proven. In the case of continuous data, 
uniqueness has been established. For discrete data, a relationship between alternative optimal 
solutions has been derived. In geologic space, the results are extremely significant to MT's 
applicability to exploration. A class of conductivity functions Y, which contains all possible 
natural geological conditions, has been used as a framework for the study. Over this class Y, the 
one-dimensional magnetotellurics problem has been proven to be uniquely invertible from the 
admittance curves. This precludes the possibility of two different geologic models yielding the 
same complete data. As a result, the path is now clear to generate a description of a unimodal 
statistical distribution offeasible inversions to the real-world exploration problem with finitely 
sampled noisy data. 

I. INTRODUCTION 

Many investigators have contributed to the theory of the 
one-dimensional magnetotelluric (MT) inversion problem. 
This survey will be intentionally brief and touch only the 
more significant recent results. For a related problem, Bai­
ley1 proved that the inverse was unique, given complete data 
on the surface of a stratified sphere provided the model space 
is restricted to nonzero, bounded, infinitely differentiable 
functions. (Bailey studied the ratio of the externally generat­
ed magnetic field to the intemally generated magnetic field. ) 
The next major advance was in a paper by Weidelt2 in which 
an actual inversion algorithm was presented. This proce­
dure, an application of the Gel'fand-Levitan theory, gener­
ates continuous conductivity profiles when the data curve 
corresponds to a continuous conductivity profile. However, 
it is not clear that the procedure will recover the same 0" as 
that which generated the data. 

and is assumed to be a constant 0"0 > 0 when z<;O. The lower 
boundary conditions will be E (O,w) = 1 and (aE laz)(O,w) 

The practicability of the inversion was greatly expanded 
by Sabatier.3 Sabatier demonstrated the application of linear 
programming to finite-dimensional approximations of the 
global problem. More recently, Parker4

•
S has modified and 

enhanced these techniques to yield conductivity profiles that 
will fit noisy finite data (arbitrarily close to the optimal pos­
sible fit). 

II. PRELIMINARIES 

This paper will follow the notation and terminology of 
Parker4 where possible. The basic equation describing a 
horizontally polarized electric field of radial frequency w 
diffusing into a conductive body is 

a2E(z,w) 
a 2

Z 
= iWJ.loOiz)E (z,w) , (1) 

where u(z) is the conductivity profile for z <; h (h very large) 

= (1 + tNwJ.loO"o/2. The ratio 

c(w) = E(h,w) (2) 
(aE laz)(h,w) 

is defined to be the admittance curve. The more familiar 

apparent resistivity is Pa (w) = ~wJ.lolc(w) 12. We will con­
sider the inverse problem both where c(w) is known at a 
finite number of frequencies and also on an interval. 

The problem will be formulated in terms of geologic 
models 

(O"'O"o,h) , (3) 

where O"(z) >0 for z E [O,h), O"(z) = 0"0 for z<;O, and h >0. 
Parker4 demonstrated that the admittance curve c(w) 

corresponding to a geological model can be represented as 

c(w) = bo + L" 1 - i~...t db(...t) , (4) 
o ...t +IW 

where bo>O and b(...t) is monotone increasing. It can be easi­
ly observed that the following formulas hold: 

bo = Re(c(1)), 

O<;TV(b) = - Im(c(1))< 00 , 

bo> l" ...t db(...t) . 

(5) 

If we further require 0 < F<; P A. (w) <;R for all w, we obtain, 
respectively, 

bo = l" ...t db (...t ) (R), 

(6) 

r db (...t) = 00, E> 0 (F). 
Jo ...t 
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In particular, (6) implies that if db (A.) is a fine delta comb 
corresponding to a model (u,uo,h), then lim ...... 0 PA (aJ) = ° 
and Uo = 00. 

To establish notation, define 

() 
E(z,aJ) 

C z,aJ =--.;....;,......:.....--
(aE laz) (z,m) 

Then 

ac(z,aJ) = I _ illoaJU (Z)C2 (z,aJ) . 
az 

(7) 

Now that some notation has been established, let us give a 
schematic of the mappings to be studied (see Fig. I). Under 
very general settings,jl and}; will be well defined and nicely 
behaved. The difficult questions concern the behavior and 
existence of mappings / 1- land/ 2- I. 

III. RESULTS IN RESPONSE SPACE 

Here the relationships between c(aJ) and b(A.) are ana­
lyzed in greater detail. In the case where a finite number of 
data values are available (as in real experiments), let the 
data be given by d = (d l ,d2, ••• ,dn), where dj is the complex 
data for frequency aJjE W = ml < aJ2 < ... < aJn. If data is 
available on [a,u], it is given by d(aJ) E ct [a,u]. Define 
g(c(aJ») = (c(aJI ), ... ,C(mn») E C n. Throughout, the norm in 
C n can be modified to reflect statistical knowledge or 
weightings as in Ref. 4 without affecting results. Let T repre­
sent the set of all admittance curves which can be represent­
edasin (4) and (5). 

Theorem 1: Let d = (d(aJI),d(m2), ... ,d(aJn») be given 
and S be a convex subset of T. Then there exists a closed 
convex subset QofTsuch that Co E Qimplies II g(co) - d lip 
= minceS II g(c) - dllp and each member ofQis a pointwise 

limit of a sequence from S. Moreover, if CI and C2 E Q, then 
CI (aJj ) = c2(aJj ), whenever 1< P < 00 (j = I, ... ,n). 

Proof: Let a = minceS II g(c) - d lip. Choose Cn E S 
such that II g(cn ) - d lip-a. 

Claim 1: {bn} is a bounded sequence in NBV[O, (0). To 
see this, note that when Cb E S, 

i
eo A.(1 - a(2) 

Cb (aJ) = bo + 2 2 db(A.) 
o A. +aJ 

_ i i eo 

m(A. 2 + 1) db (A. ) . 
o A. 2 + aJ2 

If A."'aJ, then 

m(A. 2 + l)/(A. 2 + m2) > 112m . 

If A. > aJ, then 

m(A. 2 + I )/(A. 2 + m2 » aJ/2. 

(c(w, ) •...• C(Wn» 

FIG. 1. Schematic of mappings. 
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Thus, letting ko = minj = I.n {112m), aJ)/2} >0, one has for 
all b: 

i
eo 

db (A. ) < 1.-i eo 

m(A. 2 + 1) db (A. ), for aJ E W. 
o ko 0 A. 2 + m2 

Thus, 

II b II '" (1Iko) m~n [ - Im(cb (aJj »)] 
J 

'" (1Iko) m~ [Icb (aJj ) I] . 
J 

Now for some No and all n>No , 

II g(cn ) - d lip <a + I . 
Thus, 

II g(cn ) lip <a + I + lid lip . 

Now 

IIcn (aJj ) II ..;: II g(cn ) lip < a + I + II d lip· 

Thus, 

Ilbn lI=i"" dbn(A.)",1.-(a+l+ IIdllp)· 
o ko 

Now, {bn } being a bounded subset of NBV[O,oo) means 
that {bn} has a weak-* convergent subsequence {bnJ. Let 
b * denote the weak-* limit of this sequence so that 

i "" / db (A. ) = lim i"" / dbnk (A.), 
o k_ 00 0 

/ E C [0,00 ) and/bounded. 

We can further require that {bon) is convergent. For any c, 

IRe(c(ml») - Re(c(1»)1 

= I Re(c (aJ I ») - bol '" Imax/(ml) III b II , 

where / is the real part of the integrand in (4). Thus, for 
n> No in the original sequence, we know that {bon} is 
bounded. 

Let c* correspond to the limits (b ~ ,b* (A.»). 
Claim 2: II g(c*) - d lip = a. 
This follows immediately from the observation that 

c*(m) = lim Cb (m) 
k_ 00 "k 

for each w. 
Now put Q = {c(aJ) I II g(c) - d lip = a}. Then Q is 

convex. The final statement of the theorem follows immedi­
ately from the strict convexity of the norms in lp, 
I < p < 00, for C n. 

Note that S may equal T. Thus the existence of globally 
optimal fits has been established. Moreover, once S has been 
selected, the values of admittances for the optimal solutions 
agree on the observation frequencies if an appropriate norm 
is chosen. In Ref. 4, p. 4426, Parker claims without proof 
that in this global setting Q will consist of a unique b(A.), 
where db(A.) is a positive finite delta comb. We find this 
result unlikely. 
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Theorem 2: Let I<p< 00, d: [a,u] ----+c, deLp[a,u] 
(the data curve) be given,Sbe a convex subset ofT, then we 
have the following. 

(a) There exists a convex subset QofTsuch that Co e Q 
implies 

IIh(c) -dllp =minllh(c) -dllp =a, 
ceS 

where 

h(c) = X[a.ul(w)c(w) 

and X [a,u 1 = characteristic function of [a,u]. We require 
members of Q to be the pointwise limit of a sequence from S. 

(b) The optimal solution is unique if I <p < 00. 

Proof: (a) Choose c" eS3I1h(c,,) -dllp----+a. As be­
fore, {b,,} is bounded and, hence, has a weak-* convergent 
subsequence {b,,) with limit b *. Because of ( 4 ), the uniform 

bound on lib" (A)II, and 

c*(w) = lim Cb (w), 
k-oo "k 

we have 

IIh(c*) - dllp = a, 

and the existence of optimal solutions has been established. 
Put Q = {c: IIh(c) - d lip = a}. Then Q is clearly convex. 
Uniqueness of c*(w) in the case I <p< 00 follows again 
from strict convexity coupled with the analyticity of c(w). 
The uniqueness of b *(A) follows from Theorem 3. 

Corollary: If I <p < 00, there exists a unique global opti­
mal solution. 

The previous theorem relies on the relationship of c(w) 
to b(A) expressed in the next theorem. 

Theorem 3: The admittance curves c(w) and the 
associated (bo,b(A») are related by the 
equations m(r) =..9"[(A 2 + l)b(A)] and c(w) =m(iw) 
+ (bo - fO'A db(A»), where..9" is the Stieljes transform. By 

assuming b E NBV [0,00 ), ..9" is uniquely invertible. A simi­
lar result is available with the Hilbert transform. [Remem­
ber that for our purposes in (4), b 0 ;> f 0' A b (A), although 
that is not required in this theorem. ] 

Proof: See Sneddon,6 p. 233. The uniqueness at discon­
tinuities comes from the assumption that b e NBV [0,00 ). 

This section has been based on Parker's most general 
model setting (Ref. 4, pp. 4421 and 22) and contains the 
finite-dimensional subspaces of b (A) [where db (A) consists 
of finite positive delta combs] in which he performs his opti­
mization calculations.4

,5 These correspond to delta comb 
conductivity models terminating in a perfect conductor 
basement. Several times Parker seems to imply that the opti­
mal solutions are always in this limited class [for instance, 
"In addition to optimal models, which always consist of del­
ta functions, two other types of model are examined." (Ref. 
5, p. 9574) ]. Consider data from a continuous conductivity 
model (uc,uo,h) and the corresponding be (dbc is not a fin­
itedeltacomb.) Then (ue,uo,h) andbc are clearly optimal in 
the finite data case for any finite set of observation frequen­
cies W N' We are not aware of any proof showing that the 
optimal set (b 's or conductivity models) must contain any of 
Parker's delta comb u's and corresponding b 'so We suggest it 
is unreasonable to expect that result in either the pure data or 
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noisy data cases, and see no proof to substantiate the claims 
in either Ref. 4 or Ref. 5. However, one can readily prove a 
weaker result that is sufficient to support all of Parker's nu­
merical work in both the noise-free and noisy data cases: if a 
is the optimal I-D fit to the data in a given metric and E> 0, 
then there exists one of Parker's delta comb conductivity 
models with a fit better than a + E. 

These theorems have yielded results relating to the exis­
tence and uniqueness of optimal admittance curves. The real 
geophysical interest, though, must lie in the implications of 
these results to physical models. 

IV. RESULTS IN GEOLOGIC SPACE 

The following theorem treats the existence of optimal 
data fits with typical restrictions on the geological model. 
Note that the common assumption that l/r;>u(z);>l/R is 
covered. 

Theorem 4: Assume that discrete data d is available for 
WE WN • Select J,FeL2 (0,h) with o<J(z) <F(z). Let 
V= {u(z) eL2 [0,h]: /(z)<u(z)<F(z)}. Using the Ip 
norm in C N, I <p< 00, there exists an optimal solution 
(u(z),uo) e Vx [moM], where m >0. 

Proof: It should be noted that this theorem only estab­
lishes the existence of optimal solutions to the constrained 
optimization problem. We do not establish uniqueness. 

Consider the set of all c(w) which correspond to all 
(u,uo) E Vx [m,M].Selectaminimizingsequence{c" (w)} 
such that 

lim IIg(c" (w» - dll = min = a. 
,,~oo 

Consider the sequence {(u",uo" )}. The sequence {uo,,} is 
bounded. Select a subsequence which converges to uo;t:O. 
From this subsequence of {( u" ,u 0" )}, one may select an-

other subsequence such that un ~ in L2 [O,h]. The exis­

tence of such a u is guaranteed by the theorem of Alaoglu, 
which proves the weak compactness of the unit ball in dual 
spaces. 

Now u(x) <F(x) a.e. If not, assume u(x»F(x) +E, 
for x e A, E> 0, m (A) > 0. Let XA be the characteristic func­
tion of A. Then 

f XA (x)u(x)dx>Em(A) + f XA (x)F(x)dx 

>Em(A) + f XA (x)um (x)dx, 

for all n. Clearly, this precludes {u,,} from having a subse­
quence which converges weak-* to u. Similarly, u(x) ;>/(x) 
a.e. 

Let us write the base differential equation (I) as a pair 
of first·order equations: 

(XI)' ( ° 
U'2 = if.loWu(z) 

(8) 

where O<z<h, XI (O,w) = I, X2(O,w) = .jif.loWuo, where Uo 

is the basement conductivity. 
Define 

A (z) = (0 01) . 
if.loWu(z) 
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Then the transition matrix for (8) is 

4>[O,h] = (~ ~) 

+ f A(A)dA 

+ f A(A) L' A( J-l)dJ-l dA + .... 

Select w > 0. Since ern~' er, it is straighforward to see that 

4> n,'" [O,h] -+4>", [O,h], where 4>", corresponds to (er,er 0)' 
4>n,,,, to (ern ,erOn ). Thus Cn (w )-+C(w), the admittance curve 
for (er,ero)' In particular, Ild-g(c(w»)II<lld-g(cn (w»)11 
for all n. Thus the pair (er,ero) is optimal 

Corollary: The results remain valid if 
V= {er(z) EL2[0,h]: lIerll<N}. 

Proof The proof is identical to that of Theorem 4, except 
that we must show Ilerll <N. Assume Ilerll = N + E, E> 0: 

(N + E)2 = lh ern (x)dx = lim lh er(x)ern (x)dx 
o n-co 0 

< lim lIerllliern 11< (N + E)N. 

Theorem 5: Assume that continuous data d(w) is avail­
able for w E [a,u]. Select/, F, and Vas above. Then there 
exists an optimal solution (er(z),ero) E V X [m,M] withm > ° 
in the sense that if c(w) corresponds to (er(z),ero), then 
IIc(w) - d(w) lip is a minimum. 

Proof Formulate the proof as in Theorem 4. The result­
ing (er,ero) corresponds to c(w), which is the pointwise limit 
of{cn (w)}. By combining (4) and (5), one can prove that 
Cn (w)-+C(w) uniformly on [a,u], 

IIc(w) - d(w)llp<lIc(w) - Cn (w)lI p + Ilcn (w) - d(w)llp ' 

As n-+oo, 

= minimum. 
Theorems 4 and 5 yield nice results in that the con­

strained geological problems do possess optimal solutions. 
However, it is unfortunate that uniqueness need not follow. 

In attempts to prove the invertibility of the I-D MT 
problem (Theorem 7), a related result of interest was 
proved. 

Theorem 6: Assume (er}terol, hi) and (er2,er02,h2) yield 
the same admittance curve. Then erOI = er02 and the zeroth, 
first, and second moments of erl (z) and er2 (z) are equal on 
[O,h], where h = max{h l ,h2} and the functions are aligned 
to put z = h at the Earth's surface. 

Proof: This result can be proved by writing formulas for 
c I (w) and C2 (w) using the transition matrices for the two 
systems. Using expansions of both in terms of w yields the 
result. 

The next theorem discusses f 1- I as in Fig. 1. 
Theorem 7: Let c(w) be generated by (er(z),ero,h), 

where er(z) E COO [O,h], er(z) >0, er(h) >0, and er is the re­
strictionofan analytic function to [O,h], ero> 0, h > 0. Then, 
within this class, (er(z),ero, h) can be recovered from c(w) 
when h is minimal. 
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Proof ero can readily be obtained since ero- I 

= lim iJ-lo"'c2 (w ). The remainder of the proof is based on an 
OJ-->O 

argument suggested by Bailey for a related problem on a 
stratified sphere. This concept has been adapted to the MT 
problem for a flat earth, and the final arguments have been 
strengthened to permit weaker hypotheses (both here and in 
Bailey): we do not assume er(z) >m > 0, but only er(h) > 0, 
er 0> 0, and c (z,w ) is analytic in the lower half of the complex 
w plane. When Iwl is large and er(z) > 0, one can argue that 

lim c'(z,w) = lim (1 - iJ-lo"'er(z)c2(z,w») = ° 
1"'1~00 1"'1~00 

with the error behaving as rl,Jm. This results from the 
aysmptotic behavior of c(z,w) for large w, which is 

c(z,w) = ~ + ~ o'(z) + O(k -3), 
k 4 er(z)k 2 

where 

(9) 

Formula (9) can be derived using the WKB approxima­
tion for E and aE I az. Select the contour C. By the Cauchy 
integral formula (for w in the lower half-plane, and using the 
contour in Fig. 2) 

ac (z,w) = _1_ ,_1_ ac(z,w) dw'. 
az 21Ti J w' - w az 

The portion of the integral over the curved bottom of C goes 
to zero as R-+oo. Thus, 

ac (z,w) = --=-!.foo _1_ ac(z,w' ) dw'. (10) 
az 21Tt' - 00 w' - w az 

Let us analyze what happens as (U-+Q. Using Parker4
, 

ac (z,O) = 1 _ er(z) , 
az ero 

in the limit. Allowing w-+O in the right side of (10) yields 

1 _ er(z) = --=-!. A:oo ~ ac(z,w' ) dw' 
ero 1Ti J- 00 w' az ' 

where !Ii "': 00 indicates limHoo s=:. + s:, the Cauchy prin­
cipal value. Now let us integrate the modified differential 
equation 

w' Plane 

+R 

-IR 

FIG. 2. Contour of integration. 
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I ae(z,aJ') _ I a( ) 2( ') -- - -- - Z e Z.aJ • 
iJ.lrfU' az iJ.lrfU' 

1'" _. _1_, ae(z.aJ') daJ' = 1'" .daJ' , 

~"'~rfU & ~"'~rfU 

-f: '" a(z)e2(z,aJ')daJ'. 

The second integral is zero. Substituting for the first yields 

!!.- (1 _ a(Z)) = 1"'. a(z)c2(z.aJ)daJ (II) 
J.lo U o J - '" 

or 

a(Z) = 1TIJ.lo 
1TIJ.louo + 1> ~ '" e2(z.aJ)dw • 

p(z) -Po= EsLl'" e2(z.aJ)daJ (P(Z) = _1_). 
21T J- '" u(z) 

Since e(z. - aJ*) = e*(z.aJ). (11) may be rewritten 

u(z) = 1TIJ.lo (12) 
1TIJ.loao + 2fO'Re[e2(z.aJ) ]daJ 

[Equation (12) yields limE~'" u(z - E) when u is not con­
tinuous.] 

Using (12). one may obtain values for u(n) at the sur­
face. n = 0.1.2 ..... Moreover. due to (7). u(n) can be 
uniquely determined from e (-,aJ) atthe surface (aJ > 0). The 
C'" portion of u(z) may now be reconstructed uniquely by 
power series. S(z). UsingS(z). e(z.aJ) can be obtained from 
(7) starting at the surface. This e(z.aJ) can then be plugged 
into (12) to obtain limH ", u(z - E). Then h is recovered as 
the depth where S(z) separates from limH ", u(z - E). At 

this depth. e( ',aJ) = l/~ iJ.lrfUUo. 
Consider a partition {aj } of [O.h] such that 0 = ao < a1 

< ... <an = h. Assume that when aj _ 1 <x<aj • 

u(x) =./j(x);;;'O. where./j EC'" [aj_l.aj] • ./j(aj) >0. and 
./j is the restriction of an analytic function to [aj _ 1 .aj ]. Let 
Yh be the class of all such functions u. Then Yh includes all 
the layered earth models. all piecewise polynomials. and all 
piecewise finite trigonometric-series functions. 

649 J. Math. Phys., Vol. 27, No.2, February 1986 

Theorem 8: In both the fiat earth and spherical earth 
cases. e(aJ) can be inverted uniquely over the class Yh • h > O. 

Proof: This is almost a trivial but significant extension of 
Theorem 7 and of Bailey, 1 respectively. The n + 1 layers can 
uniquely be reconstructed by n applications of the procedure 
in Theorem 7. 

Yh is a very broad class of expected geological models. It 
would be nice to extend the result to the positive cone in 
L 2[0.h]. but all attempts have failed. Nonetheless. Yh is a 
sufficiently broad class that Theorem 8 makes it reasonable 
to expect a unimodal distribution of solutions to the finitely 
sampled noisy data inversion problem. 

V. APPLICATIONS 

The theorems stated earlier can be applied to a variety of 
the iterative inversion techniques in use today. As an exam­
ple. the techniques of Parker4,s fit the general framework of 
Theorem 1. He selects b(A) from ever-expanding subspaces 
in NBV[O.oo) which consist of finite delta combs. In the 
limit when the functionals are restricted to 
f(A.aJ) = (1- iaJA)/(A + iaJ). where aJ E WN • these sub­
spaces are weak*-dense in the positive cone of NBV[O, 00 ). 

If one studies the set {f (A.aJ): aJ E W N }. one observes that 
most of the "action" takes place over a rather smallA. range. 
Thus one would expect the rapid convergence to a small r 
value experienced by Parker4,s and Sabatier.3 

lR. C. Bailey, "Inversion of the geomagnetic induction problem," Proc. R. 
Soc. London Ser. A 315, 185 (1970). 

2p. Weidelt, "The inverse problem of geomagnetic induction," Zeitschr. 
Geophys. 38, 257 (1972). 

3p. C. Sabatier, "Positivity constraints in linear inverse problems I and II," 
Geophys. J. R. Astron. Soc. 48, 415 (1977). 

4R. Parker, "The inverse problem of electromagnetic induction: Existence 
and construction of solutions based on incomplete data," J. Geophys. Res. 
85,4421 (1980) . 

SR. Parker and K. A.Whaler, "Numerical methods for establishing solu­
tions to the inverse problem of electromagnetic induction," J. Geophys. 
Res. 86, 9574 (1981). 

61. H. Sneddon, The Use of Integral Transforms (McGraw-Hill, New York, 
1972). 
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The spatially homogeneous and anisotropic Bianchi type-VIo cosmological solution for 
barotropic fluid in the context of modified Brans-Dicke theory is obtained. The general behavior 
of such an anisotropic homogeneous model has been discussed. 

I. INTRODUCTION 

The Brans-Dicke (BD) theory 1 was proposed more 
than 20 years ago with the aim of incorporating Mach's prin­
ciple into general relativity. An enormous effort has been 
made since then in exploring the gravitational as well as cos­
mological consequences of this scalar-tensor theory. The 
role of the cosmological constant A has been discussed by 
various authors in agreement with modern ideas of funda­
mental particle interactions. Bergmann2 and Wagoner3 have 
suggested that the cosmological term should be a function of 
a scalar function. Following the work of Endo and Fukui,4 

Banerjee and Santos3 have obtained cosmological dust solu­
tions for a Bianchi type-I homogeneous space in the modi­
fied Brans-Dicke cosmology. Recently spatially homogen­
eous and anisotropic Bianchi type-I cosmological solutions 
of the modified BD theory containing barotropic fluid have 
been obtained by Singh and Singh6 by the condition of the 
cosmological term A(tP). Since Bianchi type-I models are a 
very special set of spatially homogeneous models, the pres­
ent author has presented anisotropic homogeneous Bianchi 
type-VIo cosmological dust solutions in the context of this 
theory.7 However, Lorentz8 has presented Kasner-like per­
fect fluid solutions of the BD theory of gravitation for the 
Bianchi type-VIo geometry. 

In this paper we obtain spatially homogeneous and an­
isotropic Bianchi type-VIo cosmological solutions of modi­
fied BD theory containing barotropic fluid. The possibilities 
of dust-filled universes, radiation-dominated universes, and 
superdense universes are explored. The general behavior of 
such anisotropic homogeneous models is discussed. 

II. FIELD EQUATIONS 

The field equations for the modified BD theory with the 
introduction of A(tP) are4 

G/w + g,.vA = - (k ItP)T,.v 

- (W1tP2 )(tP,,. tP,v - ! g,.v tP,o tP,O) 

- (lItP)(tP;,.v - g,.vDtP) , (1) 

tP JA _ A = ~ T _ lw + 3DtP . 
JtP 2tP 2tP 

(2) 

Here T,.v is the energy-momentum tensor for a perfect fluid 
given by 

T,.v = (p + p)V,. Vv - pg,.v , (3) 

where p and p are proper pressure and energy density, re­
spectively, and V,. is the four-velocity of the fluid. We as-

sume the coordinates to be comoving so that 

Vi = V 2 = V 3 = 0 , V4 = 1 . (4) 

We number the coordinates x, y, Z, and t as 1, 2, 3, and 4, 
respectively. Here a comma and a semicolon denote ordi­
nary differentiation and covariant differentiation, respec­
tively. 

We further assume that the matter and the scalar fields 
are related through3 

DtP = kJlT I(lw + 3) , (5) 

where the constant I" shows the deviation of this theory 
from that ofBD theory and w is the coupling constant. Sub­
stitution of (5) in (2) yields 

A - A. JA = a DtP (6) 
"'JtP tP' 

a being a constant defined by 

a= [(lw+3)/2](1I1") -1). (7) 

If A is a function of tP only, Banerjee and Santos3 have as­
sumed that DtP = mtPn , where m and n are arbitrary con­
stants. Substituting for DtP in (6) and integrating the result­
ing equation, we obtain 

A=[am/(2-n)]tPn-1+DltP, n#2, (8) 

and 

A = - am log tP + D2tP, n = 2 , (9) 

Dl and D2 being integration constants. 

III. SOLUTIONS OF FIELD EQUATIONS 

The line element for the spatially homogeneous Bian­
chi-type VIo can be written as 

ds2 = dt 2 + A 2(t ) dx2 

+ B 2(t)e - 2qx dy2 + C 2(t)e2qx dzZ , (10) 

where A, B, and C are cosmic scale functions, and q is a 
nonzero constant. The nonzero components of the field 
equations for (10) are 

B44 + C44 + B4C4 +L 
B C BC A2 

= _ A _ kp _ ~ (tP4)2 + A4tP4 + DtP (11) 
tP 2 tP AtP tP' 

A44 + C44 + A 4C4 _ L 
A C AC A2 

= _ A _ kp _ ~ (tP4)2 + B4tP4 + DtP (12) 
tP 2 tP BtP tP' 
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(13) 

A~4 + B4C4 + A4C4 _.!L 
AB BC AC A2 

= _A+.!2.+~(;4)2 + ;44 + 0; (14) 
; 2; ; ;' 

B4 _ C4 = 0 (15) 
B C ' 

where the subscript 4 denotes ordinary differentiation with 
respect to t. 

From the conservation equation T :.,.. = 0 we obtain 

(
A4 B4 C4) 0 P4+(P+P) -+-+- = . 
ABC 

(16) 

Equation (15) readily gives B = ye, r being an integration 
constant. Without loss of any generality we take r = 1. 

We now consider the equation of state 

P = (A - l)p, I<A<2. (17) 

Then from (16) we obtain 

p = c/(AB 2Y-, (18) 

where c is a constant of integration. Also we have 

T= 3p -p = (3A - 4)p. (19) 

Equations (5), (6), (18), and (19) give 

1/( AB 2)), = - (mid W' , (20) 

where 

d = kjlc(4 - 3A )/(lw + 3) . 

We observe that then we can write the density (18) in terms of 
the scalar field 

p= -(mcldW'· (21) 

In order to treat Eqs. (1IHI4) we introduce new varia­
bles a, {J, and 1" by 

A = e-ta , {J = rI-P, dt =AB2 d1", (22) 

and differentiation with respect to 1" is denoted by a dash. 
Then Eq. (20) gives 

e-t(a+2.8)= -(dlm)¢>-n. (23) 

Making use of (22) and (23) we can express 0; = m;n by 

;" = _~;-n. (24) 
m 

Substituting (8), and (22H24) into Eqs. (llHI4) we obtain 
the field equations as 

2/J" + 3A{J,2 + (2n + 2) {J'(;'I;) + (q2/A)e4).fJ 

= [ _ ad 2 + k (A - 1 )cd +~] ~(n + I) 

Am(2 - n) Am Am 

_ Did 2 ~(2n _ I) _ J.. (~ + n) (;')2 (25) 
Am2 A 2 ;' 
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A.' 2 
- {J" + 3A{J'2 + (2n - 1) {J' :L - 9...- e4).fJ 

; A 

= [ _ ad 2 + k(A - 1)cd 
Am(2 - n) Am 

+~_ nd
2

] ~(n+\) 
Am Am 

_ Did 2 ~(2n _ I) _ J.. (~ + n)(;')2 
Am2 A 2 ;' 

A.' 2 
3A{J,2 + 2n {J , :L + 9...- e4)'P 

; A 

= [ ad 2 + kCd] ~(n + I) 

Am(2-n) Am 

+ Dld
2 
~(2n-l) _ J.. (~+ n) (;')2 . 

Am2 A 2 ; 

Subtracting (25) from (24), we obtain 

3{J" + 3{J' ;' + 2q2 e4)'P = nd 2 ~(n + I) • 

; A Am 
Elimination of p" from (24) and (25) yields 

A.' 2 
3A {J ,2 + 2n {J , :L - .L e4)'P 

t/J 3A 

=[_ ad
2 

+k(A-1)ed 
Am(2-n) Am 

+~_~ nd
2

] ~(n+l) 
Am 3 Am 

_ Dld
2 
~(2n-l) _ J.. (~+ n) (t/J')2 . 

Am2 A 2 t/J 
From (27) and (29) we find that 

q2e4).fJ = p~(n + I) + ~ D~~ 2 ~(2n _ I) , 

where 

P =2. [ 2ad
2 + ked _~ 

4 m(2-n) m m 

+~ nd
2 

_ k(A -1)ed]. 
3 m m 

(26) 

(27) 

(28) 

(29) 

(30) 

Due to the nonlinearity of the field equations, it is very 
difficult to obtain a solution in its generality and, therefore, 
we have to make some simplifying assumptions to derive 
useful results. The assumptions are motivated either by 
physical considerations or by mathematical convenience. 
We consider the case DI = O. Then (30) reduces to 

q2e4).fJ=p~(n+l). (31) 

Differentiating (31) we get 

p' = _ n ~ 1 (~), (32) 

{J" = n + 1 (f...)2 + (n + l)d 2 t/J - (n + I) • (33) 
4A t/J 4Am 

Equation (28) is satisfied if 

SAmP= (n - 3)d 2
• 

Substituting (31H33) into (29), we find that 

ShriRam 

(34) 
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(35) 

where 

_1_ = 16 [ - ad 2 + 3k (A - 1 )cd 
Q2 2m(2 - n) 4m 

+2.~+ ked _ nd
2

] 
4m 4m 2m 

X [A 2(3 + 8m + 14n _ 5n2)] -I. (36) 

Integrating (35), we obtain 

= [(n + 1)(A'T + E) ]2/(n + I) 

t/J 2Q ' 
(37) 

where E is an integration constant and may be chosen such 
that at 'T = 0 one has t/J = O. From (23) and (31) we finally 
have the solutions for a and fJ as 

e4J../J =!... [(n + 1)(A'T + E)] -2 (38) 
q2 2Q ' 

eUa = ! (~r [(n + 1~~ + E)] -2(n-l)In+ I (39) 

Also, a and fJ can be expressed in terms of the scalar func­
tion t/J as 

~a = ~ ( qd )2 t/J - (n - I), e4J../J = !... t/J - (n + I) • (40) 
P m q2 

The cosmological factor given (8) with DI = 0 is 

A = [am/(2 - n)] t/Jn-I. (41) 

The density and pressure can be written as a function of the 
cosmological factor 

p = _ (meld )[[(2 - n)/am]A]n/(n - I) (42) 

and 

p = _ (meld)(A - 1)[[(2 - n)/am]A]n/(n -I) . (43) 

We now consider the cases of the dust-filled, radiation­
dominated, and superdense stages of the universe. 

Case (I) Dust-filled universe: This case corresponds to 
the distribution of incoherent matter for which p = O. Put­
tingA = 1 in (37)-(43) we get the model for incoherent mat­
ter. This case has already been discussed by the present au­
thor.? 

Case (II) Radiation-dominated universe: Putting A = ~ 
in (17) we get p = 3p. In this case of radiation dominated 
universe we obtain, from (19), that T = O. Then, from (5), we 
have Dt/J = 0 , which implies that m = O. Therefore (42) and 
(43) give p = 0 and p = O. Thus for p = 3p no solution will 
exist and the model reduces to the vacuum one. 
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Case (III) Superdense universe: Choosing A = 2 the 
equation of state (17) becomes p = p. This equation of state 
for stiff matter has been widely used in general relativity to 
obtain stellar and cosmological models for ultradense mat­
ter.9 Therefore, inserting A = 2 in (37)-(43) we arrive at the 
model for ultradense matter in modified BD theory. 

Finally observe that for q = 0 the line element (10) re­
duces to a Bianchi type-I metric and consequently we get 
plane symmetric Bianchi type-I models for a perfect fluid in 
modified BD theory. 

IV. CONCLUSIONS 

In Sec. III we obtained a perfect fluid solution of Bian­
chi type-VIo in modified BD theory. The general behavior of 
such an anisotropic model is analogous to that of the zero­
curvature Robertson-Walker model of Endo and Fukui,4 

the Bianchi type-I perfect fluid model of Singh and Singh,6 

the Bianchi type-VIo dust model of Ram,? and the Bianchi 
type-VIo perfect fluid model of Lorentz8 in BD theory. From 
(37), we observe thatt/J is an increasing function of'T, ifn < 0, 
and a decreasing function for n > O. The later case is of no 
physical interest as it contradicts the choice of initial condi­
tion. For an expanding universe the spatial volume increases 
with time for negative values of n; in which case V---+ 0 and 
p---+oo at the epoch t/J---+ O. In course of time the model ex­
pands and attains infinite volume V ---+ 00 and p---+ 0 as 
t/J---+ 00. Solutions obtained in this paper are of considerable 
interest and may be useful to study the large-scale dynamics 
of the physical universe. 
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